зеркало из https://github.com/microsoft/clang-1.git
4036 строки
151 KiB
C++
4036 строки
151 KiB
C++
//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for declarations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Sema.h"
|
|
#include "clang/AST/APValue.h"
|
|
#include "clang/AST/ASTConsumer.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/Parse/DeclSpec.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Lex/HeaderSearch.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <algorithm>
|
|
#include <functional>
|
|
using namespace clang;
|
|
|
|
/// \brief If the identifier refers to a type name within this scope,
|
|
/// return the declaration of that type.
|
|
///
|
|
/// This routine performs ordinary name lookup of the identifier II
|
|
/// within the given scope, with optional C++ scope specifier SS, to
|
|
/// determine whether the name refers to a type. If so, returns an
|
|
/// opaque pointer (actually a QualType) corresponding to that
|
|
/// type. Otherwise, returns NULL.
|
|
///
|
|
/// If name lookup results in an ambiguity, this routine will complain
|
|
/// and then return NULL.
|
|
Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
|
|
Scope *S, const CXXScopeSpec *SS) {
|
|
Decl *IIDecl = 0;
|
|
LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
|
|
false, false);
|
|
switch (Result.getKind()) {
|
|
case LookupResult::NotFound:
|
|
case LookupResult::FoundOverloaded:
|
|
return 0;
|
|
|
|
case LookupResult::AmbiguousBaseSubobjectTypes:
|
|
case LookupResult::AmbiguousBaseSubobjects:
|
|
case LookupResult::AmbiguousReference:
|
|
DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
|
|
return 0;
|
|
|
|
case LookupResult::Found:
|
|
IIDecl = Result.getAsDecl();
|
|
break;
|
|
}
|
|
|
|
if (IIDecl) {
|
|
if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl))
|
|
return Context.getTypeDeclType(TD).getAsOpaquePtr();
|
|
else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl))
|
|
return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
DeclContext *Sema::getContainingDC(DeclContext *DC) {
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
|
|
// A C++ out-of-line method will return to the file declaration context.
|
|
if (MD->isOutOfLineDefinition())
|
|
return MD->getLexicalDeclContext();
|
|
|
|
// A C++ inline method is parsed *after* the topmost class it was declared
|
|
// in is fully parsed (it's "complete").
|
|
// The parsing of a C++ inline method happens at the declaration context of
|
|
// the topmost (non-nested) class it is lexically declared in.
|
|
assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
|
|
DC = MD->getParent();
|
|
while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
|
|
DC = RD;
|
|
|
|
// Return the declaration context of the topmost class the inline method is
|
|
// declared in.
|
|
return DC;
|
|
}
|
|
|
|
if (isa<ObjCMethodDecl>(DC))
|
|
return Context.getTranslationUnitDecl();
|
|
|
|
if (Decl *D = dyn_cast<Decl>(DC))
|
|
return D->getLexicalDeclContext();
|
|
|
|
return DC->getLexicalParent();
|
|
}
|
|
|
|
void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
|
|
assert(getContainingDC(DC) == CurContext &&
|
|
"The next DeclContext should be lexically contained in the current one.");
|
|
CurContext = DC;
|
|
S->setEntity(DC);
|
|
}
|
|
|
|
void Sema::PopDeclContext() {
|
|
assert(CurContext && "DeclContext imbalance!");
|
|
|
|
CurContext = getContainingDC(CurContext);
|
|
}
|
|
|
|
/// \brief Determine whether we allow overloading of the function
|
|
/// PrevDecl with another declaration.
|
|
///
|
|
/// This routine determines whether overloading is possible, not
|
|
/// whether some new function is actually an overload. It will return
|
|
/// true in C++ (where we can always provide overloads) or, as an
|
|
/// extension, in C when the previous function is already an
|
|
/// overloaded function declaration or has the "overloadable"
|
|
/// attribute.
|
|
static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
|
|
if (Context.getLangOptions().CPlusPlus)
|
|
return true;
|
|
|
|
if (isa<OverloadedFunctionDecl>(PrevDecl))
|
|
return true;
|
|
|
|
return PrevDecl->getAttr<OverloadableAttr>() != 0;
|
|
}
|
|
|
|
/// Add this decl to the scope shadowed decl chains.
|
|
void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
|
|
// Move up the scope chain until we find the nearest enclosing
|
|
// non-transparent context. The declaration will be introduced into this
|
|
// scope.
|
|
while (S->getEntity() &&
|
|
((DeclContext *)S->getEntity())->isTransparentContext())
|
|
S = S->getParent();
|
|
|
|
S->AddDecl(D);
|
|
|
|
// Add scoped declarations into their context, so that they can be
|
|
// found later. Declarations without a context won't be inserted
|
|
// into any context.
|
|
CurContext->addDecl(D);
|
|
|
|
// C++ [basic.scope]p4:
|
|
// -- exactly one declaration shall declare a class name or
|
|
// enumeration name that is not a typedef name and the other
|
|
// declarations shall all refer to the same object or
|
|
// enumerator, or all refer to functions and function templates;
|
|
// in this case the class name or enumeration name is hidden.
|
|
if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
|
|
// We are pushing the name of a tag (enum or class).
|
|
if (CurContext->getLookupContext()
|
|
== TD->getDeclContext()->getLookupContext()) {
|
|
// We're pushing the tag into the current context, which might
|
|
// require some reshuffling in the identifier resolver.
|
|
IdentifierResolver::iterator
|
|
I = IdResolver.begin(TD->getDeclName()),
|
|
IEnd = IdResolver.end();
|
|
if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
|
|
NamedDecl *PrevDecl = *I;
|
|
for (; I != IEnd && isDeclInScope(*I, CurContext, S);
|
|
PrevDecl = *I, ++I) {
|
|
if (TD->declarationReplaces(*I)) {
|
|
// This is a redeclaration. Remove it from the chain and
|
|
// break out, so that we'll add in the shadowed
|
|
// declaration.
|
|
S->RemoveDecl(*I);
|
|
if (PrevDecl == *I) {
|
|
IdResolver.RemoveDecl(*I);
|
|
IdResolver.AddDecl(TD);
|
|
return;
|
|
} else {
|
|
IdResolver.RemoveDecl(*I);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// There is already a declaration with the same name in the same
|
|
// scope, which is not a tag declaration. It must be found
|
|
// before we find the new declaration, so insert the new
|
|
// declaration at the end of the chain.
|
|
IdResolver.AddShadowedDecl(TD, PrevDecl);
|
|
|
|
return;
|
|
}
|
|
}
|
|
} else if (isa<FunctionDecl>(D) &&
|
|
AllowOverloadingOfFunction(D, Context)) {
|
|
// We are pushing the name of a function, which might be an
|
|
// overloaded name.
|
|
FunctionDecl *FD = cast<FunctionDecl>(D);
|
|
IdentifierResolver::iterator Redecl
|
|
= std::find_if(IdResolver.begin(FD->getDeclName()),
|
|
IdResolver.end(),
|
|
std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
|
|
FD));
|
|
if (Redecl != IdResolver.end()) {
|
|
// There is already a declaration of a function on our
|
|
// IdResolver chain. Replace it with this declaration.
|
|
S->RemoveDecl(*Redecl);
|
|
IdResolver.RemoveDecl(*Redecl);
|
|
}
|
|
}
|
|
|
|
IdResolver.AddDecl(D);
|
|
}
|
|
|
|
void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
|
|
if (S->decl_empty()) return;
|
|
assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
|
|
"Scope shouldn't contain decls!");
|
|
|
|
for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
|
|
I != E; ++I) {
|
|
Decl *TmpD = static_cast<Decl*>(*I);
|
|
assert(TmpD && "This decl didn't get pushed??");
|
|
|
|
assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
|
|
NamedDecl *D = cast<NamedDecl>(TmpD);
|
|
|
|
if (!D->getDeclName()) continue;
|
|
|
|
// Remove this name from our lexical scope.
|
|
IdResolver.RemoveDecl(D);
|
|
}
|
|
}
|
|
|
|
/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
|
|
/// return 0 if one not found.
|
|
ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
|
|
// The third "scope" argument is 0 since we aren't enabling lazy built-in
|
|
// creation from this context.
|
|
NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
|
|
|
|
return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
|
|
}
|
|
|
|
/// getNonFieldDeclScope - Retrieves the innermost scope, starting
|
|
/// from S, where a non-field would be declared. This routine copes
|
|
/// with the difference between C and C++ scoping rules in structs and
|
|
/// unions. For example, the following code is well-formed in C but
|
|
/// ill-formed in C++:
|
|
/// @code
|
|
/// struct S6 {
|
|
/// enum { BAR } e;
|
|
/// };
|
|
///
|
|
/// void test_S6() {
|
|
/// struct S6 a;
|
|
/// a.e = BAR;
|
|
/// }
|
|
/// @endcode
|
|
/// For the declaration of BAR, this routine will return a different
|
|
/// scope. The scope S will be the scope of the unnamed enumeration
|
|
/// within S6. In C++, this routine will return the scope associated
|
|
/// with S6, because the enumeration's scope is a transparent
|
|
/// context but structures can contain non-field names. In C, this
|
|
/// routine will return the translation unit scope, since the
|
|
/// enumeration's scope is a transparent context and structures cannot
|
|
/// contain non-field names.
|
|
Scope *Sema::getNonFieldDeclScope(Scope *S) {
|
|
while (((S->getFlags() & Scope::DeclScope) == 0) ||
|
|
(S->getEntity() &&
|
|
((DeclContext *)S->getEntity())->isTransparentContext()) ||
|
|
(S->isClassScope() && !getLangOptions().CPlusPlus))
|
|
S = S->getParent();
|
|
return S;
|
|
}
|
|
|
|
void Sema::InitBuiltinVaListType() {
|
|
if (!Context.getBuiltinVaListType().isNull())
|
|
return;
|
|
|
|
IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
|
|
NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
|
|
TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
|
|
Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
|
|
}
|
|
|
|
/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
|
|
/// file scope. lazily create a decl for it. ForRedeclaration is true
|
|
/// if we're creating this built-in in anticipation of redeclaring the
|
|
/// built-in.
|
|
NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
|
|
Scope *S, bool ForRedeclaration,
|
|
SourceLocation Loc) {
|
|
Builtin::ID BID = (Builtin::ID)bid;
|
|
|
|
if (Context.BuiltinInfo.hasVAListUse(BID))
|
|
InitBuiltinVaListType();
|
|
|
|
Builtin::Context::GetBuiltinTypeError Error;
|
|
QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
|
|
switch (Error) {
|
|
case Builtin::Context::GE_None:
|
|
// Okay
|
|
break;
|
|
|
|
case Builtin::Context::GE_Missing_FILE:
|
|
if (ForRedeclaration)
|
|
Diag(Loc, diag::err_implicit_decl_requires_stdio)
|
|
<< Context.BuiltinInfo.GetName(BID);
|
|
return 0;
|
|
}
|
|
|
|
if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
|
|
Diag(Loc, diag::ext_implicit_lib_function_decl)
|
|
<< Context.BuiltinInfo.GetName(BID)
|
|
<< R;
|
|
if (!Context.BuiltinInfo.getHeaderName(BID).empty() &&
|
|
Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
|
|
!= diag::MAP_IGNORE)
|
|
Diag(Loc, diag::note_please_include_header)
|
|
<< Context.BuiltinInfo.getHeaderName(BID)
|
|
<< Context.BuiltinInfo.GetName(BID);
|
|
}
|
|
|
|
FunctionDecl *New = FunctionDecl::Create(Context,
|
|
Context.getTranslationUnitDecl(),
|
|
Loc, II, R,
|
|
FunctionDecl::Extern, false);
|
|
New->setImplicit();
|
|
|
|
// Create Decl objects for each parameter, adding them to the
|
|
// FunctionDecl.
|
|
if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
|
|
llvm::SmallVector<ParmVarDecl*, 16> Params;
|
|
for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
|
|
Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
|
|
FT->getArgType(i), VarDecl::None, 0));
|
|
New->setParams(Context, &Params[0], Params.size());
|
|
}
|
|
|
|
AddKnownFunctionAttributes(New);
|
|
|
|
// TUScope is the translation-unit scope to insert this function into.
|
|
// FIXME: This is hideous. We need to teach PushOnScopeChains to
|
|
// relate Scopes to DeclContexts, and probably eliminate CurContext
|
|
// entirely, but we're not there yet.
|
|
DeclContext *SavedContext = CurContext;
|
|
CurContext = Context.getTranslationUnitDecl();
|
|
PushOnScopeChains(New, TUScope);
|
|
CurContext = SavedContext;
|
|
return New;
|
|
}
|
|
|
|
/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
|
|
/// everything from the standard library is defined.
|
|
NamespaceDecl *Sema::GetStdNamespace() {
|
|
if (!StdNamespace) {
|
|
IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
|
|
DeclContext *Global = Context.getTranslationUnitDecl();
|
|
Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
|
|
StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
|
|
}
|
|
return StdNamespace;
|
|
}
|
|
|
|
/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
|
|
/// same name and scope as a previous declaration 'Old'. Figure out
|
|
/// how to resolve this situation, merging decls or emitting
|
|
/// diagnostics as appropriate. Returns true if there was an error,
|
|
/// false otherwise.
|
|
///
|
|
bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
|
|
bool objc_types = false;
|
|
// Allow multiple definitions for ObjC built-in typedefs.
|
|
// FIXME: Verify the underlying types are equivalent!
|
|
if (getLangOptions().ObjC1) {
|
|
const IdentifierInfo *TypeID = New->getIdentifier();
|
|
switch (TypeID->getLength()) {
|
|
default: break;
|
|
case 2:
|
|
if (!TypeID->isStr("id"))
|
|
break;
|
|
Context.setObjCIdType(New);
|
|
objc_types = true;
|
|
break;
|
|
case 5:
|
|
if (!TypeID->isStr("Class"))
|
|
break;
|
|
Context.setObjCClassType(New);
|
|
objc_types = true;
|
|
return false;
|
|
case 3:
|
|
if (!TypeID->isStr("SEL"))
|
|
break;
|
|
Context.setObjCSelType(New);
|
|
objc_types = true;
|
|
return false;
|
|
case 8:
|
|
if (!TypeID->isStr("Protocol"))
|
|
break;
|
|
Context.setObjCProtoType(New->getUnderlyingType());
|
|
objc_types = true;
|
|
return false;
|
|
}
|
|
// Fall through - the typedef name was not a builtin type.
|
|
}
|
|
// Verify the old decl was also a type.
|
|
TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
|
|
if (!Old) {
|
|
Diag(New->getLocation(), diag::err_redefinition_different_kind)
|
|
<< New->getDeclName();
|
|
if (!objc_types)
|
|
Diag(OldD->getLocation(), diag::note_previous_definition);
|
|
return true;
|
|
}
|
|
|
|
// Determine the "old" type we'll use for checking and diagnostics.
|
|
QualType OldType;
|
|
if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
|
|
OldType = OldTypedef->getUnderlyingType();
|
|
else
|
|
OldType = Context.getTypeDeclType(Old);
|
|
|
|
// If the typedef types are not identical, reject them in all languages and
|
|
// with any extensions enabled.
|
|
|
|
if (OldType != New->getUnderlyingType() &&
|
|
Context.getCanonicalType(OldType) !=
|
|
Context.getCanonicalType(New->getUnderlyingType())) {
|
|
Diag(New->getLocation(), diag::err_redefinition_different_typedef)
|
|
<< New->getUnderlyingType() << OldType;
|
|
if (!objc_types)
|
|
Diag(Old->getLocation(), diag::note_previous_definition);
|
|
return true;
|
|
}
|
|
if (objc_types) return false;
|
|
if (getLangOptions().Microsoft) return false;
|
|
|
|
// C++ [dcl.typedef]p2:
|
|
// In a given non-class scope, a typedef specifier can be used to
|
|
// redefine the name of any type declared in that scope to refer
|
|
// to the type to which it already refers.
|
|
if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
|
|
return false;
|
|
|
|
// In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
|
|
// Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
|
|
// *either* declaration is in a system header. The code below implements
|
|
// this adhoc compatibility rule. FIXME: The following code will not
|
|
// work properly when compiling ".i" files (containing preprocessed output).
|
|
if (PP.getDiagnostics().getSuppressSystemWarnings()) {
|
|
SourceManager &SrcMgr = Context.getSourceManager();
|
|
if (SrcMgr.isInSystemHeader(Old->getLocation()))
|
|
return false;
|
|
if (SrcMgr.isInSystemHeader(New->getLocation()))
|
|
return false;
|
|
}
|
|
|
|
Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
|
|
Diag(Old->getLocation(), diag::note_previous_definition);
|
|
return true;
|
|
}
|
|
|
|
/// DeclhasAttr - returns true if decl Declaration already has the target
|
|
/// attribute.
|
|
static bool DeclHasAttr(const Decl *decl, const Attr *target) {
|
|
for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
|
|
if (attr->getKind() == target->getKind())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// MergeAttributes - append attributes from the Old decl to the New one.
|
|
static void MergeAttributes(Decl *New, Decl *Old) {
|
|
Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
|
|
|
|
while (attr) {
|
|
tmp = attr;
|
|
attr = attr->getNext();
|
|
|
|
if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
|
|
tmp->setInherited(true);
|
|
New->addAttr(tmp);
|
|
} else {
|
|
tmp->setNext(0);
|
|
delete(tmp);
|
|
}
|
|
}
|
|
|
|
Old->invalidateAttrs();
|
|
}
|
|
|
|
/// MergeFunctionDecl - We just parsed a function 'New' from
|
|
/// declarator D which has the same name and scope as a previous
|
|
/// declaration 'Old'. Figure out how to resolve this situation,
|
|
/// merging decls or emitting diagnostics as appropriate.
|
|
///
|
|
/// In C++, New and Old must be declarations that are not
|
|
/// overloaded. Use IsOverload to determine whether New and Old are
|
|
/// overloaded, and to select the Old declaration that New should be
|
|
/// merged with.
|
|
///
|
|
/// Returns true if there was an error, false otherwise.
|
|
bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
|
|
assert(!isa<OverloadedFunctionDecl>(OldD) &&
|
|
"Cannot merge with an overloaded function declaration");
|
|
|
|
// Verify the old decl was also a function.
|
|
FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
|
|
if (!Old) {
|
|
Diag(New->getLocation(), diag::err_redefinition_different_kind)
|
|
<< New->getDeclName();
|
|
Diag(OldD->getLocation(), diag::note_previous_definition);
|
|
return true;
|
|
}
|
|
|
|
// Determine whether the previous declaration was a definition,
|
|
// implicit declaration, or a declaration.
