зеркало из https://github.com/microsoft/clang-1.git
3680 строки
146 KiB
C++
3680 строки
146 KiB
C++
//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file is distributed under the University of Illinois Open Source
|
||
// License. See LICENSE.TXT for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file implements semantic analysis for C++ expressions.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "clang/Sema/SemaInternal.h"
|
||
#include "clang/Sema/DeclSpec.h"
|
||
#include "clang/Sema/Initialization.h"
|
||
#include "clang/Sema/Lookup.h"
|
||
#include "clang/Sema/ParsedTemplate.h"
|
||
#include "clang/Sema/TemplateDeduction.h"
|
||
#include "clang/AST/ASTContext.h"
|
||
#include "clang/AST/CXXInheritance.h"
|
||
#include "clang/AST/DeclObjC.h"
|
||
#include "clang/AST/ExprCXX.h"
|
||
#include "clang/AST/ExprObjC.h"
|
||
#include "clang/AST/TypeLoc.h"
|
||
#include "clang/Basic/PartialDiagnostic.h"
|
||
#include "clang/Basic/TargetInfo.h"
|
||
#include "clang/Lex/Preprocessor.h"
|
||
#include "llvm/ADT/STLExtras.h"
|
||
using namespace clang;
|
||
using namespace sema;
|
||
|
||
ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
|
||
IdentifierInfo &II,
|
||
SourceLocation NameLoc,
|
||
Scope *S, CXXScopeSpec &SS,
|
||
ParsedType ObjectTypePtr,
|
||
bool EnteringContext) {
|
||
// Determine where to perform name lookup.
|
||
|
||
// FIXME: This area of the standard is very messy, and the current
|
||
// wording is rather unclear about which scopes we search for the
|
||
// destructor name; see core issues 399 and 555. Issue 399 in
|
||
// particular shows where the current description of destructor name
|
||
// lookup is completely out of line with existing practice, e.g.,
|
||
// this appears to be ill-formed:
|
||
//
|
||
// namespace N {
|
||
// template <typename T> struct S {
|
||
// ~S();
|
||
// };
|
||
// }
|
||
//
|
||
// void f(N::S<int>* s) {
|
||
// s->N::S<int>::~S();
|
||
// }
|
||
//
|
||
// See also PR6358 and PR6359.
|
||
// For this reason, we're currently only doing the C++03 version of this
|
||
// code; the C++0x version has to wait until we get a proper spec.
|
||
QualType SearchType;
|
||
DeclContext *LookupCtx = 0;
|
||
bool isDependent = false;
|
||
bool LookInScope = false;
|
||
|
||
// If we have an object type, it's because we are in a
|
||
// pseudo-destructor-expression or a member access expression, and
|
||
// we know what type we're looking for.
|
||
if (ObjectTypePtr)
|
||
SearchType = GetTypeFromParser(ObjectTypePtr);
|
||
|
||
if (SS.isSet()) {
|
||
NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
|
||
|
||
bool AlreadySearched = false;
|
||
bool LookAtPrefix = true;
|
||
// C++ [basic.lookup.qual]p6:
|
||
// If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
|
||
// the type-names are looked up as types in the scope designated by the
|
||
// nested-name-specifier. In a qualified-id of the form:
|
||
//
|
||
// ::[opt] nested-name-specifier ̃ class-name
|
||
//
|
||
// where the nested-name-specifier designates a namespace scope, and in
|
||
// a qualified-id of the form:
|
||
//
|
||
// ::opt nested-name-specifier class-name :: ̃ class-name
|
||
//
|
||
// the class-names are looked up as types in the scope designated by
|
||
// the nested-name-specifier.
|
||
//
|
||
// Here, we check the first case (completely) and determine whether the
|
||
// code below is permitted to look at the prefix of the
|
||
// nested-name-specifier.
|
||
DeclContext *DC = computeDeclContext(SS, EnteringContext);
|
||
if (DC && DC->isFileContext()) {
|
||
AlreadySearched = true;
|
||
LookupCtx = DC;
|
||
isDependent = false;
|
||
} else if (DC && isa<CXXRecordDecl>(DC))
|
||
LookAtPrefix = false;
|
||
|
||
// The second case from the C++03 rules quoted further above.
|
||
NestedNameSpecifier *Prefix = 0;
|
||
if (AlreadySearched) {
|
||
// Nothing left to do.
|
||
} else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
|
||
CXXScopeSpec PrefixSS;
|
||
PrefixSS.setScopeRep(Prefix);
|
||
LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
|
||
isDependent = isDependentScopeSpecifier(PrefixSS);
|
||
} else if (ObjectTypePtr) {
|
||
LookupCtx = computeDeclContext(SearchType);
|
||
isDependent = SearchType->isDependentType();
|
||
} else {
|
||
LookupCtx = computeDeclContext(SS, EnteringContext);
|
||
isDependent = LookupCtx && LookupCtx->isDependentContext();
|
||
}
|
||
|
||
LookInScope = false;
|
||
} else if (ObjectTypePtr) {
|
||
// C++ [basic.lookup.classref]p3:
|
||
// If the unqualified-id is ~type-name, the type-name is looked up
|
||
// in the context of the entire postfix-expression. If the type T
|
||
// of the object expression is of a class type C, the type-name is
|
||
// also looked up in the scope of class C. At least one of the
|
||
// lookups shall find a name that refers to (possibly
|
||
// cv-qualified) T.
|
||
LookupCtx = computeDeclContext(SearchType);
|
||
isDependent = SearchType->isDependentType();
|
||
assert((isDependent || !SearchType->isIncompleteType()) &&
|
||
"Caller should have completed object type");
|
||
|
||
LookInScope = true;
|
||
} else {
|
||
// Perform lookup into the current scope (only).
|
||
LookInScope = true;
|
||
}
|
||
|
||
LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
|
||
for (unsigned Step = 0; Step != 2; ++Step) {
|
||
// Look for the name first in the computed lookup context (if we
|
||
// have one) and, if that fails to find a match, in the sope (if
|
||
// we're allowed to look there).
|
||
Found.clear();
|
||
if (Step == 0 && LookupCtx)
|
||
LookupQualifiedName(Found, LookupCtx);
|
||
else if (Step == 1 && LookInScope && S)
|
||
LookupName(Found, S);
|
||
else
|
||
continue;
|
||
|
||
// FIXME: Should we be suppressing ambiguities here?
|
||
if (Found.isAmbiguous())
|
||
return ParsedType();
|
||
|
||
if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
|
||
QualType T = Context.getTypeDeclType(Type);
|
||
|
||
if (SearchType.isNull() || SearchType->isDependentType() ||
|
||
Context.hasSameUnqualifiedType(T, SearchType)) {
|
||
// We found our type!
|
||
|
||
return ParsedType::make(T);
|
||
}
|
||
}
|
||
|
||
// If the name that we found is a class template name, and it is
|
||
// the same name as the template name in the last part of the
|
||
// nested-name-specifier (if present) or the object type, then
|
||
// this is the destructor for that class.