|
|
diag::kind PrevDiag;
|
|
if (Old->isThisDeclarationADefinition())
|
|
PrevDiag = diag::note_previous_definition;
|
|
else if (Old->isImplicit())
|
|
PrevDiag = diag::note_previous_implicit_declaration;
|
|
else
|
|
PrevDiag = diag::note_previous_declaration;
|
|
|
|
QualType OldQType = Context.getCanonicalType(Old->getType());
|
|
QualType NewQType = Context.getCanonicalType(New->getType());
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
// (C++98 13.1p2):
|
|
// Certain function declarations cannot be overloaded:
|
|
// -- Function declarations that differ only in the return type
|
|
// cannot be overloaded.
|
|
QualType OldReturnType
|
|
= cast<FunctionType>(OldQType.getTypePtr())->getResultType();
|
|
QualType NewReturnType
|
|
= cast<FunctionType>(NewQType.getTypePtr())->getResultType();
|
|
if (OldReturnType != NewReturnType) {
|
|
Diag(New->getLocation(), diag::err_ovl_diff_return_type);
|
|
Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
|
|
return true;
|
|
}
|
|
|
|
const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
|
|
const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
|
|
if (OldMethod && NewMethod) {
|
|
// -- Member function declarations with the same name and the
|
|
// same parameter types cannot be overloaded if any of them
|
|
// is a static member function declaration.
|
|
if (OldMethod->isStatic() || NewMethod->isStatic()) {
|
|
Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
|
|
Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
|
|
return true;
|
|
}
|
|
|
|
// C++ [class.mem]p1:
|
|
// [...] A member shall not be declared twice in the
|
|
// member-specification, except that a nested class or member
|
|
// class template can be declared and then later defined.
|
|
if (OldMethod->getLexicalDeclContext() ==
|
|
NewMethod->getLexicalDeclContext()) {
|
|
unsigned NewDiag;
|
|
if (isa<CXXConstructorDecl>(OldMethod))
|
|
NewDiag = diag::err_constructor_redeclared;
|
|
else if (isa<CXXDestructorDecl>(NewMethod))
|
|
NewDiag = diag::err_destructor_redeclared;
|
|
else if (isa<CXXConversionDecl>(NewMethod))
|
|
NewDiag = diag::err_conv_function_redeclared;
|
|
else
|
|
NewDiag = diag::err_member_redeclared;
|
|
|
|
Diag(New->getLocation(), NewDiag);
|
|
Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
|
|
}
|
|
}
|
|
|
|
// (C++98 8.3.5p3):
|
|
// All declarations for a function shall agree exactly in both the
|
|
// return type and the parameter-type-list.
|
|
if (OldQType == NewQType) {
|
|
// We have a redeclaration.
|
|
MergeAttributes(New, Old);
|
|
return MergeCXXFunctionDecl(New, Old);
|
|
}
|
|
|
|
// Fall through for conflicting redeclarations and redefinitions.
|
|
}
|
|
|
|
// C: Function types need to be compatible, not identical. This handles
|
|
// duplicate function decls like "void f(int); void f(enum X);" properly.
|
|
if (!getLangOptions().CPlusPlus &&
|
|
Context.typesAreCompatible(OldQType, NewQType)) {
|
|
const FunctionType *NewFuncType = NewQType->getAsFunctionType();
|
|
const FunctionTypeProto *OldProto = 0;
|
|
if (isa<FunctionTypeNoProto>(NewFuncType) &&
|
|
(OldProto = OldQType->getAsFunctionTypeProto())) {
|
|
// The old declaration provided a function prototype, but the
|
|
// new declaration does not. Merge in the prototype.
|
|
llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
|
|
OldProto->arg_type_end());
|
|
NewQType = Context.getFunctionType(NewFuncType->getResultType(),
|
|
&ParamTypes[0], ParamTypes.size(),
|
|
OldProto->isVariadic(),
|
|
OldProto->getTypeQuals());
|
|
New->setType(NewQType);
|
|
New->setInheritedPrototype();
|
|
}
|
|
|
|
MergeAttributes(New, Old);
|
|
|
|
return false;
|
|
}
|
|
|
|
// A function that has already been declared has been redeclared or defined
|
|
// with a different type- show appropriate diagnostic
|
|
if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
|
|
// The user has declared a builtin function with an incompatible
|
|
// signature.
|
|
if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
|
|
// The function the user is redeclaring is a library-defined
|
|
// function like 'malloc' or 'printf'. Warn about the
|
|
// redeclaration, then ignore it.
|
|
Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
|
|
Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
|
|
<< Old << Old->getType();
|
|
return false;
|
|
}
|
|
|
|
PrevDiag = diag::note_previous_builtin_declaration;
|
|
}
|
|
|
|
Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
|
|
Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
|
|
return true;
|
|
}
|
|
|
|
/// Predicate for C "tentative" external object definitions (C99 6.9.2).
|
|
static bool isTentativeDefinition(VarDecl *VD) {
|
|
if (VD->isFileVarDecl())
|
|
return (!VD->getInit() &&
|
|
(VD->getStorageClass() == VarDecl::None ||
|
|
VD->getStorageClass() == VarDecl::Static));
|
|
return false;
|
|
}
|
|
|
|
/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
|
|
/// when dealing with C "tentative" external object definitions (C99 6.9.2).
|
|
void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
|
|
bool VDIsTentative = isTentativeDefinition(VD);
|
|
bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
|
|
|
|
// FIXME: I don't think this will actually see all of the
|
|
// redefinitions. Can't we check this property on-the-fly?
|
|
for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
|
|
E = IdResolver.end();
|
|
I != E; ++I) {
|
|
if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
|
|
VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
|
|
|
|
// Handle the following case:
|
|
// int a[10];
|
|
// int a[]; - the code below makes sure we set the correct type.
|
|
// int a[11]; - this is an error, size isn't 10.
|
|
if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
|
|
OldDecl->getType()->isConstantArrayType())
|
|
VD->setType(OldDecl->getType());
|
|
|
|
// Check for "tentative" definitions. We can't accomplish this in
|
|
// MergeVarDecl since the initializer hasn't been attached.
|
|
if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
|
|
continue;
|
|
|
|
// Handle __private_extern__ just like extern.
|
|
if (OldDecl->getStorageClass() != VarDecl::Extern &&
|
|
OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
|
|
VD->getStorageClass() != VarDecl::Extern &&
|
|
VD->getStorageClass() != VarDecl::PrivateExtern) {
|
|
Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
|
|
Diag(OldDecl->getLocation(), diag::note_previous_definition);
|
|
// One redefinition error is enough.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// MergeVarDecl - We just parsed a variable 'New' which has the same name
|
|
/// and scope as a previous declaration 'Old'. Figure out how to resolve this
|
|
/// situation, merging decls or emitting diagnostics as appropriate.
|
|
///
|
|
/// Tentative definition rules (C99 6.9.2p2) are checked by
|
|
/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
|
|
/// definitions here, since the initializer hasn't been attached.
|
|
///
|
|
bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
|
|
// Verify the old decl was also a variable.
|
|
VarDecl *Old = dyn_cast<VarDecl>(OldD);
|
|
if (!Old) {
|
|
Diag(New->getLocation(), diag::err_redefinition_different_kind)
|
|
<< New->getDeclName();
|
|
Diag(OldD->getLocation(), diag::note_previous_definition);
|
|
return true;
|
|
}
|
|
|
|
MergeAttributes(New, Old);
|
|
|
|
// Merge the types
|
|
QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
|
|
if (MergedT.isNull()) {
|
|
Diag(New->getLocation(), diag::err_redefinition_different_type)
|
|
<< New->getDeclName();
|
|
Diag(Old->getLocation(), diag::note_previous_definition);
|
|
return true;
|
|
}
|
|
New->setType(MergedT);
|
|
// C99 6.2.2p4: Check if we have a static decl followed by a non-static.
|
|
if (New->getStorageClass() == VarDecl::Static &&
|
|
(Old->getStorageClass() == VarDecl::None ||
|
|
Old->getStorageClass() == VarDecl::Extern)) {
|
|
Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
|
|
Diag(Old->getLocation(), diag::note_previous_definition);
|
|
return true;
|
|
}
|
|
// C99 6.2.2p4: Check if we have a non-static decl followed by a static.
|
|
if (New->getStorageClass() != VarDecl::Static &&
|
|
Old->getStorageClass() == VarDecl::Static) {
|
|
Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
|
|
Diag(Old->getLocation(), diag::note_previous_definition);
|
|
return true;
|
|
}
|
|
// Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
|
|
if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
|
|
Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
|
|
Diag(Old->getLocation(), diag::note_previous_definition);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// CheckParmsForFunctionDef - Check that the parameters of the given
|
|
/// function are appropriate for the definition of a function. This
|
|
/// takes care of any checks that cannot be performed on the
|
|
/// declaration itself, e.g., that the types of each of the function
|
|
/// parameters are complete.
|
|
bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
|
|
bool HasInvalidParm = false;
|
|
for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
|
|
ParmVarDecl *Param = FD->getParamDecl(p);
|
|
|
|
// C99 6.7.5.3p4: the parameters in a parameter type list in a
|
|
// function declarator that is part of a function definition of
|
|
// that function shall not have incomplete type.
|
|
if (!Param->isInvalidDecl() &&
|
|
DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
|
|
diag::err_typecheck_decl_incomplete_type)) {
|
|
Param->setInvalidDecl();
|
|
HasInvalidParm = true;
|
|
}
|
|
|
|
// C99 6.9.1p5: If the declarator includes a parameter type list, the
|
|
// declaration of each parameter shall include an identifier.
|
|
if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
|
|
Diag(Param->getLocation(), diag::err_parameter_name_omitted);
|
|
}
|
|
|
|
return HasInvalidParm;
|
|
}
|
|
|
|
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
|
|
/// no declarator (e.g. "struct foo;") is parsed.
|
|
Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
|
|
TagDecl *Tag = 0;
|
|
if (DS.getTypeSpecType() == DeclSpec::TST_class ||
|
|
DS.getTypeSpecType() == DeclSpec::TST_struct ||
|
|
DS.getTypeSpecType() == DeclSpec::TST_union ||
|
|
DS.getTypeSpecType() == DeclSpec::TST_enum)
|
|
Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
|
|
|
|
if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
|
|
if (!Record->getDeclName() && Record->isDefinition() &&
|
|
DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
|
|
return BuildAnonymousStructOrUnion(S, DS, Record);
|
|
|
|
// Microsoft allows unnamed struct/union fields. Don't complain
|
|
// about them.
|
|
// FIXME: Should we support Microsoft's extensions in this area?
|
|
if (Record->getDeclName() && getLangOptions().Microsoft)
|
|
return Tag;
|
|
}
|
|
|
|
if (!DS.isMissingDeclaratorOk() &&
|
|
DS.getTypeSpecType() != DeclSpec::TST_error) {
|
|
// Warn about typedefs of enums without names, since this is an
|
|
// extension in both Microsoft an GNU.
|
|
if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
|
|
Tag && isa<EnumDecl>(Tag)) {
|
|
Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
|
|
<< DS.getSourceRange();
|
|
return Tag;
|
|
}
|
|
|
|
Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
|
|
<< DS.getSourceRange();
|
|
return 0;
|
|
}
|
|
|
|
return Tag;
|
|
}
|
|
|
|
/// InjectAnonymousStructOrUnionMembers - Inject the members of the
|
|
/// anonymous struct or union AnonRecord into the owning context Owner
|
|
/// and scope S. This routine will be invoked just after we realize
|
|
/// that an unnamed union or struct is actually an anonymous union or
|
|
/// struct, e.g.,
|
|
///
|
|
/// @code
|
|
/// union {
|
|
/// int i;
|
|
/// float f;
|
|
/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
|
|
/// // f into the surrounding scope.x
|
|
/// @endcode
|
|
///
|
|
/// This routine is recursive, injecting the names of nested anonymous
|
|
/// structs/unions into the owning context and scope as well.
|
|
bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
|
|
RecordDecl *AnonRecord) {
|
|
bool Invalid = false;
|
|
for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
|
|
FEnd = AnonRecord->field_end();
|
|
F != FEnd; ++F) {
|
|
if ((*F)->getDeclName()) {
|
|
NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
|
|
LookupOrdinaryName, true);
|
|
if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
|
|
// C++ [class.union]p2:
|
|
// The names of the members of an anonymous union shall be
|
|
// distinct from the names of any other entity in the
|
|
// scope in which the anonymous union is declared.
|
|
unsigned diagKind
|
|
= AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
|
|
: diag::err_anonymous_struct_member_redecl;
|
|
Diag((*F)->getLocation(), diagKind)
|
|
<< (*F)->getDeclName();
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
|
|
Invalid = true;
|
|
} else {
|
|
// C++ [class.union]p2:
|
|
// For the purpose of name lookup, after the anonymous union
|
|
// definition, the members of the anonymous union are
|
|
// considered to have been defined in the scope in which the
|
|
// anonymous union is declared.
|
|
Owner->makeDeclVisibleInContext(*F);
|
|
S->AddDecl(*F);
|
|
IdResolver.AddDecl(*F);
|
|
}
|
|
} else if (const RecordType *InnerRecordType
|
|
= (*F)->getType()->getAsRecordType()) {
|
|
RecordDecl *InnerRecord = InnerRecordType->getDecl();
|
|
if (InnerRecord->isAnonymousStructOrUnion())
|
|
Invalid = Invalid ||
|
|
InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
|
|
}
|
|
}
|
|
|
|
return Invalid;
|
|
}
|
|
|
|
/// ActOnAnonymousStructOrUnion - Handle the declaration of an
|
|
/// anonymous structure or union. Anonymous unions are a C++ feature
|
|
/// (C++ [class.union]) and a GNU C extension; anonymous structures
|
|
/// are a GNU C and GNU C++ extension.
|
|
Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
|
|
RecordDecl *Record) {
|
|
DeclContext *Owner = Record->getDeclContext();
|
|
|
|
// Diagnose whether this anonymous struct/union is an extension.
|
|
if (Record->isUnion() && !getLangOptions().CPlusPlus)
|
|
Diag(Record->getLocation(), diag::ext_anonymous_union);
|
|
else if (!Record->isUnion())
|
|
Diag(Record->getLocation(), diag::ext_anonymous_struct);
|
|
|
|
// C and C++ require different kinds of checks for anonymous
|
|
// structs/unions.
|
|
bool Invalid = false;
|
|
if (getLangOptions().CPlusPlus) {
|
|
const char* PrevSpec = 0;
|
|
// C++ [class.union]p3:
|
|
// Anonymous unions declared in a named namespace or in the
|
|
// global namespace shall be declared static.
|
|
if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
|
|
(isa<TranslationUnitDecl>(Owner) ||
|
|
(isa<NamespaceDecl>(Owner) &&
|
|
cast<NamespaceDecl>(Owner)->getDeclName()))) {
|
|
Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
|
|
Invalid = true;
|
|
|
|
// Recover by adding 'static'.
|
|
DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
|
|
}
|
|
// C++ [class.union]p3:
|
|
// A storage class is not allowed in a declaration of an
|
|
// anonymous union in a class scope.
|
|
else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
|
|
isa<RecordDecl>(Owner)) {
|
|
Diag(DS.getStorageClassSpecLoc(),
|
|
diag::err_anonymous_union_with_storage_spec);
|
|
Invalid = true;
|
|
|
|
// Recover by removing the storage specifier.
|
|
DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
|
|
PrevSpec);
|
|
}
|
|
|
|
// C++ [class.union]p2:
|
|
// The member-specification of an anonymous union shall only
|
|
// define non-static data members. [Note: nested types and
|
|
// functions cannot be declared within an anonymous union. ]
|
|
for (DeclContext::decl_iterator Mem = Record->decls_begin(),
|
|
MemEnd = Record->decls_end();
|
|
Mem != MemEnd; ++Mem) {
|
|
if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
|
|
// C++ [class.union]p3:
|
|
// An anonymous union shall not have private or protected
|
|
// members (clause 11).
|
|
if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
|
|
Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
|
|
<< (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
|
|
Invalid = true;
|
|
}
|
|
} else if ((*Mem)->isImplicit()) {
|
|
// Any implicit members are fine.
|
|
} else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
|
|
// This is a type that showed up in an
|
|
// elaborated-type-specifier inside the anonymous struct or
|
|
// union, but which actually declares a type outside of the
|
|
// anonymous struct or union. It's okay.
|
|
} else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
|
|
if (!MemRecord->isAnonymousStructOrUnion() &&
|
|
MemRecord->getDeclName()) {
|
|
// This is a nested type declaration.
|
|
Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
|
|
<< (int)Record->isUnion();
|
|
Invalid = true;
|
|
}
|
|
} else {
|
|
// We have something that isn't a non-static data
|
|
// member. Complain about it.
|
|
unsigned DK = diag::err_anonymous_record_bad_member;
|
|
if (isa<TypeDecl>(*Mem))
|
|
DK = diag::err_anonymous_record_with_type;
|
|
else if (isa<FunctionDecl>(*Mem))
|
|
DK = diag::err_anonymous_record_with_function;
|
|
else if (isa<VarDecl>(*Mem))
|
|
DK = diag::err_anonymous_record_with_static;
|
|
Diag((*Mem)->getLocation(), DK)
|
|
<< (int)Record->isUnion();
|
|
Invalid = true;
|
|
}
|
|
}
|
|
} else {
|
|
// FIXME: Check GNU C semantics
|
|
if (Record->isUnion() && !Owner->isRecord()) {
|
|
Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
|
|
<< (int)getLangOptions().CPlusPlus;
|
|
Invalid = true;
|
|
}
|
|
}
|
|
|
|
if (!Record->isUnion() && !Owner->isRecord()) {
|
|
Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
|
|
<< (int)getLangOptions().CPlusPlus;
|
|
Invalid = true;
|
|
}
|
|
|
|
// Create a declaration for this anonymous struct/union.
|
|
NamedDecl *Anon = 0;
|
|
if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
|
|
Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
|
|
/*IdentifierInfo=*/0,
|
|
Context.getTypeDeclType(Record),
|
|
/*BitWidth=*/0, /*Mutable=*/false);
|
|
Anon->setAccess(AS_public);
|
|
if (getLangOptions().CPlusPlus)
|
|
FieldCollector->Add(cast<FieldDecl>(Anon));
|
|
} else {
|
|
VarDecl::StorageClass SC;
|
|
switch (DS.getStorageClassSpec()) {
|
|
default: assert(0 && "Unknown storage class!");
|
|
case DeclSpec::SCS_unspecified: SC = VarDecl::None; break;
|
|
case DeclSpec::SCS_extern: SC = VarDecl::Extern; break;
|
|
case DeclSpec::SCS_static: SC = VarDecl::Static; break;
|
|
case DeclSpec::SCS_auto: SC = VarDecl::Auto; break;
|
|
case DeclSpec::SCS_register: SC = VarDecl::Register; break;
|
|
case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
|
|
case DeclSpec::SCS_mutable:
|
|
// mutable can only appear on non-static class members, so it's always
|
|
// an error here
|
|
Diag(Record->getLocation(), diag::err_mutable_nonmember);
|
|
Invalid = true;
|
|
SC = VarDecl::None;
|
|
break;
|
|
}
|
|
|
|
Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
|
|
/*IdentifierInfo=*/0,
|
|
Context.getTypeDeclType(Record),
|
|
SC, DS.getSourceRange().getBegin());
|
|
}
|
|
Anon->setImplicit();
|
|
|
|
// Add the anonymous struct/union object to the current
|
|
// context. We'll be referencing this object when we refer to one of
|
|
// its members.
|
|
Owner->addDecl(Anon);
|
|
|
|
// Inject the members of the anonymous struct/union into the owning
|
|
// context and into the identifier resolver chain for name lookup
|
|
// purposes.
|
|
if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
|
|
Invalid = true;
|
|
|
|
// Mark this as an anonymous struct/union type. Note that we do not
|
|
// do this until after we have already checked and injected the
|
|
// members of this anonymous struct/union type, because otherwise
|
|
// the members could be injected twice: once by DeclContext when it
|
|
// builds its lookup table, and once by
|
|
// InjectAnonymousStructOrUnionMembers.
|
|
Record->setAnonymousStructOrUnion(true);
|
|
|
|
if (Invalid)
|
|
Anon->setInvalidDecl();
|
|
|
|
return Anon;
|
|
}
|
|
|
|
bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
|
|
bool DirectInit) {
|
|
// Get the type before calling CheckSingleAssignmentConstraints(), since
|
|
// it can promote the expression.
|
|
QualType InitType = Init->getType();
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
// FIXME: I dislike this error message. A lot.
|
|
if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
|
|
return Diag(Init->getSourceRange().getBegin(),
|
|
diag::err_typecheck_convert_incompatible)
|
|
<< DeclType << Init->getType() << "initializing"
|
|
<< Init->getSourceRange();
|
|
|
|
return false;
|
|
}
|
|
|
|
AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
|
|
return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
|
|
InitType, Init, "initializing");
|
|
}
|
|
|
|
bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
|
|
const ArrayType *AT = Context.getAsArrayType(DeclT);
|
|
|
|
if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
|
|
// C99 6.7.8p14. We have an array of character type with unknown size
|
|
// being initialized to a string literal.
|
|
llvm::APSInt ConstVal(32);
|
|
ConstVal = strLiteral->getByteLength() + 1;
|
|
// Return a new array type (C99 6.7.8p22).
|
|
DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
|
|
ArrayType::Normal, 0);
|
|
} else {
|
|
const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
|
|
// C99 6.7.8p14. We have an array of character type with known size.
|
|
// FIXME: Avoid truncation for 64-bit length strings.
|
|
if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
|
|
Diag(strLiteral->getSourceRange().getBegin(),
|
|
diag::warn_initializer_string_for_char_array_too_long)
|
|
<< strLiteral->getSourceRange();
|
|
}
|
|
// Set type from "char *" to "constant array of char".
|
|
strLiteral->setType(DeclT);
|
|
// For now, we always return false (meaning success).
|
|
return false;
|
|
}
|
|
|
|
StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
|
|
const ArrayType *AT = Context.getAsArrayType(DeclType);
|
|
if (AT && AT->getElementType()->isCharType()) {
|
|
return dyn_cast<StringLiteral>(Init->IgnoreParens());
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
|
|
SourceLocation InitLoc,
|
|
DeclarationName InitEntity,
|
|
bool DirectInit) {
|
|
if (DeclType->isDependentType() || Init->isTypeDependent())
|
|
return false;
|
|
|
|
// C++ [dcl.init.ref]p1:
|
|
// A variable declared to be a T&, that is "reference to type T"
|
|
// (8.3.2), shall be initialized by an object, or function, of
|
|
// type T or by an object that can be converted into a T.
|
|
if (DeclType->isReferenceType())
|
|
return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
|
|
|
|
// C99 6.7.8p3: The type of the entity to be initialized shall be an array
|
|
// of unknown size ("[]") or an object type that is not a variable array type.
|
|
if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
|
|
return Diag(InitLoc, diag::err_variable_object_no_init)
|
|
<< VAT->getSizeExpr()->getSourceRange();
|
|
|
|
InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
|
|
if (!InitList) {
|
|
// FIXME: Handle wide strings
|
|
if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
|
|
return CheckStringLiteralInit(strLiteral, DeclType);
|
|
|
|
// C++ [dcl.init]p14:
|
|
// -- If the destination type is a (possibly cv-qualified) class
|
|
// type:
|
|
if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
|
|
QualType DeclTypeC = Context.getCanonicalType(DeclType);
|
|
QualType InitTypeC = Context.getCanonicalType(Init->getType());
|
|
|
|
// -- If the initialization is direct-initialization, or if it is
|
|
// copy-initialization where the cv-unqualified version of the
|
|
// source type is the same class as, or a derived class of, the
|
|
// class of the destination, constructors are considered.
|
|
if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
|
|
IsDerivedFrom(InitTypeC, DeclTypeC)) {
|
|
CXXConstructorDecl *Constructor
|
|
= PerformInitializationByConstructor(DeclType, &Init, 1,
|
|
InitLoc, Init->getSourceRange(),
|
|
InitEntity,
|
|
DirectInit? IK_Direct : IK_Copy);
|
|
return Constructor == 0;
|
|
}
|
|
|
|
// -- Otherwise (i.e., for the remaining copy-initialization
|
|
// cases), user-defined conversion sequences that can
|
|
// convert from the source type to the destination type or
|
|
// (when a conversion function is used) to a derived class
|
|
// thereof are enumerated as described in 13.3.1.4, and the
|
|
// best one is chosen through overload resolution
|
|
// (13.3). If the conversion cannot be done or is
|
|
// ambiguous, the initialization is ill-formed. The
|
|
// function selected is called with the initializer
|
|
// expression as its argument; if the function is a
|
|
// constructor, the call initializes a temporary of the
|
|
// destination type.
|
|
// FIXME: We're pretending to do copy elision here; return to
|
|
// this when we have ASTs for such things.
|
|
if (!PerformImplicitConversion(Init, DeclType, "initializing"))
|
|
return false;
|
|
|
|
if (InitEntity)
|
|
return Diag(InitLoc, diag::err_cannot_initialize_decl)
|
|
<< InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
|
|
<< Init->getType() << Init->getSourceRange();
|
|
else
|
|
return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
|
|
<< DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
|
|
<< Init->getType() << Init->getSourceRange();
|
|
}
|
|
|
|
// C99 6.7.8p16.
|
|
if (DeclType->isArrayType())
|
|
return Diag(Init->getLocStart(), diag::err_array_init_list_required)
|
|
<< Init->getSourceRange();
|
|
|
|
return CheckSingleInitializer(Init, DeclType, DirectInit);
|
|
}
|
|
|
|
bool hadError = CheckInitList(InitList, DeclType);
|
|
Init = InitList;
|
|
return hadError;
|
|
}
|
|
|
|
/// GetNameForDeclarator - Determine the full declaration name for the
|
|
/// given Declarator.
|
|
DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
|
|
switch (D.getKind()) {
|
|
case Declarator::DK_Abstract:
|
|
assert(D.getIdentifier() == 0 && "abstract declarators have no name");
|
|
return DeclarationName();
|
|
|
|
case Declarator::DK_Normal:
|
|
assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
|
|
return DeclarationName(D.getIdentifier());
|
|
|
|
case Declarator::DK_Constructor: {
|
|
QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
|
|
Ty = Context.getCanonicalType(Ty);
|
|
return Context.DeclarationNames.getCXXConstructorName(Ty);
|
|
}
|
|
|
|
case Declarator::DK_Destructor: {
|
|
QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
|
|
Ty = Context.getCanonicalType(Ty);
|
|
return Context.DeclarationNames.getCXXDestructorName(Ty);
|
|
}
|
|
|
|
case Declarator::DK_Conversion: {
|
|
// FIXME: We'd like to keep the non-canonical type for diagnostics!
|
|
QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
|
|
Ty = Context.getCanonicalType(Ty);
|
|
return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
|
|
}
|
|
|
|
case Declarator::DK_Operator:
|
|
assert(D.getIdentifier() == 0 && "operator names have no identifier");
|
|
return Context.DeclarationNames.getCXXOperatorName(
|
|
D.getOverloadedOperator());
|
|
}
|
|
|
|
assert(false && "Unknown name kind");
|
|
return DeclarationName();
|
|
}
|
|
|
|
/// isNearlyMatchingFunction - Determine whether the C++ functions
|
|
/// Declaration and Definition are "nearly" matching. This heuristic
|
|
/// is used to improve diagnostics in the case where an out-of-line
|
|
/// function definition doesn't match any declaration within
|
|
/// the class or namespace.
|
|
static bool isNearlyMatchingFunction(ASTContext &Context,
|
|
FunctionDecl *Declaration,
|
|
FunctionDecl *Definition) {
|
|
if (Declaration->param_size() != Definition->param_size())
|
|
return false;
|
|
for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
|
|
QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
|
|
QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
|
|
|
|
DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
|
|
DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
|
|
if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Sema::DeclTy *
|
|
Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
|
|
bool IsFunctionDefinition) {
|
|
NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
|
|
DeclarationName Name = GetNameForDeclarator(D);
|
|
|
|
// All of these full declarators require an identifier. If it doesn't have
|
|
// one, the ParsedFreeStandingDeclSpec action should be used.
|
|
if (!Name) {
|
|
if (!D.getInvalidType()) // Reject this if we think it is valid.
|
|
Diag(D.getDeclSpec().getSourceRange().getBegin(),
|
|
diag::err_declarator_need_ident)
|
|
<< D.getDeclSpec().getSourceRange() << D.getSourceRange();
|
|
return 0;
|
|
}
|
|
|
|
// The scope passed in may not be a decl scope. Zip up the scope tree until
|
|
// we find one that is.
|
|
while ((S->getFlags() & Scope::DeclScope) == 0 ||
|
|
(S->getFlags() & Scope::TemplateParamScope) != 0)
|
|
S = S->getParent();
|
|
|
|
DeclContext *DC;
|
|
NamedDecl *PrevDecl;
|
|
NamedDecl *New;
|
|
bool InvalidDecl = false;
|
|
|
|
// See if this is a redefinition of a variable in the same scope.
|
|
if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
|
|
DC = CurContext;
|
|
PrevDecl = LookupName(S, Name, LookupOrdinaryName, true, true,
|
|
D.getIdentifierLoc());
|
|
} else { // Something like "int foo::x;"
|
|
DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
|
|
PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
|
|
|
|
// C++ 7.3.1.2p2:
|
|
// Members (including explicit specializations of templates) of a named
|
|
// namespace can also be defined outside that namespace by explicit
|
|
// qualification of the name being defined, provided that the entity being
|
|
// defined was already declared in the namespace and the definition appears
|
|
// after the point of declaration in a namespace that encloses the
|
|
// declarations namespace.
|
|
//
|
|
// Note that we only check the context at this point. We don't yet
|
|
// have enough information to make sure that PrevDecl is actually
|
|
// the declaration we want to match. For example, given:
|
|
//
|
|
// class X {
|
|
// void f();
|
|
// void f(float);
|
|
// };
|
|
//
|
|
// void X::f(int) { } // ill-formed
|
|
//
|
|
// In this case, PrevDecl will point to the overload set
|
|
// containing the two f's declared in X, but neither of them
|
|
// matches.
|
|
|
|
// First check whether we named the global scope.
|
|
if (isa<TranslationUnitDecl>(DC)) {
|
|
Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
|
|
<< Name << D.getCXXScopeSpec().getRange();
|
|
} else if (!CurContext->Encloses(DC)) {
|
|
// The qualifying scope doesn't enclose the original declaration.
|
|
// Emit diagnostic based on current scope.
|
|
SourceLocation L = D.getIdentifierLoc();
|
|
SourceRange R = D.getCXXScopeSpec().getRange();
|
|
if (isa<FunctionDecl>(CurContext))
|
|
Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
|
|
else
|
|
Diag(L, diag::err_invalid_declarator_scope)
|
|
<< Name << cast<NamedDecl>(DC) << R;
|
|
InvalidDecl = true;
|
|
}
|
|
}
|
|
|
|
if (PrevDecl && PrevDecl->isTemplateParameter()) {
|
|
// Maybe we will complain about the shadowed template parameter.
|
|
InvalidDecl = InvalidDecl
|
|
|| DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
|
|
// Just pretend that we didn't see the previous declaration.
|
|
PrevDecl = 0;
|
|
}
|
|
|
|
// In C++, the previous declaration we find might be a tag type
|
|
// (class or enum). In this case, the new declaration will hide the
|
|
// tag type. Note that this does does not apply if we're declaring a
|
|
// typedef (C++ [dcl.typedef]p4).
|
|
if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
|
|
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
|
|
PrevDecl = 0;
|
|
|
|
QualType R = GetTypeForDeclarator(D, S);
|
|
assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
|
|
|
|
bool Redeclaration = false;
|
|
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
|
|
New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
|
|
InvalidDecl, Redeclaration);
|
|
} else if (R.getTypePtr()->isFunctionType()) {
|
|
New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
|
|
IsFunctionDefinition, InvalidDecl,
|
|
Redeclaration);
|
|
} else {
|
|
New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
|
|
InvalidDecl, Redeclaration);
|
|
}
|
|
|
|
if (New == 0)
|
|
return 0;
|
|
|
|
// Set the lexical context. If the declarator has a C++ scope specifier, the
|
|
// lexical context will be different from the semantic context.
|
|
New->setLexicalDeclContext(CurContext);
|
|
|
|
// If this has an identifier and is not an invalid redeclaration,
|
|
// add it to the scope stack.
|
|
if (Name && !(Redeclaration && InvalidDecl))
|
|
PushOnScopeChains(New, S);
|
|
// If any semantic error occurred, mark the decl as invalid.
|
|
if (D.getInvalidType() || InvalidDecl)
|
|
New->setInvalidDecl();
|
|
|
|
return New;
|
|
}
|
|
|
|
NamedDecl*
|
|
Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
|
|
QualType R, Decl* LastDeclarator,
|
|
Decl* PrevDecl, bool& InvalidDecl,
|
|
bool &Redeclaration) {
|
|
// Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
|
|
if (D.getCXXScopeSpec().isSet()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
|
|
<< D.getCXXScopeSpec().getRange();
|
|
InvalidDecl = true;
|
|
// Pretend we didn't see the scope specifier.
|
|
DC = 0;
|
|
}
|
|
|
|
// Check that there are no default arguments (C++ only).
|
|
if (getLangOptions().CPlusPlus)
|
|
CheckExtraCXXDefaultArguments(D);
|
|
|
|
TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
|
|
if (!NewTD) return 0;
|
|
|
|
// Handle attributes prior to checking for duplicates in MergeVarDecl
|
|
ProcessDeclAttributes(NewTD, D);
|
|
// Merge the decl with the existing one if appropriate. If the decl is
|
|
// in an outer scope, it isn't the same thing.
|
|
if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
|
|
Redeclaration = true;
|
|
if (MergeTypeDefDecl(NewTD, PrevDecl))
|
|
InvalidDecl = true;
|
|
}
|
|
|
|
if (S->getFnParent() == 0) {
|
|
// C99 6.7.7p2: If a typedef name specifies a variably modified type
|
|
// then it shall have block scope.
|
|
if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
|
|
if (NewTD->getUnderlyingType()->isVariableArrayType())
|
|
Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
|
|
else
|
|
Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
|
|
|
|
InvalidDecl = true;
|
|
}
|
|
}
|
|
return NewTD;
|
|
}
|
|
|
|
NamedDecl*
|
|
Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
|
|
QualType R, Decl* LastDeclarator,
|
|
Decl* PrevDecl, bool& InvalidDecl,
|
|
bool &Redeclaration) {
|
|
DeclarationName Name = GetNameForDeclarator(D);
|
|
|
|
// Check that there are no default arguments (C++ only).
|
|
if (getLangOptions().CPlusPlus)
|
|
CheckExtraCXXDefaultArguments(D);
|
|
|
|
if (R.getTypePtr()->isObjCInterfaceType()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
|
|
<< D.getIdentifier();
|
|
InvalidDecl = true;
|
|
}
|
|
|
|
VarDecl *NewVD;
|
|
VarDecl::StorageClass SC;
|
|
switch (D.getDeclSpec().getStorageClassSpec()) {
|
|
default: assert(0 && "Unknown storage class!");
|
|
case DeclSpec::SCS_unspecified: SC = VarDecl::None; break;
|
|
case DeclSpec::SCS_extern: SC = VarDecl::Extern; break;
|
|
case DeclSpec::SCS_static: SC = VarDecl::Static; break;
|
|
case DeclSpec::SCS_auto: SC = VarDecl::Auto; break;
|
|
case DeclSpec::SCS_register: SC = VarDecl::Register; break;
|
|
case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
|
|
case DeclSpec::SCS_mutable:
|
|
// mutable can only appear on non-static class members, so it's always
|
|
// an error here
|
|
Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
|
|
InvalidDecl = true;
|
|
SC = VarDecl::None;
|
|
break;
|
|
}
|
|
|
|
IdentifierInfo *II = Name.getAsIdentifierInfo();
|
|
if (!II) {
|
|
Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
|
|
<< Name.getAsString();
|
|
return 0;
|
|
}
|
|
|
|
if (DC->isRecord()) {
|
|
// This is a static data member for a C++ class.
|
|
NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
|
|
D.getIdentifierLoc(), II,
|
|
R);
|
|
} else {
|
|
bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
|
|
if (S->getFnParent() == 0) {
|
|
// C99 6.9p2: The storage-class specifiers auto and register shall not
|
|
// appear in the declaration specifiers in an external declaration.
|
|
if (SC == VarDecl::Auto || SC == VarDecl::Register) {
|
|
Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
|
|
InvalidDecl = true;
|
|
}
|
|
}
|
|
NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
|
|
II, R, SC,
|
|
// FIXME: Move to DeclGroup...
|
|
D.getDeclSpec().getSourceRange().getBegin());
|
|
NewVD->setThreadSpecified(ThreadSpecified);
|
|
}
|
|
NewVD->setNextDeclarator(LastDeclarator);
|
|
|
|
// Handle attributes prior to checking for duplicates in MergeVarDecl
|
|
ProcessDeclAttributes(NewVD, D);
|
|
|
|
// Handle GNU asm-label extension (encoded as an attribute).
|
|
if (Expr *E = (Expr*) D.getAsmLabel()) {
|
|
// The parser guarantees this is a string.