|
||
// FIXME: This is a workaround until we get real drafting for core
|
||
// issue 399, for which there isn't even an obvious direction.
|
||
if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
|
||
QualType MemberOfType;
|
||
if (SS.isSet()) {
|
||
if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
|
||
// Figure out the type of the context, if it has one.
|
||
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
|
||
MemberOfType = Context.getTypeDeclType(Record);
|
||
}
|
||
}
|
||
if (MemberOfType.isNull())
|
||
MemberOfType = SearchType;
|
||
|
||
if (MemberOfType.isNull())
|
||
continue;
|
||
|
||
// We're referring into a class template specialization. If the
|
||
// class template we found is the same as the template being
|
||
// specialized, we found what we are looking for.
|
||
if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
|
||
if (ClassTemplateSpecializationDecl *Spec
|
||
= dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
|
||
if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
|
||
Template->getCanonicalDecl())
|
||
return ParsedType::make(MemberOfType);
|
||
}
|
||
|
||
continue;
|
||
}
|
||
|
||
// We're referring to an unresolved class template
|
||
// specialization. Determine whether we class template we found
|
||
// is the same as the template being specialized or, if we don't
|
||
// know which template is being specialized, that it at least
|
||
// has the same name.
|
||
if (const TemplateSpecializationType *SpecType
|
||
= MemberOfType->getAs<TemplateSpecializationType>()) {
|
||
TemplateName SpecName = SpecType->getTemplateName();
|
||
|
||
// The class template we found is the same template being
|
||
// specialized.
|
||
if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
|
||
if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
|
||
return ParsedType::make(MemberOfType);
|
||
|
||
continue;
|
||
}
|
||
|
||
// The class template we found has the same name as the
|
||
// (dependent) template name being specialized.
|
||
if (DependentTemplateName *DepTemplate
|
||
= SpecName.getAsDependentTemplateName()) {
|
||
if (DepTemplate->isIdentifier() &&
|
||
DepTemplate->getIdentifier() == Template->getIdentifier())
|
||
return ParsedType::make(MemberOfType);
|
||
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (isDependent) {
|
||
// We didn't find our type, but that's okay: it's dependent
|
||
// anyway.
|
||
NestedNameSpecifier *NNS = 0;
|
||
SourceRange Range;
|
||
if (SS.isSet()) {
|
||
NNS = (NestedNameSpecifier *)SS.getScopeRep();
|
||
Range = SourceRange(SS.getRange().getBegin(), NameLoc);
|
||
} else {
|
||
NNS = NestedNameSpecifier::Create(Context, &II);
|
||
Range = SourceRange(NameLoc);
|
||
}
|
||
|
||
QualType T = CheckTypenameType(ETK_None, NNS, II,
|
||
SourceLocation(),
|
||
Range, NameLoc);
|
||
return ParsedType::make(T);
|
||
}
|
||
|
||
if (ObjectTypePtr)
|
||
Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type)
|
||
<< &II;
|
||
else
|
||
Diag(NameLoc, diag::err_destructor_class_name);
|
||
|
||
return ParsedType();
|
||
}
|
||
|
||
/// \brief Build a C++ typeid expression with a type operand.
|
||
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
|
||
SourceLocation TypeidLoc,
|
||
TypeSourceInfo *Operand,
|
||
SourceLocation RParenLoc) {
|
||
// C++ [expr.typeid]p4:
|
||
// The top-level cv-qualifiers of the lvalue expression or the type-id
|
||
// that is the operand of typeid are always ignored.
|
||
// If the type of the type-id is a class type or a reference to a class
|
||
// type, the class shall be completely-defined.
|
||
Qualifiers Quals;
|
||
QualType T
|
||
= Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
|
||
Quals);
|
||
if (T->getAs<RecordType>() &&
|
||
RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
|
||
return ExprError();
|
||
|
||
return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
|
||
Operand,
|
||
SourceRange(TypeidLoc, RParenLoc)));
|
||
}
|
||
|
||
/// \brief Build a C++ typeid expression with an expression operand.
|
||
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
|
||
SourceLocation TypeidLoc,
|
||
Expr *E,
|
||
SourceLocation RParenLoc) {
|
||
bool isUnevaluatedOperand = true;
|
||
if (E && !E->isTypeDependent()) {
|
||
QualType T = E->getType();
|
||
if (const RecordType *RecordT = T->getAs<RecordType>()) {
|
||
CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
|
||
// C++ [expr.typeid]p3:
|
||
// [...] If the type of the expression is a class type, the class
|
||
// shall be completely-defined.
|
||
if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
|
||
return ExprError();
|
||
|
||
// C++ [expr.typeid]p3:
|
||
// When typeid is applied to an expression other than an glvalue of a
|
||
// polymorphic class type [...] [the] expression is an unevaluated
|
||
// operand. [...]
|
||
if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
|
||
isUnevaluatedOperand = false;
|
||
|
||
// We require a vtable to query the type at run time.
|
||
MarkVTableUsed(TypeidLoc, RecordD);
|
||
}
|
||
}
|
||
|
||
// C++ [expr.typeid]p4:
|
||
// [...] If the type of the type-id is a reference to a possibly
|
||
// cv-qualified type, the result of the typeid expression refers to a
|
||
// std::type_info object representing the cv-unqualified referenced
|
||
// type.
|
||
Qualifiers Quals;
|
||
QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
|
||
if (!Context.hasSameType(T, UnqualT)) {
|
||
T = UnqualT;
|
||
ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E));
|
||
}
|
||
}
|
||
|
||
// If this is an unevaluated operand, clear out the set of
|
||
// declaration references we have been computing and eliminate any
|
||
// temporaries introduced in its computation.
|
||
if (isUnevaluatedOperand)
|
||
ExprEvalContexts.back().Context = Unevaluated;
|
||
|
||
return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
|
||
E,
|
||
SourceRange(TypeidLoc, RParenLoc)));
|
||
}
|
||
|
||
/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
|
||
ExprResult
|
||
Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
|
||
bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
|
||
// Find the std::type_info type.
|
||
if (!StdNamespace)
|
||
return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
|
||
|
||
if (!CXXTypeInfoDecl) {
|
||
IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
|
||
LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
|
||
LookupQualifiedName(R, getStdNamespace());
|
||
CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
|
||
if (!CXXTypeInfoDecl)
|
||
return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
|
||
}
|
||
|
||
QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
|
||
|
||
if (isType) {
|
||
// The operand is a type; handle it as such.
|
||
TypeSourceInfo *TInfo = 0;
|
||
QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
|
||
&TInfo);
|
||
if (T.isNull())
|
||
return ExprError();
|
||
|
||
if (!TInfo)
|
||
TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
|
||
|
||
return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
|
||
}
|
||
|
||
// The operand is an expression.
|
||
return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
|
||
}
|
||
|
||
/// Retrieve the UuidAttr associated with QT.
|
||
static UuidAttr *GetUuidAttrOfType(QualType QT) {
|
||
// Optionally remove one level of pointer, reference or array indirection.
|
||
Type *Ty = QT.getTypePtr();;
|
||
if (QT->isPointerType() || QT->isReferenceType())
|
||
Ty = QT->getPointeeType().getTypePtr();
|
||
else if (QT->isArrayType())
|
||
Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
|
||
|
||
// Loop all class definition and declaration looking for an uuid attribute.
|
||
CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
|
||
while (RD) {
|
||
if (UuidAttr *Uuid = RD->getAttr<UuidAttr>())
|
||
return Uuid;
|
||
RD = RD->getPreviousDeclaration();
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/// \brief Build a Microsoft __uuidof expression with a type operand.
|
||
ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
|
||
SourceLocation TypeidLoc,
|
||
TypeSourceInfo *Operand,
|
||
SourceLocation RParenLoc) {
|
||
if (!Operand->getType()->isDependentType()) {
|
||
if (!GetUuidAttrOfType(Operand->getType()))
|
||
return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
|
||
}
|
||
|
||
// FIXME: add __uuidof semantic analysis for type operand.
|
||
return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
|
||
Operand,
|
||
SourceRange(TypeidLoc, RParenLoc)));
|
||
}
|
||
|
||
/// \brief Build a Microsoft __uuidof expression with an expression operand.
|
||
ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
|
||
SourceLocation TypeidLoc,
|
||
Expr *E,
|
||
SourceLocation RParenLoc) {
|
||
if (!E->getType()->isDependentType()) {
|
||
if (!GetUuidAttrOfType(E->getType()) &&
|
||
!E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
|
||
return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
|
||
}
|
||
// FIXME: add __uuidof semantic analysis for type operand.
|
||
return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
|
||
E,
|
||
SourceRange(TypeidLoc, RParenLoc)));
|
||
}
|
||
|
||
/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
|
||
ExprResult
|
||
Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
|
||
bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
|
||
// If MSVCGuidDecl has not been cached, do the lookup.
|
||
if (!MSVCGuidDecl) {
|
||
IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
|
||
LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
|
||
LookupQualifiedName(R, Context.getTranslationUnitDecl());
|
||
MSVCGuidDecl = R.getAsSingle<RecordDecl>();
|
||
if (!MSVCGuidDecl)
|
||
return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
|
||
}
|
||
|
||
QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
|
||
|
||
if (isType) {
|
||
// The operand is a type; handle it as such.
|
||
TypeSourceInfo *TInfo = 0;
|
||
QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
|
||
&TInfo);
|
||
if (T.isNull())
|
||
return ExprError();
|
||
|
||
if (!TInfo)
|
||
TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
|
||
|
||
return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
|
||
}
|
||
|
||
// The operand is an expression.
|
||
return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
|
||
}
|
||
|
||
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
|
||
ExprResult
|
||
Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
|
||
assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
|
||
"Unknown C++ Boolean value!");
|
||
return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
|
||
Context.BoolTy, OpLoc));
|
||
}
|
||
|
||
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
|
||
ExprResult
|
||
Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
|
||
return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
|
||
}
|
||
|
||
/// ActOnCXXThrow - Parse throw expressions.
|
||
ExprResult
|
||
Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
|
||
if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
|
||
return ExprError();
|
||
return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
|
||
}
|
||
|
||
/// CheckCXXThrowOperand - Validate the operand of a throw.
|
||
bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
|
||
// C++ [except.throw]p3:
|
||
// A throw-expression initializes a temporary object, called the exception
|
||
// object, the type of which is determined by removing any top-level
|
||
// cv-qualifiers from the static type of the operand of throw and adjusting
|
||
// the type from "array of T" or "function returning T" to "pointer to T"
|
||
// or "pointer to function returning T", [...]
|
||
if (E->getType().hasQualifiers())
|
||
ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
|
||
CastCategory(E));
|
||
|
||
DefaultFunctionArrayConversion(E);
|
||
|
||
// If the type of the exception would be an incomplete type or a pointer
|
||
// to an incomplete type other than (cv) void the program is ill-formed.
|
||
QualType Ty = E->getType();
|
||
bool isPointer = false;
|
||
if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
|
||
Ty = Ptr->getPointeeType();
|
||
isPointer = true;
|
||
}
|
||
if (!isPointer || !Ty->isVoidType()) {
|
||
if (RequireCompleteType(ThrowLoc, Ty,
|
||
PDiag(isPointer ? diag::err_throw_incomplete_ptr
|
||
: diag::err_throw_incomplete)
|
||
<< E->getSourceRange()))
|
||
return true;
|
||
|
||
if (RequireNonAbstractType(ThrowLoc, E->getType(),
|
||
PDiag(diag::err_throw_abstract_type)
|
||
<< E->getSourceRange()))
|
||
return true;
|
||
}
|
||
|
||
// Initialize the exception result. This implicitly weeds out
|
||
// abstract types or types with inaccessible copy constructors.
|
||
// FIXME: Determine whether we can elide this copy per C++0x [class.copy]p34.
|
||
InitializedEntity Entity =
|
||
InitializedEntity::InitializeException(ThrowLoc, E->getType(),
|
||
/*NRVO=*/false);
|
||
ExprResult Res = PerformCopyInitialization(Entity,
|
||
SourceLocation(),
|
||
Owned(E));
|
||
if (Res.isInvalid())
|
||
return true;
|
||
E = Res.takeAs<Expr>();
|
||
|
||
// If the exception has class type, we need additional handling.
|
||
const RecordType *RecordTy = Ty->getAs<RecordType>();
|
||
if (!RecordTy)
|
||
return false;
|
||
CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
|
||
|
||
// If we are throwing a polymorphic class type or pointer thereof,
|
||
// exception handling will make use of the vtable.
|
||
MarkVTableUsed(ThrowLoc, RD);
|
||
|
||
// If a pointer is thrown, the referenced object will not be destroyed.
|
||
if (isPointer)
|
||
return false;
|
||
|
||
// If the class has a non-trivial destructor, we must be able to call it.
|
||
if (RD->hasTrivialDestructor())
|
||
return false;
|
||
|
||
CXXDestructorDecl *Destructor
|
||
= const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
|
||
if (!Destructor)
|
||
return false;
|
||
|
||
MarkDeclarationReferenced(E->getExprLoc(), Destructor);
|
||
CheckDestructorAccess(E->getExprLoc(), Destructor,
|
||
PDiag(diag::err_access_dtor_exception) << Ty);
|
||
return false;
|
||
}
|
||
|
||
ExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
|
||
/// C++ 9.3.2: In the body of a non-static member function, the keyword this
|
||
/// is a non-lvalue expression whose value is the address of the object for
|
||
/// which the function is called.