|
|
StringLiteral *SE = cast<StringLiteral>(E);
|
|
NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
|
|
SE->getByteLength())));
|
|
}
|
|
|
|
// Emit an error if an address space was applied to decl with local storage.
|
|
// This includes arrays of objects with address space qualifiers, but not
|
|
// automatic variables that point to other address spaces.
|
|
// ISO/IEC TR 18037 S5.1.2
|
|
if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
|
|
Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
|
|
InvalidDecl = true;
|
|
}
|
|
// Merge the decl with the existing one if appropriate. If the decl is
|
|
// in an outer scope, it isn't the same thing.
|
|
if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
|
|
if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
|
|
// The user tried to define a non-static data member
|
|
// out-of-line (C++ [dcl.meaning]p1).
|
|
Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
|
|
<< D.getCXXScopeSpec().getRange();
|
|
NewVD->Destroy(Context);
|
|
return 0;
|
|
}
|
|
|
|
Redeclaration = true;
|
|
if (MergeVarDecl(NewVD, PrevDecl))
|
|
InvalidDecl = true;
|
|
|
|
if (D.getCXXScopeSpec().isSet()) {
|
|
// No previous declaration in the qualifying scope.
|
|
Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
|
|
<< Name << D.getCXXScopeSpec().getRange();
|
|
InvalidDecl = true;
|
|
}
|
|
}
|
|
return NewVD;
|
|
}
|
|
|
|
NamedDecl*
|
|
Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
|
|
QualType R, Decl *LastDeclarator,
|
|
Decl* PrevDecl, bool IsFunctionDefinition,
|
|
bool& InvalidDecl, bool &Redeclaration) {
|
|
assert(R.getTypePtr()->isFunctionType());
|
|
|
|
DeclarationName Name = GetNameForDeclarator(D);
|
|
FunctionDecl::StorageClass SC = FunctionDecl::None;
|
|
switch (D.getDeclSpec().getStorageClassSpec()) {
|
|
default: assert(0 && "Unknown storage class!");
|
|
case DeclSpec::SCS_auto:
|
|
case DeclSpec::SCS_register:
|
|
case DeclSpec::SCS_mutable:
|
|
Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
|
|
InvalidDecl = true;
|
|
break;
|
|
case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
|
|
case DeclSpec::SCS_extern: SC = FunctionDecl::Extern; break;
|
|
case DeclSpec::SCS_static: SC = FunctionDecl::Static; break;
|
|
case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
|
|
}
|
|
|
|
bool isInline = D.getDeclSpec().isInlineSpecified();
|
|
// bool isVirtual = D.getDeclSpec().isVirtualSpecified();
|
|
bool isExplicit = D.getDeclSpec().isExplicitSpecified();
|
|
|
|
FunctionDecl *NewFD;
|
|
if (D.getKind() == Declarator::DK_Constructor) {
|
|
// This is a C++ constructor declaration.
|
|
assert(DC->isRecord() &&
|
|
"Constructors can only be declared in a member context");
|
|
|
|
InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
|
|
|
|
// Create the new declaration
|
|
NewFD = CXXConstructorDecl::Create(Context,
|
|
cast<CXXRecordDecl>(DC),
|
|
D.getIdentifierLoc(), Name, R,
|
|
isExplicit, isInline,
|
|
/*isImplicitlyDeclared=*/false);
|
|
|
|
if (InvalidDecl)
|
|
NewFD->setInvalidDecl();
|
|
} else if (D.getKind() == Declarator::DK_Destructor) {
|
|
// This is a C++ destructor declaration.
|
|
if (DC->isRecord()) {
|
|
InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
|
|
|
|
NewFD = CXXDestructorDecl::Create(Context,
|
|
cast<CXXRecordDecl>(DC),
|
|
D.getIdentifierLoc(), Name, R,
|
|
isInline,
|
|
/*isImplicitlyDeclared=*/false);
|
|
|
|
if (InvalidDecl)
|
|
NewFD->setInvalidDecl();
|
|
} else {
|
|
Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
|
|
|
|
// Create a FunctionDecl to satisfy the function definition parsing
|
|
// code path.
|
|
NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
|
|
Name, R, SC, isInline,
|
|
// FIXME: Move to DeclGroup...
|
|
D.getDeclSpec().getSourceRange().getBegin());
|
|
InvalidDecl = true;
|
|
NewFD->setInvalidDecl();
|
|
}
|
|
} else if (D.getKind() == Declarator::DK_Conversion) {
|
|
if (!DC->isRecord()) {
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_conv_function_not_member);
|
|
return 0;
|
|
} else {
|
|
InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
|
|
|
|
NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
|
|
D.getIdentifierLoc(), Name, R,
|
|
isInline, isExplicit);
|
|
|
|
if (InvalidDecl)
|
|
NewFD->setInvalidDecl();
|
|
}
|
|
} else if (DC->isRecord()) {
|
|
// This is a C++ method declaration.
|
|
NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
|
|
D.getIdentifierLoc(), Name, R,
|
|
(SC == FunctionDecl::Static), isInline);
|
|
} else {
|
|
NewFD = FunctionDecl::Create(Context, DC,
|
|
D.getIdentifierLoc(),
|
|
Name, R, SC, isInline,
|
|
// FIXME: Move to DeclGroup...
|
|
D.getDeclSpec().getSourceRange().getBegin());
|
|
}
|
|
NewFD->setNextDeclarator(LastDeclarator);
|
|
|
|
// Set the lexical context. If the declarator has a C++
|
|
// scope specifier, the lexical context will be different
|
|
// from the semantic context.
|
|
NewFD->setLexicalDeclContext(CurContext);
|
|
|
|
// Handle GNU asm-label extension (encoded as an attribute).
|
|
if (Expr *E = (Expr*) D.getAsmLabel()) {
|
|
// The parser guarantees this is a string.
|
|
StringLiteral *SE = cast<StringLiteral>(E);
|
|
NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
|
|
SE->getByteLength())));
|
|
}
|
|
|
|
// Copy the parameter declarations from the declarator D to
|
|
// the function declaration NewFD, if they are available.
|
|
if (D.getNumTypeObjects() > 0) {
|
|
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
|
|
|
|
// Create Decl objects for each parameter, adding them to the
|
|
// FunctionDecl.
|
|
llvm::SmallVector<ParmVarDecl*, 16> Params;
|
|
|
|
// Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
|
|
// function that takes no arguments, not a function that takes a
|
|
// single void argument.
|
|
// We let through "const void" here because Sema::GetTypeForDeclarator
|
|
// already checks for that case.
|
|
if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
|
|
FTI.ArgInfo[0].Param &&
|
|
((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
|
|
// empty arg list, don't push any params.
|
|
ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
|
|
|
|
// In C++, the empty parameter-type-list must be spelled "void"; a
|
|
// typedef of void is not permitted.
|
|
if (getLangOptions().CPlusPlus &&
|
|
Param->getType().getUnqualifiedType() != Context.VoidTy) {
|
|
Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
|
|
}
|
|
} else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
|
|
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
|
|
Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
|
|
}
|
|
|
|
NewFD->setParams(Context, &Params[0], Params.size());
|
|
} else if (R->getAsTypedefType()) {
|
|
// When we're declaring a function with a typedef, as in the
|
|
// following example, we'll need to synthesize (unnamed)
|
|
// parameters for use in the declaration.
|
|
//
|
|
// @code
|
|
// typedef void fn(int);
|
|
// fn f;
|
|
// @endcode
|
|
const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
|
|
if (!FT) {
|
|
// This is a typedef of a function with no prototype, so we
|
|
// don't need to do anything.
|
|
} else if ((FT->getNumArgs() == 0) ||
|
|
(FT->getNumArgs() == 1 && !FT->isVariadic() &&
|
|
FT->getArgType(0)->isVoidType())) {
|
|
// This is a zero-argument function. We don't need to do anything.
|
|
} else {
|
|
// Synthesize a parameter for each argument type.
|
|
llvm::SmallVector<ParmVarDecl*, 16> Params;
|
|
for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
|
|
ArgType != FT->arg_type_end(); ++ArgType) {
|
|
Params.push_back(ParmVarDecl::Create(Context, DC,
|
|
SourceLocation(), 0,
|
|
*ArgType, VarDecl::None,
|
|
0));
|
|
}
|
|
|
|
NewFD->setParams(Context, &Params[0], Params.size());
|
|
}
|
|
}
|
|
|
|
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
|
|
InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
|
|
else if (isa<CXXDestructorDecl>(NewFD)) {
|
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
|
|
Record->setUserDeclaredDestructor(true);
|
|
// C++ [class]p4: A POD-struct is an aggregate class that has [...] no
|
|
// user-defined destructor.
|
|
Record->setPOD(false);
|
|
} else if (CXXConversionDecl *Conversion =
|
|
dyn_cast<CXXConversionDecl>(NewFD))
|
|
ActOnConversionDeclarator(Conversion);
|
|
|
|
// Extra checking for C++ overloaded operators (C++ [over.oper]).
|
|
if (NewFD->isOverloadedOperator() &&
|
|
CheckOverloadedOperatorDeclaration(NewFD))
|
|
NewFD->setInvalidDecl();
|
|
|
|
// Merge the decl with the existing one if appropriate. Since C functions
|
|
// are in a flat namespace, make sure we consider decls in outer scopes.
|
|
bool OverloadableAttrRequired = false;
|
|
if (PrevDecl &&
|
|
(!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
|
|
// Determine whether NewFD is an overload of PrevDecl or
|
|
// a declaration that requires merging. If it's an overload,
|
|
// there's no more work to do here; we'll just add the new
|
|
// function to the scope.
|
|
OverloadedFunctionDecl::function_iterator MatchedDecl;
|
|
|
|
if (!getLangOptions().CPlusPlus &&
|
|
AllowOverloadingOfFunction(PrevDecl, Context))
|
|
OverloadableAttrRequired = true;
|
|
|
|
if (!AllowOverloadingOfFunction(PrevDecl, Context) ||
|
|
!IsOverload(NewFD, PrevDecl, MatchedDecl)) {
|
|
Redeclaration = true;
|
|
Decl *OldDecl = PrevDecl;
|
|
|
|
// If PrevDecl was an overloaded function, extract the
|
|
// FunctionDecl that matched.
|
|
if (isa<OverloadedFunctionDecl>(PrevDecl))
|
|
OldDecl = *MatchedDecl;
|
|
|
|
// NewFD and PrevDecl represent declarations that need to be
|
|
// merged.
|
|
if (MergeFunctionDecl(NewFD, OldDecl))
|
|
InvalidDecl = true;
|
|
|
|
if (!InvalidDecl) {
|
|
NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
|
|
|
|
// An out-of-line member function declaration must also be a
|
|
// definition (C++ [dcl.meaning]p1).
|
|
if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
|
|
!InvalidDecl) {
|
|
Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
|
|
<< D.getCXXScopeSpec().getRange();
|
|
NewFD->setInvalidDecl();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (D.getCXXScopeSpec().isSet() &&
|
|
(!PrevDecl || !Redeclaration)) {
|
|
// The user tried to provide an out-of-line definition for a
|
|
// function that is a member of a class or namespace, but there
|
|
// was no such member function declared (C++ [class.mfct]p2,
|
|
// C++ [namespace.memdef]p2). For example:
|
|
//
|
|
// class X {
|
|
// void f() const;
|
|
// };
|
|
//
|
|
// void X::f() { } // ill-formed
|
|
//
|
|
// Complain about this problem, and attempt to suggest close
|
|
// matches (e.g., those that differ only in cv-qualifiers and
|
|
// whether the parameter types are references).
|
|
Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
|
|
<< cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
|
|
InvalidDecl = true;
|
|
|
|
LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
|
|
true);
|
|
assert(!Prev.isAmbiguous() &&
|
|
"Cannot have an ambiguity in previous-declaration lookup");
|
|
for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
|
|
Func != FuncEnd; ++Func) {
|
|
if (isa<FunctionDecl>(*Func) &&
|
|
isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
|
|
Diag((*Func)->getLocation(), diag::note_member_def_close_match);
|
|
}
|
|
|
|
PrevDecl = 0;
|
|
}
|
|
|
|
// Handle attributes. We need to have merged decls when handling attributes
|
|
// (for example to check for conflicts, etc).
|
|
ProcessDeclAttributes(NewFD, D);
|
|
AddKnownFunctionAttributes(NewFD);
|
|
|
|
if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
|
|
// If a function name is overloadable in C, then every function
|
|
// with that name must be marked "overloadable".
|
|
Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
|
|
<< Redeclaration << NewFD;
|
|
if (PrevDecl)
|
|
Diag(PrevDecl->getLocation(),
|
|
diag::note_attribute_overloadable_prev_overload);
|
|
NewFD->addAttr(new OverloadableAttr);
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
// In C++, check default arguments now that we have merged decls. Unless
|
|
// the lexical context is the class, because in this case this is done
|
|
// during delayed parsing anyway.
|
|
if (!CurContext->isRecord())
|
|
CheckCXXDefaultArguments(NewFD);
|
|
|
|
// An out-of-line member function declaration must also be a
|
|
// definition (C++ [dcl.meaning]p1).
|
|
if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
|
|
Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
|
|
<< D.getCXXScopeSpec().getRange();
|
|
InvalidDecl = true;
|
|
}
|
|
}
|
|
return NewFD;
|
|
}
|
|
|
|
void Sema::InitializerElementNotConstant(const Expr *Init) {
|
|
Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
|
|
<< Init->getSourceRange();
|
|
}
|
|
|
|
bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
|
|
switch (Init->getStmtClass()) {
|
|
default:
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
case Expr::ParenExprClass: {
|
|
const ParenExpr* PE = cast<ParenExpr>(Init);
|
|
return CheckAddressConstantExpressionLValue(PE->getSubExpr());
|
|
}
|
|
case Expr::CompoundLiteralExprClass:
|
|
return cast<CompoundLiteralExpr>(Init)->isFileScope();
|
|
case Expr::DeclRefExprClass:
|
|
case Expr::QualifiedDeclRefExprClass: {
|
|
const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
if (VD->hasGlobalStorage())
|
|
return false;
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
}
|
|
if (isa<FunctionDecl>(D))
|
|
return false;
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
}
|
|
case Expr::MemberExprClass: {
|
|
const MemberExpr *M = cast<MemberExpr>(Init);
|
|
if (M->isArrow())
|
|
return CheckAddressConstantExpression(M->getBase());
|
|
return CheckAddressConstantExpressionLValue(M->getBase());
|
|
}
|
|
case Expr::ArraySubscriptExprClass: {
|
|
// FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
|
|
const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
|
|
return CheckAddressConstantExpression(ASE->getBase()) ||
|
|
CheckArithmeticConstantExpression(ASE->getIdx());
|
|
}
|
|
case Expr::StringLiteralClass:
|
|
case Expr::PredefinedExprClass:
|
|
return false;
|
|
case Expr::UnaryOperatorClass: {
|
|
const UnaryOperator *Exp = cast<UnaryOperator>(Init);
|
|
|
|
// C99 6.6p9
|
|
if (Exp->getOpcode() == UnaryOperator::Deref)
|
|
return CheckAddressConstantExpression(Exp->getSubExpr());
|
|
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Sema::CheckAddressConstantExpression(const Expr* Init) {
|
|
switch (Init->getStmtClass()) {
|
|
default:
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
case Expr::ParenExprClass:
|
|
return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
|
|
case Expr::StringLiteralClass:
|
|
case Expr::ObjCStringLiteralClass:
|
|
return false;
|
|
case Expr::CallExprClass:
|
|
case Expr::CXXOperatorCallExprClass:
|
|
// __builtin___CFStringMakeConstantString is a valid constant l-value.
|
|
if (cast<CallExpr>(Init)->isBuiltinCall(Context) ==
|
|
Builtin::BI__builtin___CFStringMakeConstantString)
|
|
return false;
|
|
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
|
|
case Expr::UnaryOperatorClass: {
|
|
const UnaryOperator *Exp = cast<UnaryOperator>(Init);
|
|
|
|
// C99 6.6p9
|
|
if (Exp->getOpcode() == UnaryOperator::AddrOf)
|
|
return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
|
|
|
|
if (Exp->getOpcode() == UnaryOperator::Extension)
|
|
return CheckAddressConstantExpression(Exp->getSubExpr());
|
|
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
}
|
|
case Expr::BinaryOperatorClass: {
|
|
// FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
|
|
const BinaryOperator *Exp = cast<BinaryOperator>(Init);
|
|
|
|
Expr *PExp = Exp->getLHS();
|
|
Expr *IExp = Exp->getRHS();
|
|
if (IExp->getType()->isPointerType())
|
|
std::swap(PExp, IExp);
|
|
|
|
// FIXME: Should we pedwarn if IExp isn't an integer constant expression?
|
|
return CheckAddressConstantExpression(PExp) ||
|
|
CheckArithmeticConstantExpression(IExp);
|
|
}
|
|
case Expr::ImplicitCastExprClass:
|
|
case Expr::CStyleCastExprClass: {
|
|
const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
|
|
if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
|
|
// Check for implicit promotion
|
|
if (SubExpr->getType()->isFunctionType() ||
|
|
SubExpr->getType()->isArrayType())
|
|
return CheckAddressConstantExpressionLValue(SubExpr);
|
|
}
|
|
|
|
// Check for pointer->pointer cast
|
|
if (SubExpr->getType()->isPointerType())
|
|
return CheckAddressConstantExpression(SubExpr);
|
|
|
|
if (SubExpr->getType()->isIntegralType()) {
|
|
// Check for the special-case of a pointer->int->pointer cast;
|
|
// this isn't standard, but some code requires it. See
|
|
// PR2720 for an example.
|
|
if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
|
|
if (SubCast->getSubExpr()->getType()->isPointerType()) {
|
|
unsigned IntWidth = Context.getIntWidth(SubCast->getType());
|
|
unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
|
|
if (IntWidth >= PointerWidth) {
|
|
return CheckAddressConstantExpression(SubCast->getSubExpr());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (SubExpr->getType()->isArithmeticType()) {
|
|
return CheckArithmeticConstantExpression(SubExpr);
|
|
}
|
|
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
}
|
|
case Expr::ConditionalOperatorClass: {
|
|
// FIXME: Should we pedwarn here?
|
|
const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
|
|
if (!Exp->getCond()->getType()->isArithmeticType()) {
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
}
|
|
if (CheckArithmeticConstantExpression(Exp->getCond()))
|
|
return true;
|
|
if (Exp->getLHS() &&
|
|
CheckAddressConstantExpression(Exp->getLHS()))
|
|
return true;
|
|
return CheckAddressConstantExpression(Exp->getRHS());
|
|
}
|
|
case Expr::AddrLabelExprClass:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static const Expr* FindExpressionBaseAddress(const Expr* E);
|
|
|
|
static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
|
|
switch (E->getStmtClass()) {
|
|
default:
|
|
return E;
|
|
case Expr::ParenExprClass: {
|
|
const ParenExpr* PE = cast<ParenExpr>(E);
|
|
return FindExpressionBaseAddressLValue(PE->getSubExpr());
|
|
}
|
|
case Expr::MemberExprClass: {
|
|
const MemberExpr *M = cast<MemberExpr>(E);
|
|
if (M->isArrow())
|
|
return FindExpressionBaseAddress(M->getBase());
|
|
return FindExpressionBaseAddressLValue(M->getBase());
|
|
}
|
|
case Expr::ArraySubscriptExprClass: {
|
|
const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
|
|
return FindExpressionBaseAddress(ASE->getBase());
|
|
}
|
|
case Expr::UnaryOperatorClass: {
|
|
const UnaryOperator *Exp = cast<UnaryOperator>(E);
|
|
|
|
if (Exp->getOpcode() == UnaryOperator::Deref)
|
|
return FindExpressionBaseAddress(Exp->getSubExpr());
|
|
|
|
return E;
|
|
}
|
|
}
|
|
}
|
|
|
|
static const Expr* FindExpressionBaseAddress(const Expr* E) {
|
|
switch (E->getStmtClass()) {
|
|
default:
|
|
return E;
|
|
case Expr::ParenExprClass: {
|
|
const ParenExpr* PE = cast<ParenExpr>(E);
|
|
return FindExpressionBaseAddress(PE->getSubExpr());
|
|
}
|
|
case Expr::UnaryOperatorClass: {
|
|
const UnaryOperator *Exp = cast<UnaryOperator>(E);
|
|
|
|
// C99 6.6p9
|
|
if (Exp->getOpcode() == UnaryOperator::AddrOf)
|
|
return FindExpressionBaseAddressLValue(Exp->getSubExpr());
|
|
|
|
if (Exp->getOpcode() == UnaryOperator::Extension)
|
|
return FindExpressionBaseAddress(Exp->getSubExpr());
|
|
|
|
return E;
|
|
}
|
|
case Expr::BinaryOperatorClass: {
|
|
const BinaryOperator *Exp = cast<BinaryOperator>(E);
|
|
|
|
Expr *PExp = Exp->getLHS();
|
|
Expr *IExp = Exp->getRHS();
|
|
if (IExp->getType()->isPointerType())
|
|
std::swap(PExp, IExp);
|
|
|
|
return FindExpressionBaseAddress(PExp);
|
|
}
|
|
case Expr::ImplicitCastExprClass: {
|
|
const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
|
|
|
|
// Check for implicit promotion
|
|
if (SubExpr->getType()->isFunctionType() ||
|
|
SubExpr->getType()->isArrayType())
|
|
return FindExpressionBaseAddressLValue(SubExpr);
|
|
|
|
// Check for pointer->pointer cast
|
|
if (SubExpr->getType()->isPointerType())
|
|
return FindExpressionBaseAddress(SubExpr);
|
|
|
|
// We assume that we have an arithmetic expression here;
|
|
// if we don't, we'll figure it out later
|
|
return 0;
|
|
}
|
|
case Expr::CStyleCastExprClass: {
|
|
const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
|
|
|
|
// Check for pointer->pointer cast
|
|
if (SubExpr->getType()->isPointerType())
|
|
return FindExpressionBaseAddress(SubExpr);
|
|
|
|
// We assume that we have an arithmetic expression here;
|
|
// if we don't, we'll figure it out later
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
|
|
switch (Init->getStmtClass()) {
|
|
default:
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
case Expr::ParenExprClass: {
|
|
const ParenExpr* PE = cast<ParenExpr>(Init);
|
|
return CheckArithmeticConstantExpression(PE->getSubExpr());
|
|
}
|
|
case Expr::FloatingLiteralClass:
|
|
case Expr::IntegerLiteralClass:
|
|
case Expr::CharacterLiteralClass:
|
|
case Expr::ImaginaryLiteralClass:
|
|
case Expr::TypesCompatibleExprClass:
|
|
case Expr::CXXBoolLiteralExprClass:
|
|
return false;
|
|
case Expr::CallExprClass:
|
|
case Expr::CXXOperatorCallExprClass: {
|
|
const CallExpr *CE = cast<CallExpr>(Init);
|
|
|
|
// Allow any constant foldable calls to builtins.
|
|
if (CE->isBuiltinCall(Context) && CE->isEvaluatable(Context))
|
|
return false;
|
|
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
}
|
|
case Expr::DeclRefExprClass:
|
|
case Expr::QualifiedDeclRefExprClass: {
|
|
const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
|
|
if (isa<EnumConstantDecl>(D))
|
|
return false;
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
}
|
|
case Expr::CompoundLiteralExprClass:
|
|
// Allow "(vector type){2,4}"; normal C constraints don't allow this,
|
|
// but vectors are allowed to be magic.
|
|
if (Init->getType()->isVectorType())
|
|
return false;
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
case Expr::UnaryOperatorClass: {
|
|
const UnaryOperator *Exp = cast<UnaryOperator>(Init);
|
|
|
|
switch (Exp->getOpcode()) {
|
|
// Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
|
|
// See C99 6.6p3.
|
|
default:
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
case UnaryOperator::OffsetOf:
|
|
if (Exp->getSubExpr()->getType()->isConstantSizeType())
|
|
return false;
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
case UnaryOperator::Extension:
|
|
case UnaryOperator::LNot:
|
|
case UnaryOperator::Plus:
|
|
case UnaryOperator::Minus:
|
|
case UnaryOperator::Not:
|
|
return CheckArithmeticConstantExpression(Exp->getSubExpr());
|
|
}
|
|
}
|
|
case Expr::SizeOfAlignOfExprClass: {
|
|
const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
|
|
// Special check for void types, which are allowed as an extension
|
|
if (Exp->getTypeOfArgument()->isVoidType())
|
|
return false;
|
|
// alignof always evaluates to a constant.
|
|
// FIXME: is sizeof(int[3.0]) a constant expression?
|
|
if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
case Expr::BinaryOperatorClass: {
|
|
const BinaryOperator *Exp = cast<BinaryOperator>(Init);
|
|
|
|
if (Exp->getLHS()->getType()->isArithmeticType() &&
|
|
Exp->getRHS()->getType()->isArithmeticType()) {
|
|
return CheckArithmeticConstantExpression(Exp->getLHS()) ||
|
|
CheckArithmeticConstantExpression(Exp->getRHS());
|
|
}
|
|
|
|
if (Exp->getLHS()->getType()->isPointerType() &&
|
|
Exp->getRHS()->getType()->isPointerType()) {
|
|
const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
|
|
const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
|
|
|
|
// Only allow a null (constant integer) base; we could
|
|
// allow some additional cases if necessary, but this
|
|
// is sufficient to cover offsetof-like constructs.
|
|
if (!LHSBase && !RHSBase) {
|
|
return CheckAddressConstantExpression(Exp->getLHS()) ||
|
|
CheckAddressConstantExpression(Exp->getRHS());
|
|
}
|
|
}
|
|
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
}
|
|
case Expr::ImplicitCastExprClass:
|
|
case Expr::CStyleCastExprClass: {
|
|
const CastExpr *CE = cast<CastExpr>(Init);
|
|
const Expr *SubExpr = CE->getSubExpr();
|
|
|
|
if (SubExpr->getType()->isArithmeticType())
|
|
return CheckArithmeticConstantExpression(SubExpr);
|
|
|
|
if (SubExpr->getType()->isPointerType()) {
|
|
const Expr* Base = FindExpressionBaseAddress(SubExpr);
|
|
if (Base) {
|
|
// the cast is only valid if done to a wide enough type
|
|
if (Context.getTypeSize(CE->getType()) >=
|
|
Context.getTypeSize(SubExpr->getType()))
|
|
return false;
|
|
} else {
|
|
// If the pointer has a null base, this is an offsetof-like construct
|
|
return CheckAddressConstantExpression(SubExpr);
|
|
}
|
|
}
|
|
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
}
|
|
case Expr::ConditionalOperatorClass: {
|
|
const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
|
|
|
|
// If GNU extensions are disabled, we require all operands to be arithmetic
|
|
// constant expressions.
|
|
if (getLangOptions().NoExtensions) {
|
|
return CheckArithmeticConstantExpression(Exp->getCond()) ||
|
|
(Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
|
|
CheckArithmeticConstantExpression(Exp->getRHS());
|
|
}
|
|
|
|
// Otherwise, we have to emulate some of the behavior of fold here.
|
|
// Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
|
|
// because it can constant fold things away. To retain compatibility with
|
|
// GCC code, we see if we can fold the condition to a constant (which we
|
|
// should always be able to do in theory). If so, we only require the
|
|
// specified arm of the conditional to be a constant. This is a horrible
|
|
// hack, but is require by real world code that uses __builtin_constant_p.
|
|
Expr::EvalResult EvalResult;
|
|
if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
|
|
EvalResult.HasSideEffects) {
|
|
// If Evaluate couldn't fold it, CheckArithmeticConstantExpression
|
|
// won't be able to either. Use it to emit the diagnostic though.
|
|
bool Res = CheckArithmeticConstantExpression(Exp->getCond());
|
|
assert(Res && "Evaluate couldn't evaluate this constant?");
|
|
return Res;
|
|
}
|
|
|
|
// Verify that the side following the condition is also a constant.
|
|
const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
|
|
if (EvalResult.Val.getInt() == 0)
|
|
std::swap(TrueSide, FalseSide);
|
|
|
|
if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
|
|
return true;
|
|
|
|
// Okay, the evaluated side evaluates to a constant, so we accept this.
|
|
// Check to see if the other side is obviously not a constant. If so,
|
|
// emit a warning that this is a GNU extension.
|
|
if (FalseSide && !FalseSide->isEvaluatable(Context))
|
|
Diag(Init->getExprLoc(),
|
|
diag::ext_typecheck_expression_not_constant_but_accepted)
|
|
<< FalseSide->getSourceRange();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
|
|
if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
|
|
Init = DIE->getInit();
|
|
|
|
Init = Init->IgnoreParens();
|
|
|
|
if (Init->isEvaluatable(Context))
|
|
return false;
|
|
|
|
// Look through CXXDefaultArgExprs; they have no meaning in this context.
|
|
if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
|
|
return CheckForConstantInitializer(DAE->getExpr(), DclT);
|
|
|
|
if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
|
|
return CheckForConstantInitializer(e->getInitializer(), DclT);
|
|
|
|
if (isa<ImplicitValueInitExpr>(Init)) {
|
|
// FIXME: In C++, check for non-POD types.
|
|
return false;
|
|
}
|
|
|
|
if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
|
|
unsigned numInits = Exp->getNumInits();
|
|
for (unsigned i = 0; i < numInits; i++) {
|
|
// FIXME: Need to get the type of the declaration for C++,
|
|
// because it could be a reference?
|
|
|
|
if (CheckForConstantInitializer(Exp->getInit(i),
|
|
Exp->getInit(i)->getType()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// FIXME: We can probably remove some of this code below, now that
|
|
// Expr::Evaluate is doing the heavy lifting for scalars.
|
|
|
|
if (Init->isNullPointerConstant(Context))
|
|
return false;
|
|
if (Init->getType()->isArithmeticType()) {
|
|
QualType InitTy = Context.getCanonicalType(Init->getType())
|
|
.getUnqualifiedType();
|
|
if (InitTy == Context.BoolTy) {
|
|
// Special handling for pointers implicitly cast to bool;
|
|
// (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
|
|
if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
|
|
Expr* SubE = ICE->getSubExpr();
|
|
if (SubE->getType()->isPointerType() ||
|
|
SubE->getType()->isArrayType() ||
|
|
SubE->getType()->isFunctionType()) {
|
|
return CheckAddressConstantExpression(Init);
|
|
}
|
|
}
|
|
} else if (InitTy->isIntegralType()) {
|
|
Expr* SubE = 0;
|
|
if (CastExpr* CE = dyn_cast<CastExpr>(Init))
|
|
SubE = CE->getSubExpr();
|
|
// Special check for pointer cast to int; we allow as an extension
|
|
// an address constant cast to an integer if the integer
|
|
// is of an appropriate width (this sort of code is apparently used
|
|
// in some places).
|
|
// FIXME: Add pedwarn?
|
|
// FIXME: Don't allow bitfields here! Need the FieldDecl for that.
|
|
if (SubE && (SubE->getType()->isPointerType() ||
|
|
SubE->getType()->isArrayType() ||
|
|
SubE->getType()->isFunctionType())) {
|
|
unsigned IntWidth = Context.getTypeSize(Init->getType());
|
|
unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
|
|
if (IntWidth >= PointerWidth)
|
|
return CheckAddressConstantExpression(Init);
|
|
}
|
|
}
|
|
|
|
return CheckArithmeticConstantExpression(Init);
|
|
}
|
|
|
|
if (Init->getType()->isPointerType())
|
|
return CheckAddressConstantExpression(Init);
|
|
|
|
// An array type at the top level that isn't an init-list must
|
|
// be a string literal
|
|
if (Init->getType()->isArrayType())
|
|
return false;
|
|
|
|
if (Init->getType()->isFunctionType())
|
|
return false;
|
|
|
|
// Allow block exprs at top level.
|
|
if (Init->getType()->isBlockPointerType())
|
|
return false;
|
|
|
|
// GCC cast to union extension
|
|
// note: the validity of the cast expr is checked by CheckCastTypes()
|
|
if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
|
|
QualType T = C->getType();
|
|
return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
|
|
}
|
|
|
|
InitializerElementNotConstant(Init);
|
|
return true;
|
|
}
|
|
|
|
void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
|
|
AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
|
|
}
|
|
|
|
/// AddInitializerToDecl - Adds the initializer Init to the
|
|
/// declaration dcl. If DirectInit is true, this is C++ direct
|
|
/// initialization rather than copy initialization.
|
|
void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
|
|
Decl *RealDecl = static_cast<Decl *>(dcl);
|
|
Expr *Init = static_cast<Expr *>(init.release());
|
|
assert(Init && "missing initializer");
|
|
|
|
// If there is no declaration, there was an error parsing it. Just ignore
|
|
// the initializer.
|
|
if (RealDecl == 0) {
|
|
Init->Destroy(Context);
|
|
return;
|
|
}
|
|
|
|
VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
|
|
if (!VDecl) {
|
|
Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
|
|
RealDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
// Get the decls type and save a reference for later, since
|
|
// CheckInitializerTypes may change it.
|
|
QualType DclT = VDecl->getType(), SavT = DclT;
|
|
if (VDecl->isBlockVarDecl()) {
|
|
VarDecl::StorageClass SC = VDecl->getStorageClass();
|
|
if (SC == VarDecl::Extern) { // C99 6.7.8p5
|
|
Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
|
|
VDecl->setInvalidDecl();
|
|
} else if (!VDecl->isInvalidDecl()) {
|
|
if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
|
|
VDecl->getDeclName(), DirectInit))
|
|
VDecl->setInvalidDecl();
|
|
|
|
// C++ 3.6.2p2, allow dynamic initialization of static initializers.
|
|
if (!getLangOptions().CPlusPlus) {
|
|
if (SC == VarDecl::Static) // C99 6.7.8p4.
|
|
CheckForConstantInitializer(Init, DclT);
|
|
}
|
|
}
|
|
} else if (VDecl->isFileVarDecl()) {
|
|
if (VDecl->getStorageClass() == VarDecl::Extern)
|
|
Diag(VDecl->getLocation(), diag::warn_extern_init);
|
|
if (!VDecl->isInvalidDecl())
|
|
if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
|
|
VDecl->getDeclName(), DirectInit))
|
|
VDecl->setInvalidDecl();
|
|
|
|
// C++ 3.6.2p2, allow dynamic initialization of static initializers.
|
|
if (!getLangOptions().CPlusPlus) {
|
|
// C99 6.7.8p4. All file scoped initializers need to be constant.
|
|
CheckForConstantInitializer(Init, DclT);
|
|
}
|
|
}
|
|
// If the type changed, it means we had an incomplete type that was
|
|
// completed by the initializer. For example:
|
|
// int ary[] = { 1, 3, 5 };
|
|
// "ary" transitions from a VariableArrayType to a ConstantArrayType.
|
|
if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
|
|
VDecl->setType(DclT);
|
|
Init->setType(DclT);
|
|
}
|
|
|
|
// Attach the initializer to the decl.
|
|
VDecl->setInit(Init);
|
|
return;
|
|
}
|
|
|
|
void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
|
|
Decl *RealDecl = static_cast<Decl *>(dcl);
|
|
|
|
// If there is no declaration, there was an error parsing it. Just ignore it.
|
|
if (RealDecl == 0)
|
|
return;
|
|
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
|
|
QualType Type = Var->getType();
|
|
// C++ [dcl.init.ref]p3:
|
|
// The initializer can be omitted for a reference only in a
|
|
// parameter declaration (8.3.5), in the declaration of a
|
|
// function return type, in the declaration of a class member
|
|
// within its class declaration (9.2), and where the extern
|
|
// specifier is explicitly used.
|
|
if (Type->isReferenceType() &&
|
|
Var->getStorageClass() != VarDecl::Extern &&
|
|
Var->getStorageClass() != VarDecl::PrivateExtern) {
|
|
Diag(Var->getLocation(), diag::err_reference_var_requires_init)
|
|
<< Var->getDeclName()
|
|
<< SourceRange(Var->getLocation(), Var->getLocation());
|
|
Var->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// C++ [dcl.init]p9:
|
|
//
|
|
// If no initializer is specified for an object, and the object
|
|
// is of (possibly cv-qualified) non-POD class type (or array
|
|
// thereof), the object shall be default-initialized; if the
|
|
// object is of const-qualified type, the underlying class type
|
|
// shall have a user-declared default constructor.
|
|
if (getLangOptions().CPlusPlus) {
|
|
QualType InitType = Type;
|
|
if (const ArrayType *Array = Context.getAsArrayType(Type))
|
|
InitType = Array->getElementType();
|
|
if (Var->getStorageClass() != VarDecl::Extern &&
|
|
Var->getStorageClass() != VarDecl::PrivateExtern &&
|
|
InitType->isRecordType()) {
|
|
const CXXConstructorDecl *Constructor
|
|
= PerformInitializationByConstructor(InitType, 0, 0,
|
|
Var->getLocation(),
|
|
SourceRange(Var->getLocation(),
|
|
Var->getLocation()),
|
|
Var->getDeclName(),
|
|
IK_Default);
|
|
if (!Constructor)
|
|
Var->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
// FIXME: Temporarily disabled because we are not properly parsing
|
|
// linkage specifications on declarations, e.g.,
|
|
//
|
|
// extern "C" const CGPoint CGPointerZero;
|
|
//
|
|
// C++ [dcl.init]p9:
|
|
//
|
|
// If no initializer is specified for an object, and the
|
|
// object is of (possibly cv-qualified) non-POD class type (or
|
|
// array thereof), the object shall be default-initialized; if
|
|
// the object is of const-qualified type, the underlying class
|
|
// type shall have a user-declared default
|
|
// constructor. Otherwise, if no initializer is specified for
|
|
// an object, the object and its subobjects, if any, have an
|
|
// indeterminate initial value; if the object or any of its
|
|
// subobjects are of const-qualified type, the program is
|
|
// ill-formed.