|
||
|
||
DeclContext *DC = getFunctionLevelDeclContext();
|
||
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
|
||
if (MD->isInstance())
|
||
return Owned(new (Context) CXXThisExpr(ThisLoc,
|
||
MD->getThisType(Context),
|
||
/*isImplicit=*/false));
|
||
|
||
return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
|
||
}
|
||
|
||
ExprResult
|
||
Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
|
||
SourceLocation LParenLoc,
|
||
MultiExprArg exprs,
|
||
SourceLocation RParenLoc) {
|
||
if (!TypeRep)
|
||
return ExprError();
|
||
|
||
TypeSourceInfo *TInfo;
|
||
QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
|
||
if (!TInfo)
|
||
TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
|
||
|
||
return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
|
||
}
|
||
|
||
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
|
||
/// Can be interpreted either as function-style casting ("int(x)")
|
||
/// or class type construction ("ClassType(x,y,z)")
|
||
/// or creation of a value-initialized type ("int()").
|
||
ExprResult
|
||
Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
|
||
SourceLocation LParenLoc,
|
||
MultiExprArg exprs,
|
||
SourceLocation RParenLoc) {
|
||
QualType Ty = TInfo->getType();
|
||
unsigned NumExprs = exprs.size();
|
||
Expr **Exprs = (Expr**)exprs.get();
|
||
SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
|
||
SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
|
||
|
||
if (Ty->isDependentType() ||
|
||
CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
|
||
exprs.release();
|
||
|
||
return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
|
||
LParenLoc,
|
||
Exprs, NumExprs,
|
||
RParenLoc));
|
||
}
|
||
|
||
if (Ty->isArrayType())
|
||
return ExprError(Diag(TyBeginLoc,
|
||
diag::err_value_init_for_array_type) << FullRange);
|
||
if (!Ty->isVoidType() &&
|
||
RequireCompleteType(TyBeginLoc, Ty,
|
||
PDiag(diag::err_invalid_incomplete_type_use)
|
||
<< FullRange))
|
||
return ExprError();
|
||
|
||
if (RequireNonAbstractType(TyBeginLoc, Ty,
|
||
diag::err_allocation_of_abstract_type))
|
||
return ExprError();
|
||
|
||
|
||
// C++ [expr.type.conv]p1:
|
||
// If the expression list is a single expression, the type conversion
|
||
// expression is equivalent (in definedness, and if defined in meaning) to the
|
||
// corresponding cast expression.
|
||
//
|
||
if (NumExprs == 1) {
|
||
CastKind Kind = CK_Invalid;
|
||
ExprValueKind VK = VK_RValue;
|
||
CXXCastPath BasePath;
|
||
if (CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
|
||
Kind, VK, BasePath,
|
||
/*FunctionalStyle=*/true))
|
||
return ExprError();
|
||
|
||
exprs.release();
|
||
|
||
return Owned(CXXFunctionalCastExpr::Create(Context,
|
||
Ty.getNonLValueExprType(Context),
|
||
VK, TInfo, TyBeginLoc, Kind,
|
||
Exprs[0], &BasePath,
|
||
RParenLoc));
|
||
}
|
||
|
||
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
|
||
InitializationKind Kind
|
||
= NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
|
||
LParenLoc, RParenLoc)
|
||
: InitializationKind::CreateValue(TyBeginLoc,
|
||
LParenLoc, RParenLoc);
|
||
InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
|
||
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
|
||
|
||
// FIXME: Improve AST representation?
|
||
return move(Result);
|
||
}
|
||
|
||
|
||
/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
|
||
/// @code new (memory) int[size][4] @endcode
|
||
/// or
|
||
/// @code ::new Foo(23, "hello") @endcode
|
||
/// For the interpretation of this heap of arguments, consult the base version.
|
||
ExprResult
|
||
Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
|
||
SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
|
||
SourceLocation PlacementRParen, SourceRange TypeIdParens,
|
||
Declarator &D, SourceLocation ConstructorLParen,
|
||
MultiExprArg ConstructorArgs,
|
||
SourceLocation ConstructorRParen) {
|
||
Expr *ArraySize = 0;
|
||
// If the specified type is an array, unwrap it and save the expression.
|
||
if (D.getNumTypeObjects() > 0 &&
|
||
D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
|
||
DeclaratorChunk &Chunk = D.getTypeObject(0);
|
||
if (Chunk.Arr.hasStatic)
|
||
return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
|
||
<< D.getSourceRange());
|
||
if (!Chunk.Arr.NumElts)
|
||
return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
|
||
<< D.getSourceRange());
|
||
|
||
ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
|
||
D.DropFirstTypeObject();
|
||
}
|
||
|
||
// Every dimension shall be of constant size.
|
||
if (ArraySize) {
|
||
for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
|
||
if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
|
||
break;
|
||
|
||
DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
|
||
if (Expr *NumElts = (Expr *)Array.NumElts) {
|
||
if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
|
||
!NumElts->isIntegerConstantExpr(Context)) {
|
||
Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
|
||
<< NumElts->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
|
||
QualType AllocType = TInfo->getType();
|
||
if (D.isInvalidType())
|
||
return ExprError();
|
||
|
||
if (!TInfo)
|
||
TInfo = Context.getTrivialTypeSourceInfo(AllocType);
|
||
|
||
SourceRange R = TInfo->getTypeLoc().getSourceRange();
|
||
return BuildCXXNew(StartLoc, UseGlobal,
|
||
PlacementLParen,
|
||
move(PlacementArgs),
|
||
PlacementRParen,
|
||
TypeIdParens,
|
||
AllocType,
|
||
TInfo,
|
||
ArraySize,
|
||
ConstructorLParen,
|
||
move(ConstructorArgs),
|
||
ConstructorRParen);
|
||
}
|
||
|
||
ExprResult
|
||
Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
|
||
SourceLocation PlacementLParen,
|
||
MultiExprArg PlacementArgs,
|
||
SourceLocation PlacementRParen,
|
||
SourceRange TypeIdParens,
|
||
QualType AllocType,
|
||
TypeSourceInfo *AllocTypeInfo,
|
||
Expr *ArraySize,
|
||
SourceLocation ConstructorLParen,
|
||
MultiExprArg ConstructorArgs,
|
||
SourceLocation ConstructorRParen) {
|
||
SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
|
||
|
||
// Per C++0x [expr.new]p5, the type being constructed may be a
|
||
// typedef of an array type.
|
||
if (!ArraySize) {
|
||
if (const ConstantArrayType *Array
|
||
= Context.getAsConstantArrayType(AllocType)) {
|
||
ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
|
||
Context.getSizeType(),
|
||
TypeRange.getEnd());
|
||
AllocType = Array->getElementType();
|
||
}
|
||
}
|
||
|
||
if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
|
||
return ExprError();
|
||
|
||
QualType ResultType = Context.getPointerType(AllocType);
|
||
|
||
// C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
|
||
// or enumeration type with a non-negative value."