|
|
//
|
|
// This isn't technically an error in C, so we don't diagnose it.
|
|
//
|
|
// FIXME: Actually perform the POD/user-defined default
|
|
// constructor check.
|
|
if (getLangOptions().CPlusPlus &&
|
|
Context.getCanonicalType(Type).isConstQualified() &&
|
|
Var->getStorageClass() != VarDecl::Extern)
|
|
Diag(Var->getLocation(), diag::err_const_var_requires_init)
|
|
<< Var->getName()
|
|
<< SourceRange(Var->getLocation(), Var->getLocation());
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/// The declarators are chained together backwards, reverse the list.
|
|
Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
|
|
// Often we have single declarators, handle them quickly.
|
|
Decl *GroupDecl = static_cast<Decl*>(group);
|
|
if (GroupDecl == 0)
|
|
return 0;
|
|
|
|
Decl *Group = dyn_cast<Decl>(GroupDecl);
|
|
Decl *NewGroup = 0;
|
|
if (Group->getNextDeclarator() == 0)
|
|
NewGroup = Group;
|
|
else { // reverse the list.
|
|
while (Group) {
|
|
Decl *Next = Group->getNextDeclarator();
|
|
Group->setNextDeclarator(NewGroup);
|
|
NewGroup = Group;
|
|
Group = Next;
|
|
}
|
|
}
|
|
// Perform semantic analysis that depends on having fully processed both
|
|
// the declarator and initializer.
|
|
for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
|
|
VarDecl *IDecl = dyn_cast<VarDecl>(ID);
|
|
if (!IDecl)
|
|
continue;
|
|
QualType T = IDecl->getType();
|
|
|
|
if (T->isVariableArrayType()) {
|
|
const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
|
|
|
|
// FIXME: This won't give the correct result for
|
|
// int a[10][n];
|
|
SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
|
|
if (IDecl->isFileVarDecl()) {
|
|
Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
|
|
SizeRange;
|
|
|
|
IDecl->setInvalidDecl();
|
|
} else {
|
|
// C99 6.7.5.2p2: If an identifier is declared to be an object with
|
|
// static storage duration, it shall not have a variable length array.
|
|
if (IDecl->getStorageClass() == VarDecl::Static) {
|
|
Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
|
|
<< SizeRange;
|
|
IDecl->setInvalidDecl();
|
|
} else if (IDecl->getStorageClass() == VarDecl::Extern) {
|
|
Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
|
|
<< SizeRange;
|
|
IDecl->setInvalidDecl();
|
|
}
|
|
}
|
|
} else if (T->isVariablyModifiedType()) {
|
|
if (IDecl->isFileVarDecl()) {
|
|
Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
|
|
IDecl->setInvalidDecl();
|
|
} else {
|
|
if (IDecl->getStorageClass() == VarDecl::Extern) {
|
|
Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
|
|
IDecl->setInvalidDecl();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Block scope. C99 6.7p7: If an identifier for an object is declared with
|
|
// no linkage (C99 6.2.2p6), the type for the object shall be complete...
|
|
if (IDecl->isBlockVarDecl() &&
|
|
IDecl->getStorageClass() != VarDecl::Extern) {
|
|
if (!IDecl->isInvalidDecl() &&
|
|
DiagnoseIncompleteType(IDecl->getLocation(), T,
|
|
diag::err_typecheck_decl_incomplete_type))
|
|
IDecl->setInvalidDecl();
|
|
}
|
|
// File scope. C99 6.9.2p2: A declaration of an identifier for and
|
|
// object that has file scope without an initializer, and without a
|
|
// storage-class specifier or with the storage-class specifier "static",
|
|
// constitutes a tentative definition. Note: A tentative definition with
|
|
// external linkage is valid (C99 6.2.2p5).
|
|
if (isTentativeDefinition(IDecl)) {
|
|
if (T->isIncompleteArrayType()) {
|
|
// C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
|
|
// array to be completed. Don't issue a diagnostic.
|
|
} else if (!IDecl->isInvalidDecl() &&
|
|
DiagnoseIncompleteType(IDecl->getLocation(), T,
|
|
diag::err_typecheck_decl_incomplete_type))
|
|
// C99 6.9.2p3: If the declaration of an identifier for an object is
|
|
// a tentative definition and has internal linkage (C99 6.2.2p3), the
|
|
// declared type shall not be an incomplete type.
|
|
IDecl->setInvalidDecl();
|
|
}
|
|
if (IDecl->isFileVarDecl())
|
|
CheckForFileScopedRedefinitions(S, IDecl);
|
|
}
|
|
return NewGroup;
|
|
}
|
|
|
|
/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
|
|
/// to introduce parameters into function prototype scope.
|
|
Sema::DeclTy *
|
|
Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
|
|
const DeclSpec &DS = D.getDeclSpec();
|
|
|
|
// Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
|
|
VarDecl::StorageClass StorageClass = VarDecl::None;
|
|
if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
|
|
StorageClass = VarDecl::Register;
|
|
} else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
|
|
Diag(DS.getStorageClassSpecLoc(),
|
|
diag::err_invalid_storage_class_in_func_decl);
|
|
D.getMutableDeclSpec().ClearStorageClassSpecs();
|
|
}
|
|
if (DS.isThreadSpecified()) {
|
|
Diag(DS.getThreadSpecLoc(),
|
|
diag::err_invalid_storage_class_in_func_decl);
|
|
D.getMutableDeclSpec().ClearStorageClassSpecs();
|
|
}
|
|
|
|
// Check that there are no default arguments inside the type of this
|
|
// parameter (C++ only).
|
|
if (getLangOptions().CPlusPlus)
|
|
CheckExtraCXXDefaultArguments(D);
|
|
|
|
// In this context, we *do not* check D.getInvalidType(). If the declarator
|
|
// type was invalid, GetTypeForDeclarator() still returns a "valid" type,
|
|
// though it will not reflect the user specified type.
|
|
QualType parmDeclType = GetTypeForDeclarator(D, S);
|
|
|
|
assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
|
|
|
|
// TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
|
|
// Can this happen for params? We already checked that they don't conflict
|
|
// among each other. Here they can only shadow globals, which is ok.
|
|
IdentifierInfo *II = D.getIdentifier();
|
|
if (II) {
|
|
if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
|
|
if (PrevDecl->isTemplateParameter()) {
|
|
// Maybe we will complain about the shadowed template parameter.
|
|
DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
|
|
// Just pretend that we didn't see the previous declaration.
|
|
PrevDecl = 0;
|
|
} else if (S->isDeclScope(PrevDecl)) {
|
|
Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
|
|
|
|
// Recover by removing the name
|
|
II = 0;
|
|
D.SetIdentifier(0, D.getIdentifierLoc());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
|
|
// Doing the promotion here has a win and a loss. The win is the type for
|
|
// both Decl's and DeclRefExpr's will match (a convenient invariant for the
|
|
// code generator). The loss is the orginal type isn't preserved. For example:
|
|
//
|
|
// void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
|
|
// int blockvardecl[5];
|
|
// sizeof(parmvardecl); // size == 4
|
|
// sizeof(blockvardecl); // size == 20
|
|
// }
|
|
//
|
|
// For expressions, all implicit conversions are captured using the
|
|
// ImplicitCastExpr AST node (we have no such mechanism for Decl's).
|
|
//
|
|
// FIXME: If a source translation tool needs to see the original type, then
|
|
// we need to consider storing both types (in ParmVarDecl)...
|
|
//
|
|
if (parmDeclType->isArrayType()) {
|
|
// int x[restrict 4] -> int *restrict
|
|
parmDeclType = Context.getArrayDecayedType(parmDeclType);
|
|
} else if (parmDeclType->isFunctionType())
|
|
parmDeclType = Context.getPointerType(parmDeclType);
|
|
|
|
ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
|
|
D.getIdentifierLoc(), II,
|
|
parmDeclType, StorageClass,
|
|
0);
|
|
|
|
if (D.getInvalidType())
|
|
New->setInvalidDecl();
|
|
|
|
// Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
|
|
if (D.getCXXScopeSpec().isSet()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
|
|
<< D.getCXXScopeSpec().getRange();
|
|
New->setInvalidDecl();
|
|
}
|
|
|
|
// Add the parameter declaration into this scope.
|
|
S->AddDecl(New);
|
|
if (II)
|
|
IdResolver.AddDecl(New);
|
|
|
|
ProcessDeclAttributes(New, D);
|
|
return New;
|
|
|
|
}
|
|
|
|
void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
|
|
assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
|
|
"Not a function declarator!");
|
|
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
|
|
|
|
// Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
|
|
// for a K&R function.
|
|
if (!FTI.hasPrototype) {
|
|
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
|
|
if (FTI.ArgInfo[i].Param == 0) {
|
|
Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
|
|
<< FTI.ArgInfo[i].Ident;
|
|
// Implicitly declare the argument as type 'int' for lack of a better
|
|
// type.
|
|
DeclSpec DS;
|
|
const char* PrevSpec; // unused
|
|
DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
|
|
PrevSpec);
|
|
Declarator ParamD(DS, Declarator::KNRTypeListContext);
|
|
ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
|
|
FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
|
|
assert(getCurFunctionDecl() == 0 && "Function parsing confused");
|
|
assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
|
|
"Not a function declarator!");
|
|
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
|
|
|
|
if (FTI.hasPrototype) {
|
|
// FIXME: Diagnose arguments without names in C.
|
|
}
|
|
|
|
Scope *ParentScope = FnBodyScope->getParent();
|
|
|
|
return ActOnStartOfFunctionDef(FnBodyScope,
|
|
ActOnDeclarator(ParentScope, D, 0,
|
|
/*IsFunctionDefinition=*/true));
|
|
}
|
|
|
|
Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
|
|
Decl *decl = static_cast<Decl*>(D);
|
|
FunctionDecl *FD = cast<FunctionDecl>(decl);
|
|
|
|
// See if this is a redefinition.
|
|
const FunctionDecl *Definition;
|
|
if (FD->getBody(Definition)) {
|
|
Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
|
|
Diag(Definition->getLocation(), diag::note_previous_definition);
|
|
}
|
|
|
|
// Builtin functions cannot be defined.
|
|
if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
|
|
if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
|
|
Diag(FD->getLocation(), diag::err_builtin_lib_definition) << FD;
|
|
Diag(FD->getLocation(), diag::note_builtin_lib_def_freestanding);
|
|
} else
|
|
Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
|
|
FD->setInvalidDecl();
|
|
}
|
|
|
|
PushDeclContext(FnBodyScope, FD);
|
|
|
|
// Check the validity of our function parameters
|
|
CheckParmsForFunctionDef(FD);
|
|
|
|
// Introduce our parameters into the function scope
|
|
for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
|
|
ParmVarDecl *Param = FD->getParamDecl(p);
|
|
Param->setOwningFunction(FD);
|
|
|
|
// If this has an identifier, add it to the scope stack.
|
|
if (Param->getIdentifier())
|
|
PushOnScopeChains(Param, FnBodyScope);
|
|
}
|
|
|
|
// Checking attributes of current function definition
|
|
// dllimport attribute.
|
|
if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
|
|
// dllimport attribute cannot be applied to definition.
|
|
if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
|
|
Diag(FD->getLocation(),
|
|
diag::err_attribute_can_be_applied_only_to_symbol_declaration)
|
|
<< "dllimport";
|
|
FD->setInvalidDecl();
|
|
return FD;
|
|
} else {
|
|
// If a symbol previously declared dllimport is later defined, the
|
|
// attribute is ignored in subsequent references, and a warning is
|
|
// emitted.
|
|
Diag(FD->getLocation(),
|
|
diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
|
|
<< FD->getNameAsCString() << "dllimport";
|
|
}
|
|
}
|
|
return FD;
|
|
}
|
|
|
|
Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
|
|
Decl *dcl = static_cast<Decl *>(D);
|
|
Stmt *Body = static_cast<Stmt*>(BodyArg.release());
|
|
if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
|
|
FD->setBody(Body);
|
|
assert(FD == getCurFunctionDecl() && "Function parsing confused");
|
|
} else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
|
|
MD->setBody((Stmt*)Body);
|
|
} else {
|
|
Body->Destroy(Context);
|
|
return 0;
|
|
}
|
|
PopDeclContext();
|
|
// Verify and clean out per-function state.
|
|
|
|
// Check goto/label use.
|
|
for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
|
|
I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
|
|
// Verify that we have no forward references left. If so, there was a goto
|
|
// or address of a label taken, but no definition of it. Label fwd
|
|
// definitions are indicated with a null substmt.
|
|
if (I->second->getSubStmt() == 0) {
|
|
LabelStmt *L = I->second;
|
|
// Emit error.
|
|
Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
|
|
|
|
// At this point, we have gotos that use the bogus label. Stitch it into
|
|
// the function body so that they aren't leaked and that the AST is well
|
|
// formed.
|
|
if (Body) {
|
|
#if 0
|
|
// FIXME: Why do this? Having a 'push_back' in CompoundStmt is ugly,
|
|
// and the AST is malformed anyway. We should just blow away 'L'.
|
|
L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
|
|
cast<CompoundStmt>(Body)->push_back(L);
|
|
#else
|
|
L->Destroy(Context);
|
|
#endif
|
|
} else {
|
|
// The whole function wasn't parsed correctly, just delete this.
|
|
L->Destroy(Context);
|
|
}
|
|
}
|
|
}
|
|
LabelMap.clear();
|
|
|
|
return D;
|
|
}
|
|
|
|
/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
|
|
/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
|
|
NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
|
|
IdentifierInfo &II, Scope *S) {
|
|
// Extension in C99. Legal in C90, but warn about it.
|
|
if (getLangOptions().C99)
|
|
Diag(Loc, diag::ext_implicit_function_decl) << &II;
|
|
else
|
|
Diag(Loc, diag::warn_implicit_function_decl) << &II;
|
|
|
|
// FIXME: handle stuff like:
|
|
// void foo() { extern float X(); }
|
|
// void bar() { X(); } <-- implicit decl for X in another scope.
|
|
|
|
// Set a Declarator for the implicit definition: int foo();
|
|
const char *Dummy;
|
|
DeclSpec DS;
|
|
bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
|
|
Error = Error; // Silence warning.
|
|
assert(!Error && "Error setting up implicit decl!");
|
|
Declarator D(DS, Declarator::BlockContext);
|
|
D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D),
|
|
SourceLocation());
|
|
D.SetIdentifier(&II, Loc);
|
|
|
|
// Insert this function into translation-unit scope.
|
|
|
|
DeclContext *PrevDC = CurContext;
|
|
CurContext = Context.getTranslationUnitDecl();
|
|
|
|
FunctionDecl *FD =
|
|
dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
|
|
FD->setImplicit();
|
|
|
|
CurContext = PrevDC;
|
|
|
|
AddKnownFunctionAttributes(FD);
|
|
|
|
return FD;
|
|
}
|
|
|
|
/// \brief Adds any function attributes that we know a priori based on
|
|
/// the declaration of this function.
|
|
///
|
|
/// These attributes can apply both to implicitly-declared builtins
|
|
/// (like __builtin___printf_chk) or to library-declared functions
|
|
/// like NSLog or printf.
|
|
void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
|
|
if (FD->isInvalidDecl())
|
|
return;
|
|
|
|
// If this is a built-in function, map its builtin attributes to
|
|
// actual attributes.
|
|
if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
|
|
// Handle printf-formatting attributes.
|
|
unsigned FormatIdx;
|
|
bool HasVAListArg;
|
|
if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
|
|
if (!FD->getAttr<FormatAttr>())
|
|
FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2));
|
|
}
|
|
}
|
|
|
|
IdentifierInfo *Name = FD->getIdentifier();
|
|
if (!Name)
|
|
return;
|
|
if ((!getLangOptions().CPlusPlus &&
|
|
FD->getDeclContext()->isTranslationUnit()) ||
|
|
(isa<LinkageSpecDecl>(FD->getDeclContext()) &&
|
|
cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
|
|
LinkageSpecDecl::lang_c)) {
|
|
// Okay: this could be a libc/libm/Objective-C function we know
|
|
// about.
|
|
} else
|
|
return;
|
|
|
|
unsigned KnownID;
|
|
for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
|
|
if (KnownFunctionIDs[KnownID] == Name)
|
|
break;
|
|
|
|
switch (KnownID) {
|
|
case id_NSLog:
|
|
case id_NSLogv:
|
|
if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
|
|
// FIXME: We known better than our headers.
|
|
const_cast<FormatAttr *>(Format)->setType("printf");
|
|
} else
|
|
FD->addAttr(new FormatAttr("printf", 1, 2));
|
|
break;
|
|
|
|
case id_asprintf:
|
|
case id_vasprintf:
|
|
if (!FD->getAttr<FormatAttr>())
|
|
FD->addAttr(new FormatAttr("printf", 2, 3));
|
|
break;
|
|
|
|
default:
|
|
// Unknown function or known function without any attributes to
|
|
// add. Do nothing.
|
|
break;
|
|
}
|
|
}
|
|
|
|
TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
|
|
Decl *LastDeclarator) {
|
|
assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
|
|
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
|
|
|
|
// Scope manipulation handled by caller.
|
|
TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
|
|
D.getIdentifierLoc(),
|
|
D.getIdentifier(),
|
|
T);
|
|
NewTD->setNextDeclarator(LastDeclarator);
|
|
if (D.getInvalidType())
|
|
NewTD->setInvalidDecl();
|
|
return NewTD;
|
|
}
|
|
|
|
/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the
|
|
/// former case, Name will be non-null. In the later case, Name will be null.
|
|
/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
|
|
/// reference/declaration/definition of a tag.
|
|
Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
|
|
SourceLocation KWLoc, const CXXScopeSpec &SS,
|
|
IdentifierInfo *Name, SourceLocation NameLoc,
|
|
AttributeList *Attr) {
|
|
// If this is not a definition, it must have a name.
|
|
assert((Name != 0 || TK == TK_Definition) &&
|
|
"Nameless record must be a definition!");
|
|
|
|
TagDecl::TagKind Kind;
|
|
switch (TagSpec) {
|
|
default: assert(0 && "Unknown tag type!");
|
|
case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
|
|
case DeclSpec::TST_union: Kind = TagDecl::TK_union; break;
|
|
case DeclSpec::TST_class: Kind = TagDecl::TK_class; break;
|
|
case DeclSpec::TST_enum: Kind = TagDecl::TK_enum; break;
|
|
}
|
|
|
|
DeclContext *SearchDC = CurContext;
|
|
DeclContext *DC = CurContext;
|
|
NamedDecl *PrevDecl = 0;
|
|
|
|
bool Invalid = false;
|
|
|
|
if (Name && SS.isNotEmpty()) {
|
|
// We have a nested-name tag ('struct foo::bar').
|
|
|
|
// Check for invalid 'foo::'.
|
|
if (SS.isInvalid()) {
|
|
Name = 0;
|
|
goto CreateNewDecl;
|
|
}
|
|
|
|
DC = static_cast<DeclContext*>(SS.getScopeRep());
|
|
SearchDC = DC;
|
|
// Look-up name inside 'foo::'.
|
|
PrevDecl = dyn_cast_or_null<TagDecl>(
|
|
LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
|
|
|
|
// A tag 'foo::bar' must already exist.
|
|
if (PrevDecl == 0) {
|
|
Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
|
|
Name = 0;
|
|
goto CreateNewDecl;
|
|
}
|
|
} else if (Name) {
|
|
// If this is a named struct, check to see if there was a previous forward
|
|
// declaration or definition.
|
|
// FIXME: We're looking into outer scopes here, even when we
|
|
// shouldn't be. Doing so can result in ambiguities that we
|
|
// shouldn't be diagnosing.
|
|
LookupResult R = LookupName(S, Name, LookupTagName,
|
|
/*RedeclarationOnly=*/(TK != TK_Reference));
|
|
if (R.isAmbiguous()) {
|
|
DiagnoseAmbiguousLookup(R, Name, NameLoc);
|
|
// FIXME: This is not best way to recover from case like:
|
|
//
|
|
// struct S s;
|
|
//
|
|
// causes needless err_ovl_no_viable_function_in_init latter.
|
|
Name = 0;
|
|
PrevDecl = 0;
|
|
Invalid = true;
|
|
}
|
|
else
|
|
PrevDecl = R;
|
|
|
|
if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
|
|
// FIXME: This makes sure that we ignore the contexts associated
|
|
// with C structs, unions, and enums when looking for a matching
|
|
// tag declaration or definition. See the similar lookup tweak
|
|
// in Sema::LookupName; is there a better way to deal with this?
|
|
while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
|
|
SearchDC = SearchDC->getParent();
|
|
}
|
|
}
|
|
|
|
if (PrevDecl && PrevDecl->isTemplateParameter()) {
|
|
// Maybe we will complain about the shadowed template parameter.
|
|
DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
|
|
// Just pretend that we didn't see the previous declaration.
|
|
PrevDecl = 0;
|
|
}
|
|
|
|
if (PrevDecl) {
|
|
if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
|
|
// If this is a use of a previous tag, or if the tag is already declared
|
|
// in the same scope (so that the definition/declaration completes or
|
|
// rementions the tag), reuse the decl.
|
|
if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
|
|
// Make sure that this wasn't declared as an enum and now used as a
|
|
// struct or something similar.
|
|
if (PrevTagDecl->getTagKind() != Kind) {
|
|
Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_use);
|
|
// Recover by making this an anonymous redefinition.
|
|
Name = 0;
|
|
PrevDecl = 0;
|
|
Invalid = true;
|
|
} else {
|
|
// If this is a use, just return the declaration we found.
|
|
|
|
// FIXME: In the future, return a variant or some other clue
|
|
// for the consumer of this Decl to know it doesn't own it.
|
|
// For our current ASTs this shouldn't be a problem, but will
|
|
// need to be changed with DeclGroups.
|
|
if (TK == TK_Reference)
|
|
return PrevDecl;
|
|
|
|
// Diagnose attempts to redefine a tag.
|
|
if (TK == TK_Definition) {
|
|
if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
|
|
Diag(NameLoc, diag::err_redefinition) << Name;
|
|
Diag(Def->getLocation(), diag::note_previous_definition);
|
|
// If this is a redefinition, recover by making this
|
|
// struct be anonymous, which will make any later
|
|
// references get the previous definition.
|
|
Name = 0;
|
|
PrevDecl = 0;
|
|
Invalid = true;
|
|
} else {
|
|
// If the type is currently being defined, complain
|
|
// about a nested redefinition.
|
|
TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
|
|
if (Tag->isBeingDefined()) {
|
|
Diag(NameLoc, diag::err_nested_redefinition) << Name;
|
|
Diag(PrevTagDecl->getLocation(),
|
|
diag::note_previous_definition);
|
|
Name = 0;
|
|
PrevDecl = 0;
|
|
Invalid = true;
|
|
}
|
|
}
|
|
|
|
// Okay, this is definition of a previously declared or referenced
|
|
// tag PrevDecl. We're going to create a new Decl for it.
|
|
}
|
|
}
|
|
// If we get here we have (another) forward declaration or we
|
|
// have a definition. Just create a new decl.
|
|
} else {
|
|
// If we get here, this is a definition of a new tag type in a nested
|
|
// scope, e.g. "struct foo; void bar() { struct foo; }", just create a
|
|
// new decl/type. We set PrevDecl to NULL so that the entities
|
|
// have distinct types.
|
|
PrevDecl = 0;
|
|
}
|
|
// If we get here, we're going to create a new Decl. If PrevDecl
|
|
// is non-NULL, it's a definition of the tag declared by
|
|
// PrevDecl. If it's NULL, we have a new definition.
|
|
} else {
|
|
// PrevDecl is a namespace, template, or anything else
|
|
// that lives in the IDNS_Tag identifier namespace.
|
|
if (isDeclInScope(PrevDecl, SearchDC, S)) {
|
|
// The tag name clashes with a namespace name, issue an error and
|
|
// recover by making this tag be anonymous.
|
|
Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
|
Name = 0;
|
|
PrevDecl = 0;
|
|
Invalid = true;
|
|
} else {
|
|
// The existing declaration isn't relevant to us; we're in a
|
|
// new scope, so clear out the previous declaration.
|
|
PrevDecl = 0;
|
|
}
|
|
}
|
|
} else if (TK == TK_Reference && SS.isEmpty() && Name &&
|
|
(Kind != TagDecl::TK_enum)) {
|
|
// C++ [basic.scope.pdecl]p5:
|
|
// -- for an elaborated-type-specifier of the form
|
|
//
|
|
// class-key identifier
|
|
//
|
|
// if the elaborated-type-specifier is used in the
|
|
// decl-specifier-seq or parameter-declaration-clause of a
|
|
// function defined in namespace scope, the identifier is
|
|
// declared as a class-name in the namespace that contains
|
|
// the declaration; otherwise, except as a friend
|
|
// declaration, the identifier is declared in the smallest
|
|
// non-class, non-function-prototype scope that contains the
|
|
// declaration.
|
|
//
|
|
// C99 6.7.2.3p8 has a similar (but not identical!) provision for
|
|
// C structs and unions.
|
|
|
|
// Find the context where we'll be declaring the tag.
|
|
// FIXME: We would like to maintain the current DeclContext as the
|
|
// lexical context,
|
|
while (SearchDC->isRecord())
|
|
SearchDC = SearchDC->getParent();
|
|
|
|
// Find the scope where we'll be declaring the tag.
|
|
while (S->isClassScope() ||
|
|
(getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
|
|
((S->getFlags() & Scope::DeclScope) == 0) ||
|
|
(S->getEntity() &&
|
|
((DeclContext *)S->getEntity())->isTransparentContext()))
|
|
S = S->getParent();
|
|
}
|
|
|
|
CreateNewDecl:
|
|
|
|
// If there is an identifier, use the location of the identifier as the
|
|
// location of the decl, otherwise use the location of the struct/union
|
|
// keyword.
|
|
SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
|
|
|
|
// Otherwise, create a new declaration. If there is a previous
|
|
// declaration of the same entity, the two will be linked via
|
|
// PrevDecl.
|
|
TagDecl *New;
|
|
|
|
if (Kind == TagDecl::TK_enum) {
|
|
// FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
|
|
// enum X { A, B, C } D; D should chain to X.
|
|
New = EnumDecl::Create(Context, SearchDC, Loc, Name,
|
|
cast_or_null<EnumDecl>(PrevDecl));
|
|
// If this is an undefined enum, warn.
|
|
if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
|
|
} else {
|
|
// struct/union/class
|
|
|
|
// FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
|
|
// struct X { int A; } D; D should chain to X.
|
|
if (getLangOptions().CPlusPlus)
|
|
// FIXME: Look for a way to use RecordDecl for simple structs.
|
|
New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
|
|
cast_or_null<CXXRecordDecl>(PrevDecl));
|
|
else
|
|
New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
|
|
cast_or_null<RecordDecl>(PrevDecl));
|
|
}
|
|
|
|
if (Kind != TagDecl::TK_enum) {
|
|
// Handle #pragma pack: if the #pragma pack stack has non-default
|
|
// alignment, make up a packed attribute for this decl. These
|
|
// attributes are checked when the ASTContext lays out the
|
|
// structure.
|
|
//
|
|
// It is important for implementing the correct semantics that this
|
|
// happen here (in act on tag decl). The #pragma pack stack is
|
|
// maintained as a result of parser callbacks which can occur at
|
|
// many points during the parsing of a struct declaration (because
|
|
// the #pragma tokens are effectively skipped over during the
|
|
// parsing of the struct).
|
|
if (unsigned Alignment = PackContext.getAlignment())
|
|
New->addAttr(new PackedAttr(Alignment * 8));
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
|
|
// C++ [dcl.typedef]p3:
|
|
// [...] Similarly, in a given scope, a class or enumeration
|
|
// shall not be declared with the same name as a typedef-name
|
|
// that is declared in that scope and refers to a type other
|
|
// than the class or enumeration itself.
|
|
LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
|
|
TypedefDecl *PrevTypedef = 0;
|
|
if (Lookup.getKind() == LookupResult::Found)
|
|
PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
|
|
|
|
if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
|
|
Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
|
|
Context.getCanonicalType(Context.getTypeDeclType(New))) {
|
|
Diag(Loc, diag::err_tag_definition_of_typedef)
|
|
<< Context.getTypeDeclType(New)
|
|
<< PrevTypedef->getUnderlyingType();
|
|
Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
|
|
Invalid = true;
|
|
}
|
|
}
|
|
|
|
if (Invalid)
|
|
New->setInvalidDecl();
|
|
|
|
if (Attr)
|
|
ProcessDeclAttributeList(New, Attr);
|
|
|
|
// If we're declaring or defining a tag in function prototype scope
|
|
// in C, note that this type can only be used within the function.
|
|
if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
|
|
Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
|
|
|
|
// Set the lexical context. If the tag has a C++ scope specifier, the
|
|
// lexical context will be different from the semantic context.
|
|
New->setLexicalDeclContext(CurContext);
|
|
|
|
if (TK == TK_Definition)
|
|
New->startDefinition();
|
|
|
|
// If this has an identifier, add it to the scope stack.
|
|
if (Name) {
|
|
S = getNonFieldDeclScope(S);
|
|
PushOnScopeChains(New, S);
|
|
} else {
|
|
CurContext->addDecl(New);
|
|
}
|
|
|
|
return New;
|
|
}
|
|
|
|
void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
|
|
AdjustDeclIfTemplate(TagD);
|
|
TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
|
|
|
|
// Enter the tag context.
|
|
PushDeclContext(S, Tag);
|
|
|
|
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
|
|
FieldCollector->StartClass();
|
|
|
|
if (Record->getIdentifier()) {
|
|
// C++ [class]p2:
|
|
// [...] The class-name is also inserted into the scope of the
|
|
// class itself; this is known as the injected-class-name. For
|
|
// purposes of access checking, the injected-class-name is treated
|
|
// as if it were a public member name.
|
|
RecordDecl *InjectedClassName
|
|
= CXXRecordDecl::Create(Context, Record->getTagKind(),
|
|
CurContext, Record->getLocation(),
|
|
Record->getIdentifier(), Record);
|
|
InjectedClassName->setImplicit();
|
|
PushOnScopeChains(InjectedClassName, S);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
|
|
AdjustDeclIfTemplate(TagD);
|
|
TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
|
|
|
|
if (isa<CXXRecordDecl>(Tag))
|
|
FieldCollector->FinishClass();
|
|
|
|
// Exit this scope of this tag's definition.
|
|
PopDeclContext();
|
|
|
|
// Notify the consumer that we've defined a tag.
|
|
Consumer.HandleTagDeclDefinition(Tag);
|
|
}
|
|
|
|
/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
|
|
/// types into constant array types in certain situations which would otherwise
|
|
/// be errors (for GCC compatibility).
|
|
static QualType TryToFixInvalidVariablyModifiedType(QualType T,
|
|
ASTContext &Context) {
|
|
// This method tries to turn a variable array into a constant
|
|
// array even when the size isn't an ICE. This is necessary
|
|
// for compatibility with code that depends on gcc's buggy
|
|
// constant expression folding, like struct {char x[(int)(char*)2];}
|
|
const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
|
|
if (!VLATy) return QualType();
|
|
|
|
Expr::EvalResult EvalResult;
|
|
if (!VLATy->getSizeExpr() ||
|
|
!VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
|
|
return QualType();
|
|
|
|
assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
|
|
llvm::APSInt &Res = EvalResult.Val.getInt();
|
|
if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
|
|
return Context.getConstantArrayType(VLATy->getElementType(),
|
|
Res, ArrayType::Normal, 0);
|
|
return QualType();
|
|
}
|
|
|
|
bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
|
|
QualType FieldTy, const Expr *BitWidth) {
|
|
// FIXME: 6.7.2.1p4 - verify the field type.
|
|
|
|
llvm::APSInt Value;
|
|
if (VerifyIntegerConstantExpression(BitWidth, &Value))
|
|
return true;
|
|
|
|
// Zero-width bitfield is ok for anonymous field.
|
|
if (Value == 0 && FieldName)
|
|
return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
|
|
|
|
if (Value.isNegative())
|
|
return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
|
|
|
|
uint64_t TypeSize = Context.getTypeSize(FieldTy);
|
|
// FIXME: We won't need the 0 size once we check that the field type is valid.
|
|
if (TypeSize && Value.getZExtValue() > TypeSize)
|
|
return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
|
|
<< FieldName << (unsigned)TypeSize;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ActOnField - Each field of a struct/union/class is passed into this in order
|
|
/// to create a FieldDecl object for it.
|
|
Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
|
|
SourceLocation DeclStart,
|
|
Declarator &D, ExprTy *BitfieldWidth) {
|
|
IdentifierInfo *II = D.getIdentifier();
|
|
Expr *BitWidth = (Expr*)BitfieldWidth;
|
|
SourceLocation Loc = DeclStart;
|
|
RecordDecl *Record = (RecordDecl *)TagD;
|
|
if (II) Loc = D.getIdentifierLoc();
|
|
|
|
// FIXME: Unnamed fields can be handled in various different ways, for
|
|
// example, unnamed unions inject all members into the struct namespace!
|
|
|
|
QualType T = GetTypeForDeclarator(D, S);
|
|
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
|
|
bool InvalidDecl = false;
|
|
|
|
// C99 6.7.2.1p8: A member of a structure or union may have any type other
|
|
// than a variably modified type.
|
|
if (T->isVariablyModifiedType()) {
|
|
QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
|
|
if (!FixedTy.isNull()) {
|
|
Diag(Loc, diag::warn_illegal_constant_array_size);
|
|
T = FixedTy;
|
|
} else {
|
|
Diag(Loc, diag::err_typecheck_field_variable_size);
|
|
T = Context.IntTy;
|
|
InvalidDecl = true;
|
|
}
|
|
}
|
|
|
|
if (BitWidth) {
|
|
if (VerifyBitField(Loc, II, T, BitWidth))
|
|
InvalidDecl = true;
|
|
} else {
|
|
// Not a bitfield.
|
|
|
|
// validate II.
|
|
|
|
}
|
|
|
|
// FIXME: Chain fielddecls together.
|
|
FieldDecl *NewFD;
|
|
|
|
NewFD = FieldDecl::Create(Context, Record,
|
|
Loc, II, T, BitWidth,
|
|
D.getDeclSpec().getStorageClassSpec() ==
|
|
DeclSpec::SCS_mutable);
|
|
|
|
if (II) {
|
|
NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
|
|
if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
|
|
&& !isa<TagDecl>(PrevDecl)) {
|
|
Diag(Loc, diag::err_duplicate_member) << II;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
|
|
NewFD->setInvalidDecl();
|
|
Record->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
CheckExtraCXXDefaultArguments(D);
|
|
if (!T->isPODType())
|
|
cast<CXXRecordDecl>(Record)->setPOD(false);
|
|
}
|
|
|
|
ProcessDeclAttributes(NewFD, D);
|
|
|
|
if (D.getInvalidType() || InvalidDecl)
|
|
NewFD->setInvalidDecl();
|
|
|
|
if (II) {
|
|
PushOnScopeChains(NewFD, S);
|
|
} else
|
|
Record->addDecl(NewFD);
|
|
|
|
return NewFD;
|
|
}
|
|
|
|
/// TranslateIvarVisibility - Translate visibility from a token ID to an
|
|
/// AST enum value.
|
|
static ObjCIvarDecl::AccessControl
|
|
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
|
|
switch (ivarVisibility) {
|
|
default: assert(0 && "Unknown visitibility kind");
|
|
case tok::objc_private: return ObjCIvarDecl::Private;
|
|
case tok::objc_public: return ObjCIvarDecl::Public;
|
|
case tok::objc_protected: return ObjCIvarDecl::Protected;
|
|
case tok::objc_package: return ObjCIvarDecl::Package;
|
|
}
|
|
}
|
|
|
|
/// ActOnIvar - Each ivar field of an objective-c class is passed into this
|
|
/// in order to create an IvarDecl object for it.
|
|
Sema::DeclTy *Sema::ActOnIvar(Scope *S,
|
|
SourceLocation DeclStart,
|
|
Declarator &D, ExprTy *BitfieldWidth,
|
|
tok::ObjCKeywordKind Visibility) {
|
|
|
|
IdentifierInfo *II = D.getIdentifier();
|
|
Expr *BitWidth = (Expr*)BitfieldWidth;
|
|
SourceLocation Loc = DeclStart;
|
|
if (II) Loc = D.getIdentifierLoc();
|
|
|
|
// FIXME: Unnamed fields can be handled in various different ways, for
|
|
// example, unnamed unions inject all members into the struct namespace!
|
|
|
|
QualType T = GetTypeForDeclarator(D, S);
|
|
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
|
|
bool InvalidDecl = false;
|
|
|
|
if (BitWidth) {
|
|
// TODO: Validate.