|
||
if (ArraySize && !ArraySize->isTypeDependent()) {
|
||
|
||
QualType SizeType = ArraySize->getType();
|
||
|
||
ExprResult ConvertedSize
|
||
= ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
|
||
PDiag(diag::err_array_size_not_integral),
|
||
PDiag(diag::err_array_size_incomplete_type)
|
||
<< ArraySize->getSourceRange(),
|
||
PDiag(diag::err_array_size_explicit_conversion),
|
||
PDiag(diag::note_array_size_conversion),
|
||
PDiag(diag::err_array_size_ambiguous_conversion),
|
||
PDiag(diag::note_array_size_conversion),
|
||
PDiag(getLangOptions().CPlusPlus0x? 0
|
||
: diag::ext_array_size_conversion));
|
||
if (ConvertedSize.isInvalid())
|
||
return ExprError();
|
||
|
||
ArraySize = ConvertedSize.take();
|
||
SizeType = ArraySize->getType();
|
||
if (!SizeType->isIntegralOrUnscopedEnumerationType())
|
||
return ExprError();
|
||
|
||
// Let's see if this is a constant < 0. If so, we reject it out of hand.
|
||
// We don't care about special rules, so we tell the machinery it's not
|
||
// evaluated - it gives us a result in more cases.
|
||
if (!ArraySize->isValueDependent()) {
|
||
llvm::APSInt Value;
|
||
if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
|
||
if (Value < llvm::APSInt(
|
||
llvm::APInt::getNullValue(Value.getBitWidth()),
|
||
Value.isUnsigned()))
|
||
return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
|
||
diag::err_typecheck_negative_array_size)
|
||
<< ArraySize->getSourceRange());
|
||
|
||
if (!AllocType->isDependentType()) {
|
||
unsigned ActiveSizeBits
|
||
= ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
|
||
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
|
||
Diag(ArraySize->getSourceRange().getBegin(),
|
||
diag::err_array_too_large)
|
||
<< Value.toString(10)
|
||
<< ArraySize->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
}
|
||
} else if (TypeIdParens.isValid()) {
|
||
// Can't have dynamic array size when the type-id is in parentheses.
|
||
Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
|
||
<< ArraySize->getSourceRange()
|
||
<< FixItHint::CreateRemoval(TypeIdParens.getBegin())
|
||
<< FixItHint::CreateRemoval(TypeIdParens.getEnd());
|
||
|
||
TypeIdParens = SourceRange();
|
||
}
|
||
}
|
||
|
||
ImpCastExprToType(ArraySize, Context.getSizeType(),
|
||
CK_IntegralCast);
|
||
}
|
||
|
||
FunctionDecl *OperatorNew = 0;
|
||
FunctionDecl *OperatorDelete = 0;
|
||
Expr **PlaceArgs = (Expr**)PlacementArgs.get();
|
||
unsigned NumPlaceArgs = PlacementArgs.size();
|
||
|
||
if (!AllocType->isDependentType() &&
|
||
!Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
|
||
FindAllocationFunctions(StartLoc,
|
||
SourceRange(PlacementLParen, PlacementRParen),
|
||
UseGlobal, AllocType, ArraySize, PlaceArgs,
|
||
NumPlaceArgs, OperatorNew, OperatorDelete))
|
||
return ExprError();
|
||
llvm::SmallVector<Expr *, 8> AllPlaceArgs;
|
||
if (OperatorNew) {
|
||
// Add default arguments, if any.
|
||
const FunctionProtoType *Proto =
|
||
OperatorNew->getType()->getAs<FunctionProtoType>();
|
||
VariadicCallType CallType =
|
||
Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
|
||
|
||
if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
|
||
Proto, 1, PlaceArgs, NumPlaceArgs,
|
||
AllPlaceArgs, CallType))
|
||
return ExprError();
|
||
|
||
NumPlaceArgs = AllPlaceArgs.size();
|
||
if (NumPlaceArgs > 0)
|
||
PlaceArgs = &AllPlaceArgs[0];
|
||
}
|
||
|
||
bool Init = ConstructorLParen.isValid();
|
||
// --- Choosing a constructor ---
|
||
CXXConstructorDecl *Constructor = 0;
|
||
Expr **ConsArgs = (Expr**)ConstructorArgs.get();
|
||
unsigned NumConsArgs = ConstructorArgs.size();
|
||
ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
|
||
|
||
// Array 'new' can't have any initializers.
|
||
if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
|
||
SourceRange InitRange(ConsArgs[0]->getLocStart(),
|
||
ConsArgs[NumConsArgs - 1]->getLocEnd());
|
||
|
||
Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
|
||
return ExprError();
|
||
}
|
||
|
||
if (!AllocType->isDependentType() &&
|
||
!Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
|
||
// C++0x [expr.new]p15:
|
||
// A new-expression that creates an object of type T initializes that
|
||
// object as follows:
|
||
InitializationKind Kind
|
||
// - If the new-initializer is omitted, the object is default-
|
||
// initialized (8.5); if no initialization is performed,
|
||
// the object has indeterminate value
|
||
= !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
|
||
// - Otherwise, the new-initializer is interpreted according to the
|
||
// initialization rules of 8.5 for direct-initialization.
|
||
: InitializationKind::CreateDirect(TypeRange.getBegin(),
|
||
ConstructorLParen,
|
||
ConstructorRParen);
|
||
|
||
InitializedEntity Entity
|
||
= InitializedEntity::InitializeNew(StartLoc, AllocType);
|
||
InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
|
||
ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
|
||
move(ConstructorArgs));
|
||
if (FullInit.isInvalid())
|
||
return ExprError();
|
||
|
||
// FullInit is our initializer; walk through it to determine if it's a
|
||
// constructor call, which CXXNewExpr handles directly.
|
||
if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
|
||
if (CXXBindTemporaryExpr *Binder
|
||
= dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
|
||
FullInitExpr = Binder->getSubExpr();
|
||
if (CXXConstructExpr *Construct
|
||
= dyn_cast<CXXConstructExpr>(FullInitExpr)) {
|
||
Constructor = Construct->getConstructor();
|
||
for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
|
||
AEnd = Construct->arg_end();
|
||
A != AEnd; ++A)
|
||
ConvertedConstructorArgs.push_back(*A);
|
||
} else {
|
||
// Take the converted initializer.
|
||
ConvertedConstructorArgs.push_back(FullInit.release());
|
||
}
|
||
} else {
|
||
// No initialization required.
|
||
}
|
||
|
||
// Take the converted arguments and use them for the new expression.
|
||
NumConsArgs = ConvertedConstructorArgs.size();
|
||
ConsArgs = (Expr **)ConvertedConstructorArgs.take();
|
||
}
|
||
|
||
// Mark the new and delete operators as referenced.
|
||
if (OperatorNew)
|
||
MarkDeclarationReferenced(StartLoc, OperatorNew);
|
||
if (OperatorDelete)
|
||
MarkDeclarationReferenced(StartLoc, OperatorDelete);
|
||
|
||
// FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
|
||
|
||
PlacementArgs.release();
|
||
ConstructorArgs.release();
|
||
|
||
return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
|
||
PlaceArgs, NumPlaceArgs, TypeIdParens,
|
||
ArraySize, Constructor, Init,
|
||
ConsArgs, NumConsArgs, OperatorDelete,
|
||
ResultType, AllocTypeInfo,
|
||
StartLoc,
|
||
Init ? ConstructorRParen :
|
||
TypeRange.getEnd(),
|
||
ConstructorLParen, ConstructorRParen));
|
||
}
|
||
|
||
/// CheckAllocatedType - Checks that a type is suitable as the allocated type
|
||
/// in a new-expression.
|
||
/// dimension off and stores the size expression in ArraySize.
|
||
bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
|
||
SourceRange R) {
|
||
// C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
|
||
// abstract class type or array thereof.
|
||
if (AllocType->isFunctionType())
|
||
return Diag(Loc, diag::err_bad_new_type)
|
||
<< AllocType << 0 << R;
|
||
else if (AllocType->isReferenceType())
|
||
return Diag(Loc, diag::err_bad_new_type)
|
||
<< AllocType << 1 << R;
|
||
else if (!AllocType->isDependentType() &&
|
||
RequireCompleteType(Loc, AllocType,
|
||
PDiag(diag::err_new_incomplete_type)
|
||
<< R))
|
||
return true;
|
||
else if (RequireNonAbstractType(Loc, AllocType,
|
||
diag::err_allocation_of_abstract_type))
|
||
return true;
|
||
else if (AllocType->isVariablyModifiedType())
|
||
return Diag(Loc, diag::err_variably_modified_new_type)
|
||
<< AllocType;
|
||
|
||
return false;
|
||
}
|
||
|
||
/// \brief Determine whether the given function is a non-placement
|
||
/// deallocation function.
|
||
static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
|
||
if (FD->isInvalidDecl())
|
||
return false;
|
||
|
||
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
|
||
return Method->isUsualDeallocationFunction();
|
||
|
||
return ((FD->getOverloadedOperator() == OO_Delete ||
|
||
FD->getOverloadedOperator() == OO_Array_Delete) &&
|
||
FD->getNumParams() == 1);
|
||
}
|
||
|
||
/// FindAllocationFunctions - Finds the overloads of operator new and delete
|
||
/// that are appropriate for the allocation.
|
||
bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
|
||
bool UseGlobal, QualType AllocType,
|
||
bool IsArray, Expr **PlaceArgs,
|
||
unsigned NumPlaceArgs,
|
||
FunctionDecl *&OperatorNew,
|
||
FunctionDecl *&OperatorDelete) {
|
||
// --- Choosing an allocation function ---
|
||
// C++ 5.3.4p8 - 14 & 18
|
||
// 1) If UseGlobal is true, only look in the global scope. Else, also look
|
||
// in the scope of the allocated class.
|
||
// 2) If an array size is given, look for operator new[], else look for
|
||
// operator new.
|
||
// 3) The first argument is always size_t. Append the arguments from the
|
||
// placement form.
|
||
|
||
llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
|
||
// We don't care about the actual value of this argument.
|
||
// FIXME: Should the Sema create the expression and embed it in the syntax
|
||
// tree? Or should the consumer just recalculate the value?
|
||
IntegerLiteral Size(Context, llvm::APInt::getNullValue(
|
||
Context.Target.getPointerWidth(0)),
|
||
Context.getSizeType(),
|
||
SourceLocation());
|
||
AllocArgs[0] = &Size;
|
||
std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
|
||
|
||
// C++ [expr.new]p8:
|
||
// If the allocated type is a non-array type, the allocation
|
||
// function’s name is operator new and the deallocation function’s
|
||
// name is operator delete. If the allocated type is an array
|
||
// type, the allocation function’s name is operator new[] and the
|
||
// deallocation function’s name is operator delete[].
|
||
DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
|
||
IsArray ? OO_Array_New : OO_New);
|
||
DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
|
||
IsArray ? OO_Array_Delete : OO_Delete);
|
||
|
||
QualType AllocElemType = Context.getBaseElementType(AllocType);
|
||
|
||
if (AllocElemType->isRecordType() && !UseGlobal) {
|
||
CXXRecordDecl *Record
|
||
= cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
|
||
if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
|
||
AllocArgs.size(), Record, /*AllowMissing=*/true,
|
||
OperatorNew))
|
||
return true;
|
||
}
|
||
if (!OperatorNew) {
|
||
// Didn't find a member overload. Look for a global one.
|
||
DeclareGlobalNewDelete();
|
||
DeclContext *TUDecl = Context.getTranslationUnitDecl();
|
||
if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
|
||
AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
|
||
OperatorNew))
|
||
return true;
|
||
}
|
||
|
||
// We don't need an operator delete if we're running under
|
||
// -fno-exceptions.
|
||
if (!getLangOptions().Exceptions) {
|
||
OperatorDelete = 0;
|
||
return false;
|
||
}
|
||
|
||
// FindAllocationOverload can change the passed in arguments, so we need to
|
||
// copy them back.
|
||
if (NumPlaceArgs > 0)
|
||
std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
|
||
|
||
// C++ [expr.new]p19:
|
||
//
|
||
// If the new-expression begins with a unary :: operator, the
|
||
// deallocation function’s name is looked up in the global
|
||
// scope. Otherwise, if the allocated type is a class type T or an
|
||
// array thereof, the deallocation function’s name is looked up in
|
||
// the scope of T. If this lookup fails to find the name, or if
|
||
// the allocated type is not a class type or array thereof, the
|
||
// deallocation function’s name is looked up in the global scope.
|
||
LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
|
||
if (AllocElemType->isRecordType() && !UseGlobal) {
|
||
CXXRecordDecl *RD
|
||
= cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
|
||
LookupQualifiedName(FoundDelete, RD);
|
||
}
|
||
if (FoundDelete.isAmbiguous())
|
||
return true; // FIXME: clean up expressions?
|
||
|
||
if (FoundDelete.empty()) {
|
||
DeclareGlobalNewDelete();
|
||
LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
|
||
}
|
||
|
||
FoundDelete.suppressDiagnostics();
|
||
|
||
llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
|
||
|
||
// Whether we're looking for a placement operator delete is dictated
|
||
// by whether we selected a placement operator new, not by whether
|
||
// we had explicit placement arguments. This matters for things like
|
||
// struct A { void *operator new(size_t, int = 0); ... };
|
||
// A *a = new A()
|
||
bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
|
||
|
||
if (isPlacementNew) {
|
||
// C++ [expr.new]p20:
|
||
// A declaration of a placement deallocation function matches the
|
||
// declaration of a placement allocation function if it has the
|
||
// same number of parameters and, after parameter transformations
|
||
// (8.3.5), all parameter types except the first are
|
||
// identical. [...]