|
|
//printf("WARNING: BITFIELDS IGNORED!\n");
|
|
|
|
// 6.7.2.1p3
|
|
// 6.7.2.1p4
|
|
|
|
} else {
|
|
// Not a bitfield.
|
|
|
|
// validate II.
|
|
|
|
}
|
|
|
|
// C99 6.7.2.1p8: A member of a structure or union may have any type other
|
|
// than a variably modified type.
|
|
if (T->isVariablyModifiedType()) {
|
|
Diag(Loc, diag::err_typecheck_ivar_variable_size);
|
|
InvalidDecl = true;
|
|
}
|
|
|
|
// Get the visibility (access control) for this ivar.
|
|
ObjCIvarDecl::AccessControl ac =
|
|
Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
|
|
: ObjCIvarDecl::None;
|
|
|
|
// Construct the decl.
|
|
ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
|
|
(Expr *)BitfieldWidth);
|
|
|
|
if (II) {
|
|
NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
|
|
if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
|
|
&& !isa<TagDecl>(PrevDecl)) {
|
|
Diag(Loc, diag::err_duplicate_member) << II;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
|
|
NewID->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
// Process attributes attached to the ivar.
|
|
ProcessDeclAttributes(NewID, D);
|
|
|
|
if (D.getInvalidType() || InvalidDecl)
|
|
NewID->setInvalidDecl();
|
|
|
|
if (II) {
|
|
// FIXME: When interfaces are DeclContexts, we'll need to add
|
|
// these to the interface.
|
|
S->AddDecl(NewID);
|
|
IdResolver.AddDecl(NewID);
|
|
}
|
|
|
|
return NewID;
|
|
}
|
|
|
|
void Sema::ActOnFields(Scope* S,
|
|
SourceLocation RecLoc, DeclTy *RecDecl,
|
|
DeclTy **Fields, unsigned NumFields,
|
|
SourceLocation LBrac, SourceLocation RBrac,
|
|
AttributeList *Attr) {
|
|
Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
|
|
assert(EnclosingDecl && "missing record or interface decl");
|
|
RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
|
|
|
|
// Verify that all the fields are okay.
|
|
unsigned NumNamedMembers = 0;
|
|
llvm::SmallVector<FieldDecl*, 32> RecFields;
|
|
|
|
for (unsigned i = 0; i != NumFields; ++i) {
|
|
FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
|
|
assert(FD && "missing field decl");
|
|
|
|
// Get the type for the field.
|
|
Type *FDTy = FD->getType().getTypePtr();
|
|
|
|
if (!FD->isAnonymousStructOrUnion()) {
|
|
// Remember all fields written by the user.
|
|
RecFields.push_back(FD);
|
|
}
|
|
|
|
// C99 6.7.2.1p2 - A field may not be a function type.
|
|
if (FDTy->isFunctionType()) {
|
|
Diag(FD->getLocation(), diag::err_field_declared_as_function)
|
|
<< FD->getDeclName();
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
}
|
|
// C99 6.7.2.1p2 - A field may not be an incomplete type except...
|
|
if (FDTy->isIncompleteType()) {
|
|
if (!Record) { // Incomplete ivar type is always an error.
|
|
DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
|
|
diag::err_field_incomplete);
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
}
|
|
if (i != NumFields-1 || // ... that the last member ...
|
|
!Record->isStruct() || // ... of a structure ...
|
|
!FDTy->isArrayType()) { //... may have incomplete array type.
|
|
DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
|
|
diag::err_field_incomplete);
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
}
|
|
if (NumNamedMembers < 1) { //... must have more than named member ...
|
|
Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
|
|
<< FD->getDeclName();
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
}
|
|
// Okay, we have a legal flexible array member at the end of the struct.
|
|
if (Record)
|
|
Record->setHasFlexibleArrayMember(true);
|
|
}
|
|
/// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
|
|
/// field of another structure or the element of an array.
|
|
if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
|
|
if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
|
|
// If this is a member of a union, then entire union becomes "flexible".
|
|
if (Record && Record->isUnion()) {
|
|
Record->setHasFlexibleArrayMember(true);
|
|
} else {
|
|
// If this is a struct/class and this is not the last element, reject
|
|
// it. Note that GCC supports variable sized arrays in the middle of
|
|
// structures.
|
|
if (i != NumFields-1) {
|
|
Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
|
|
<< FD->getDeclName();
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
}
|
|
// We support flexible arrays at the end of structs in other structs
|
|
// as an extension.
|
|
Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
|
|
<< FD->getDeclName();
|
|
if (Record)
|
|
Record->setHasFlexibleArrayMember(true);
|
|
}
|
|
}
|
|
}
|
|
/// A field cannot be an Objective-c object
|
|
if (FDTy->isObjCInterfaceType()) {
|
|
Diag(FD->getLocation(), diag::err_statically_allocated_object)
|
|
<< FD->getDeclName();
|
|
FD->setInvalidDecl();
|
|
EnclosingDecl->setInvalidDecl();
|
|
continue;
|
|
}
|
|
// Keep track of the number of named members.
|
|
if (FD->getIdentifier())
|
|
++NumNamedMembers;
|
|
}
|
|
|
|
// Okay, we successfully defined 'Record'.
|
|
if (Record) {
|
|
Record->completeDefinition(Context);
|
|
} else {
|
|
ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
|
|
if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
|
|
ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
|
|
// Must enforce the rule that ivars in the base classes may not be
|
|
// duplicates.
|
|
if (ID->getSuperClass()) {
|
|
for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
|
|
IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
|
|
ObjCIvarDecl* Ivar = (*IVI);
|
|
IdentifierInfo *II = Ivar->getIdentifier();
|
|
ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
|
|
if (prevIvar) {
|
|
Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
|
|
Diag(prevIvar->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (ObjCImplementationDecl *IMPDecl =
|
|
dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
|
|
assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
|
|
IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
|
|
CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
|
|
}
|
|
}
|
|
|
|
if (Attr)
|
|
ProcessDeclAttributeList(Record, Attr);
|
|
}
|
|
|
|
Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
|
|
DeclTy *lastEnumConst,
|
|
SourceLocation IdLoc, IdentifierInfo *Id,
|
|
SourceLocation EqualLoc, ExprTy *val) {
|
|
EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
|
|
EnumConstantDecl *LastEnumConst =
|
|
cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
|
|
Expr *Val = static_cast<Expr*>(val);
|
|
|
|
// The scope passed in may not be a decl scope. Zip up the scope tree until
|
|
// we find one that is.
|
|
S = getNonFieldDeclScope(S);
|
|
|
|
// Verify that there isn't already something declared with this name in this
|
|
// scope.
|
|
NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
|
|
if (PrevDecl && PrevDecl->isTemplateParameter()) {
|
|
// Maybe we will complain about the shadowed template parameter.
|
|
DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
|
|
// Just pretend that we didn't see the previous declaration.
|
|
PrevDecl = 0;
|
|
}
|
|
|
|
if (PrevDecl) {
|
|
// When in C++, we may get a TagDecl with the same name; in this case the
|
|
// enum constant will 'hide' the tag.
|
|
assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
|
|
"Received TagDecl when not in C++!");
|
|
if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
|
|
if (isa<EnumConstantDecl>(PrevDecl))
|
|
Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
|
|
else
|
|
Diag(IdLoc, diag::err_redefinition) << Id;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
|
Val->Destroy(Context);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
llvm::APSInt EnumVal(32);
|
|
QualType EltTy;
|
|
if (Val) {
|
|
// Make sure to promote the operand type to int.
|
|
UsualUnaryConversions(Val);
|
|
|
|
// C99 6.7.2.2p2: Make sure we have an integer constant expression.
|
|
SourceLocation ExpLoc;
|
|
if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
|
|
Val->Destroy(Context);
|
|
Val = 0; // Just forget about it.
|
|
} else {
|
|
EltTy = Val->getType();
|
|
}
|
|
}
|
|
|
|
if (!Val) {
|
|
if (LastEnumConst) {
|
|
// Assign the last value + 1.
|
|
EnumVal = LastEnumConst->getInitVal();
|
|
++EnumVal;
|
|
|
|
// Check for overflow on increment.
|
|
if (EnumVal < LastEnumConst->getInitVal())
|
|
Diag(IdLoc, diag::warn_enum_value_overflow);
|
|
|
|
EltTy = LastEnumConst->getType();
|
|
} else {
|
|
// First value, set to zero.
|
|
EltTy = Context.IntTy;
|
|
EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
|
|
}
|
|
}
|
|
|
|
EnumConstantDecl *New =
|
|
EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
|
|
Val, EnumVal);
|
|
|
|
// Register this decl in the current scope stack.
|
|
PushOnScopeChains(New, S);
|
|
|
|
return New;
|
|
}
|
|
|
|
// FIXME: For consistency with ActOnFields(), we should have the parser
|
|
// pass in the source location for the left/right braces.
|
|
void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
|
|
DeclTy **Elements, unsigned NumElements) {
|
|
EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
|
|
QualType EnumType = Context.getTypeDeclType(Enum);
|
|
|
|
// TODO: If the result value doesn't fit in an int, it must be a long or long
|
|
// long value. ISO C does not support this, but GCC does as an extension,
|
|
// emit a warning.
|
|
unsigned IntWidth = Context.Target.getIntWidth();
|
|
|
|
// Verify that all the values are okay, compute the size of the values, and
|
|
// reverse the list.
|
|
unsigned NumNegativeBits = 0;
|
|
unsigned NumPositiveBits = 0;
|
|
|
|
// Keep track of whether all elements have type int.
|
|
bool AllElementsInt = true;
|
|
|
|
for (unsigned i = 0; i != NumElements; ++i) {
|
|
EnumConstantDecl *ECD =
|
|
cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
|
|
if (!ECD) continue; // Already issued a diagnostic.
|
|
|
|
// If the enum value doesn't fit in an int, emit an extension warning.
|
|
const llvm::APSInt &InitVal = ECD->getInitVal();
|
|
assert(InitVal.getBitWidth() >= IntWidth &&
|
|
"Should have promoted value to int");
|
|
if (InitVal.getBitWidth() > IntWidth) {
|
|
llvm::APSInt V(InitVal);
|
|
V.trunc(IntWidth);
|
|
V.extend(InitVal.getBitWidth());
|
|
if (V != InitVal)
|
|
Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
|
|
<< InitVal.toString(10);
|
|
}
|
|
|
|
// Keep track of the size of positive and negative values.
|
|
if (InitVal.isUnsigned() || InitVal.isNonNegative())
|
|
NumPositiveBits = std::max(NumPositiveBits,
|
|
(unsigned)InitVal.getActiveBits());
|
|
else
|
|
NumNegativeBits = std::max(NumNegativeBits,
|
|
(unsigned)InitVal.getMinSignedBits());
|
|
|
|
// Keep track of whether every enum element has type int (very commmon).
|
|
if (AllElementsInt)
|
|
AllElementsInt = ECD->getType() == Context.IntTy;
|
|
}
|
|
|
|
// Figure out the type that should be used for this enum.
|
|
// FIXME: Support attribute(packed) on enums and -fshort-enums.
|
|
QualType BestType;
|
|
unsigned BestWidth;
|
|
|
|
if (NumNegativeBits) {
|
|
// If there is a negative value, figure out the smallest integer type (of
|
|
// int/long/longlong) that fits.
|
|
if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
|
|
BestType = Context.IntTy;
|
|
BestWidth = IntWidth;
|
|
} else {
|
|
BestWidth = Context.Target.getLongWidth();
|
|
|
|
if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
|
|
BestType = Context.LongTy;
|
|
else {
|
|
BestWidth = Context.Target.getLongLongWidth();
|
|
|
|
if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
|
|
Diag(Enum->getLocation(), diag::warn_enum_too_large);
|
|
BestType = Context.LongLongTy;
|
|
}
|
|
}
|
|
} else {
|
|
// If there is no negative value, figure out which of uint, ulong, ulonglong
|
|
// fits.
|
|
if (NumPositiveBits <= IntWidth) {
|
|
BestType = Context.UnsignedIntTy;
|
|
BestWidth = IntWidth;
|
|
} else if (NumPositiveBits <=
|
|
(BestWidth = Context.Target.getLongWidth())) {
|
|
BestType = Context.UnsignedLongTy;
|
|
} else {
|
|
BestWidth = Context.Target.getLongLongWidth();
|
|
assert(NumPositiveBits <= BestWidth &&
|
|
"How could an initializer get larger than ULL?");
|
|
BestType = Context.UnsignedLongLongTy;
|
|
}
|
|
}
|
|
|
|
// Loop over all of the enumerator constants, changing their types to match
|
|
// the type of the enum if needed.
|
|
for (unsigned i = 0; i != NumElements; ++i) {
|
|
EnumConstantDecl *ECD =
|
|
cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
|
|
if (!ECD) continue; // Already issued a diagnostic.
|
|
|
|
// Standard C says the enumerators have int type, but we allow, as an
|
|
// extension, the enumerators to be larger than int size. If each
|
|
// enumerator value fits in an int, type it as an int, otherwise type it the
|
|
// same as the enumerator decl itself. This means that in "enum { X = 1U }"
|
|
// that X has type 'int', not 'unsigned'.
|
|
if (ECD->getType() == Context.IntTy) {
|
|
// Make sure the init value is signed.
|
|
llvm::APSInt IV = ECD->getInitVal();
|
|
IV.setIsSigned(true);
|
|
ECD->setInitVal(IV);
|
|
|
|
if (getLangOptions().CPlusPlus)
|
|
// C++ [dcl.enum]p4: Following the closing brace of an
|
|
// enum-specifier, each enumerator has the type of its
|
|
// enumeration.
|
|
ECD->setType(EnumType);
|
|
continue; // Already int type.
|
|
}
|
|
|
|
// Determine whether the value fits into an int.
|
|
llvm::APSInt InitVal = ECD->getInitVal();
|
|
bool FitsInInt;
|
|
if (InitVal.isUnsigned() || !InitVal.isNegative())
|
|
FitsInInt = InitVal.getActiveBits() < IntWidth;
|
|
else
|
|
FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
|
|
|
|
// If it fits into an integer type, force it. Otherwise force it to match
|
|
// the enum decl type.
|
|
QualType NewTy;
|
|
unsigned NewWidth;
|
|
bool NewSign;
|
|
if (FitsInInt) {
|
|
NewTy = Context.IntTy;
|
|
NewWidth = IntWidth;
|
|
NewSign = true;
|
|
} else if (ECD->getType() == BestType) {
|
|
// Already the right type!
|
|
if (getLangOptions().CPlusPlus)
|
|
// C++ [dcl.enum]p4: Following the closing brace of an
|
|
// enum-specifier, each enumerator has the type of its
|
|
// enumeration.
|
|
ECD->setType(EnumType);
|
|
continue;
|
|
} else {
|
|
NewTy = BestType;
|
|
NewWidth = BestWidth;
|
|
NewSign = BestType->isSignedIntegerType();
|
|
}
|
|
|
|
// Adjust the APSInt value.
|
|
InitVal.extOrTrunc(NewWidth);
|
|
InitVal.setIsSigned(NewSign);
|
|
ECD->setInitVal(InitVal);
|
|
|
|
// Adjust the Expr initializer and type.
|
|
if (ECD->getInitExpr())
|
|
ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
|
|
/*isLvalue=*/false));
|
|
if (getLangOptions().CPlusPlus)
|
|
// C++ [dcl.enum]p4: Following the closing brace of an
|
|
// enum-specifier, each enumerator has the type of its
|
|
// enumeration.
|
|
ECD->setType(EnumType);
|
|
else
|
|
ECD->setType(NewTy);
|
|
}
|
|
|
|
Enum->completeDefinition(Context, BestType);
|
|
}
|
|
|
|
Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
|
|
ExprArg expr) {
|
|
StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
|
|
|
|
return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
|
|
}
|
|
|
|
|
|
void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
|
|
ExprTy *alignment, SourceLocation PragmaLoc,
|
|
SourceLocation LParenLoc, SourceLocation RParenLoc) {
|
|
Expr *Alignment = static_cast<Expr *>(alignment);
|
|
|
|
// If specified then alignment must be a "small" power of two.
|
|
unsigned AlignmentVal = 0;
|
|
if (Alignment) {
|
|
llvm::APSInt Val;
|
|
if (!Alignment->isIntegerConstantExpr(Val, Context) ||
|
|
!Val.isPowerOf2() ||
|
|
Val.getZExtValue() > 16) {
|
|
Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
|
|
Alignment->Destroy(Context);
|
|
return; // Ignore
|
|
}
|
|
|
|
AlignmentVal = (unsigned) Val.getZExtValue();
|
|
}
|
|
|
|
switch (Kind) {
|
|
case Action::PPK_Default: // pack([n])
|
|
PackContext.setAlignment(AlignmentVal);
|
|
break;
|
|
|
|
case Action::PPK_Show: // pack(show)
|
|
// Show the current alignment, making sure to show the right value
|
|
// for the default.
|
|
AlignmentVal = PackContext.getAlignment();
|
|
// FIXME: This should come from the target.
|
|
if (AlignmentVal == 0)
|
|
AlignmentVal = 8;
|
|
Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
|
|
break;
|
|
|
|
case Action::PPK_Push: // pack(push [, id] [, [n])
|
|
PackContext.push(Name);
|
|
// Set the new alignment if specified.
|
|
if (Alignment)
|
|
PackContext.setAlignment(AlignmentVal);
|
|
break;
|
|
|
|
case Action::PPK_Pop: // pack(pop [, id] [, n])
|
|
// MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
|
|
// "#pragma pack(pop, identifier, n) is undefined"
|
|
if (Alignment && Name)
|
|
Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
|
|
|
|
// Do the pop.
|
|
if (!PackContext.pop(Name)) {
|
|
// If a name was specified then failure indicates the name
|
|
// wasn't found. Otherwise failure indicates the stack was
|
|
// empty.
|
|
Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
|
|
<< (Name ? "no record matching name" : "stack empty");
|
|
|
|
// FIXME: Warn about popping named records as MSVC does.
|
|
} else {
|
|
// Pop succeeded, set the new alignment if specified.
|
|
if (Alignment)
|
|
PackContext.setAlignment(AlignmentVal);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
assert(0 && "Invalid #pragma pack kind.");
|
|
}
|
|
}
|
|
|
|
bool PragmaPackStack::pop(IdentifierInfo *Name) {
|
|
if (Stack.empty())
|
|
return false;
|
|
|
|
// If name is empty just pop top.
|
|
if (!Name) {
|
|
Alignment = Stack.back().first;
|
|
Stack.pop_back();
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, find the named record.
|
|
for (unsigned i = Stack.size(); i != 0; ) {
|
|
--i;
|
|
if (Stack[i].second == Name) {
|
|
// Found it, pop up to and including this record.
|
|
Alignment = Stack[i].first;
|
|
Stack.erase(Stack.begin() + i, Stack.end());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|