|
||
//
|
||
// To perform this comparison, we compute the function type that
|
||
// the deallocation function should have, and use that type both
|
||
// for template argument deduction and for comparison purposes.
|
||
//
|
||
// FIXME: this comparison should ignore CC and the like.
|
||
QualType ExpectedFunctionType;
|
||
{
|
||
const FunctionProtoType *Proto
|
||
= OperatorNew->getType()->getAs<FunctionProtoType>();
|
||
|
||
llvm::SmallVector<QualType, 4> ArgTypes;
|
||
ArgTypes.push_back(Context.VoidPtrTy);
|
||
for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
|
||
ArgTypes.push_back(Proto->getArgType(I));
|
||
|
||
FunctionProtoType::ExtProtoInfo EPI;
|
||
EPI.Variadic = Proto->isVariadic();
|
||
|
||
ExpectedFunctionType
|
||
= Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
|
||
ArgTypes.size(), EPI);
|
||
}
|
||
|
||
for (LookupResult::iterator D = FoundDelete.begin(),
|
||
DEnd = FoundDelete.end();
|
||
D != DEnd; ++D) {
|
||
FunctionDecl *Fn = 0;
|
||
if (FunctionTemplateDecl *FnTmpl
|
||
= dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
|
||
// Perform template argument deduction to try to match the
|
||
// expected function type.
|
||
TemplateDeductionInfo Info(Context, StartLoc);
|
||
if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
|
||
continue;
|
||
} else
|
||
Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
|
||
|
||
if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
|
||
Matches.push_back(std::make_pair(D.getPair(), Fn));
|
||
}
|
||
} else {
|
||
// C++ [expr.new]p20:
|
||
// [...] Any non-placement deallocation function matches a
|
||
// non-placement allocation function. [...]
|
||
for (LookupResult::iterator D = FoundDelete.begin(),
|
||
DEnd = FoundDelete.end();
|
||
D != DEnd; ++D) {
|
||
if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
|
||
if (isNonPlacementDeallocationFunction(Fn))
|
||
Matches.push_back(std::make_pair(D.getPair(), Fn));
|
||
}
|
||
}
|
||
|
||
// C++ [expr.new]p20:
|
||
// [...] If the lookup finds a single matching deallocation
|
||
// function, that function will be called; otherwise, no
|
||
// deallocation function will be called.
|
||
if (Matches.size() == 1) {
|
||
OperatorDelete = Matches[0].second;
|
||
|
||
// C++0x [expr.new]p20:
|
||
// If the lookup finds the two-parameter form of a usual
|
||
// deallocation function (3.7.4.2) and that function, considered
|
||
// as a placement deallocation function, would have been
|
||
// selected as a match for the allocation function, the program
|
||
// is ill-formed.
|
||
if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
|
||
isNonPlacementDeallocationFunction(OperatorDelete)) {
|
||
Diag(StartLoc, diag::err_placement_new_non_placement_delete)
|
||
<< SourceRange(PlaceArgs[0]->getLocStart(),
|
||
PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
|
||
Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
|
||
<< DeleteName;
|
||
} else {
|
||
CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
|
||
Matches[0].first);
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// FindAllocationOverload - Find an fitting overload for the allocation
|
||
/// function in the specified scope.
|
||
bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
|
||
DeclarationName Name, Expr** Args,
|
||
unsigned NumArgs, DeclContext *Ctx,
|
||
bool AllowMissing, FunctionDecl *&Operator) {
|
||
LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
|
||
LookupQualifiedName(R, Ctx);
|
||
if (R.empty()) {
|
||
if (AllowMissing)
|
||
return false;
|
||
return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
|
||
<< Name << Range;
|
||
}
|
||
|
||
if (R.isAmbiguous())
|
||
return true;
|
||
|
||
R.suppressDiagnostics();
|
||
|
||
OverloadCandidateSet Candidates(StartLoc);
|
||
for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
|
||
Alloc != AllocEnd; ++Alloc) {
|
||
// Even member operator new/delete are implicitly treated as
|
||
// static, so don't use AddMemberCandidate.
|
||
NamedDecl *D = (*Alloc)->getUnderlyingDecl();
|
||
|
||
if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
|
||
AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
|
||
/*ExplicitTemplateArgs=*/0, Args, NumArgs,
|
||
Candidates,
|
||
/*SuppressUserConversions=*/false);
|
||
continue;
|
||
}
|
||
|
||
FunctionDecl *Fn = cast<FunctionDecl>(D);
|
||
AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
|
||
/*SuppressUserConversions=*/false);
|
||
}
|
||
|
||
// Do the resolution.
|
||
OverloadCandidateSet::iterator Best;
|
||
switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
|
||
case OR_Success: {
|
||
// Got one!
|
||
FunctionDecl *FnDecl = Best->Function;
|
||
// The first argument is size_t, and the first parameter must be size_t,
|
||
// too. This is checked on declaration and can be assumed. (It can't be
|
||
// asserted on, though, since invalid decls are left in there.)
|
||
// Watch out for variadic allocator function.
|
||
unsigned NumArgsInFnDecl = FnDecl->getNumParams();
|
||
for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
|
||
ExprResult Result
|
||
= PerformCopyInitialization(InitializedEntity::InitializeParameter(
|
||
Context,
|
||
FnDecl->getParamDecl(i)),
|
||
SourceLocation(),
|
||
Owned(Args[i]));
|
||
if (Result.isInvalid())
|
||
return true;
|
||
|
||
Args[i] = Result.takeAs<Expr>();
|
||
}
|
||
Operator = FnDecl;
|
||
CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl);
|
||
return false;
|
||
}
|
||
|
||
case OR_No_Viable_Function:
|
||
Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
|
||
<< Name << Range;
|
||
Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
|
||
return true;
|
||
|
||
case OR_Ambiguous:
|
||
Diag(StartLoc, diag::err_ovl_ambiguous_call)
|
||
<< Name << Range;
|
||
Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
|
||
return true;
|
||
|
||
case OR_Deleted:
|
||
Diag(StartLoc, diag::err_ovl_deleted_call)
|
||
<< Best->Function->isDeleted()
|
||
<< Name << Range;
|
||
Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
|
||
return true;
|
||
}
|
||
assert(false && "Unreachable, bad result from BestViableFunction");
|
||
return true;
|
||
}
|
||
|
||
|
||
/// DeclareGlobalNewDelete - Declare the global forms of operator new and
|
||
/// delete. These are:
|
||
/// @code
|
||
/// void* operator new(std::size_t) throw(std::bad_alloc);
|
||
/// void* operator new[](std::size_t) throw(std::bad_alloc);
|
||
/// void operator delete(void *) throw();
|
||
/// void operator delete[](void *) throw();
|
||
/// @endcode
|
||
/// Note that the placement and nothrow forms of new are *not* implicitly
|
||
/// declared. Their use requires including \<new\>.
|
||
void Sema::DeclareGlobalNewDelete() {
|
||
if (GlobalNewDeleteDeclared)
|
||
return;
|
||
|
||
// C++ [basic.std.dynamic]p2:
|
||
// [...] The following allocation and deallocation functions (18.4) are
|
||
// implicitly declared in global scope in each translation unit of a
|
||
// program
|
||
//
|
||
// void* operator new(std::size_t) throw(std::bad_alloc);
|
||
// void* operator new[](std::size_t) throw(std::bad_alloc);
|
||
// void operator delete(void*) throw();
|
||
// void operator delete[](void*) throw();
|
||
//
|
||
// These implicit declarations introduce only the function names operator
|
||
// new, operator new[], operator delete, operator delete[].
|
||
//
|
||
// Here, we need to refer to std::bad_alloc, so we will implicitly declare
|
||
// "std" or "bad_alloc" as necessary to form the exception specification.
|
||
// However, we do not make these implicit declarations visible to name
|
||
// lookup.
|
||
if (!StdBadAlloc) {
|
||
// The "std::bad_alloc" class has not yet been declared, so build it
|
||
// implicitly.
|
||
StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
|
||
getOrCreateStdNamespace(),
|
||
SourceLocation(),
|
||
&PP.getIdentifierTable().get("bad_alloc"),
|
||
SourceLocation(), 0);
|
||
getStdBadAlloc()->setImplicit(true);
|
||
}
|
||
|
||
GlobalNewDeleteDeclared = true;
|
||
|
||
QualType VoidPtr = Context.getPointerType(Context.VoidTy);
|
||
QualType SizeT = Context.getSizeType();
|
||
bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
|
||
|
||
DeclareGlobalAllocationFunction(
|
||
Context.DeclarationNames.getCXXOperatorName(OO_New),
|
||
VoidPtr, SizeT, AssumeSaneOperatorNew);
|
||
DeclareGlobalAllocationFunction(
|
||
Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
|
||
VoidPtr, SizeT, AssumeSaneOperatorNew);
|
||
DeclareGlobalAllocationFunction(
|
||
Context.DeclarationNames.getCXXOperatorName(OO_Delete),
|
||
Context.VoidTy, VoidPtr);
|
||
DeclareGlobalAllocationFunction(
|
||
Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
|
||
Context.VoidTy, VoidPtr);
|
||
}
|
||
|
||
/// DeclareGlobalAllocationFunction - Declares a single implicit global
|
||
/// allocation function if it doesn't already exist.
|
||
void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
|
||
QualType Return, QualType Argument,
|
||
bool AddMallocAttr) {
|
||
DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
|
||
|
||
// Check if this function is already declared.
|
||
{
|
||
DeclContext::lookup_iterator Alloc, AllocEnd;
|
||
for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
|
||
Alloc != AllocEnd; ++Alloc) {
|
||
// Only look at non-template functions, as it is the predefined,
|
||
// non-templated allocation function we are trying to declare here.
|
||
if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
|
||
QualType InitialParamType =
|
||
Context.getCanonicalType(
|
||
Func->getParamDecl(0)->getType().getUnqualifiedType());
|
||
// FIXME: Do we need to check for default arguments here?
|
||
if (Func->getNumParams() == 1 && InitialParamType == Argument) {
|
||
if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
|
||
Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
QualType BadAllocType;
|
||
bool HasBadAllocExceptionSpec
|
||
= (Name.getCXXOverloadedOperator() == OO_New ||
|
||
Name.getCXXOverloadedOperator() == OO_Array_New);
|
||
if (HasBadAllocExceptionSpec) {
|
||
assert(StdBadAlloc && "Must have std::bad_alloc declared");
|
||
BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
|
||
}
|
||
|
||
FunctionProtoType::ExtProtoInfo EPI;
|
||
EPI.HasExceptionSpec = true;
|
||
if (HasBadAllocExceptionSpec) {
|
||
EPI.NumExceptions = 1;
|
||
EPI.Exceptions = &BadAllocType;
|
||
}
|
||
|
||
QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
|
||
FunctionDecl *Alloc =
|
||
FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
|
||
FnType, /*TInfo=*/0, SC_None,
|
||
SC_None, false, true);
|
||
Alloc->setImplicit();
|
||
|
||
if (AddMallocAttr)
|
||
Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
|
||
|
||
ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
|
||
0, Argument, /*TInfo=*/0,
|
||
SC_None,
|
||
SC_None, 0);
|
||
Alloc->setParams(&Param, 1);
|
||
|
||
// FIXME: Also add this declaration to the IdentifierResolver, but
|
||
// make sure it is at the end of the chain to coincide with the
|
||
// global scope.
|
||
Context.getTranslationUnitDecl()->addDecl(Alloc);
|
||
}
|
||
|
||
bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
|
||
DeclarationName Name,
|
||
FunctionDecl* &Operator) {
|
||
LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
|
||
// Try to find operator delete/operator delete[] in class scope.
|
||
LookupQualifiedName(Found, RD);
|
||
|
||
if (Found.isAmbiguous())
|
||
return true;
|
||
|
||
Found.suppressDiagnostics();
|
||
|
||
llvm::SmallVector<DeclAccessPair,4> Matches;
|
||
for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
|
||
F != FEnd; ++F) {
|
||
NamedDecl *ND = (*F)->getUnderlyingDecl();
|
||
|
||
// Ignore template operator delete members from the check for a usual
|
||
// deallocation function.
|
||
if (isa<FunctionTemplateDecl>(ND))
|
||
continue;
|
||
|
||
if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
|
||
Matches.push_back(F.getPair());
|
||
}
|
||
|
||
// There's exactly one suitable operator; pick it.
|
||
if (Matches.size() == 1) {
|
||
Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
|
||
CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
|
||
Matches[0]);
|
||
return false;
|
||
|
||
// We found multiple suitable operators; complain about the ambiguity.
|
||
} else if (!Matches.empty()) {
|
||
Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
|
||
<< Name << RD;
|
||
|
||
for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
|
||
F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
|
||
Diag((*F)->getUnderlyingDecl()->getLocation(),
|
||
diag::note_member_declared_here) << Name;
|
||
return true;
|
||
}
|
||
|
||
// We did find operator delete/operator delete[] declarations, but
|
||
// none of them were suitable.
|
||
if (!Found.empty()) {
|
||
Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
|
||
<< Name << RD;
|
||
|
||
for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
|
||
F != FEnd; ++F)
|
||
Diag((*F)->getUnderlyingDecl()->getLocation(),
|
||
diag::note_member_declared_here) << Name;
|
||
|
||
return true;
|
||
}
|
||
|
||
// Look for a global declaration.
|
||
DeclareGlobalNewDelete();
|
||
DeclContext *TUDecl = Context.getTranslationUnitDecl();
|
||
|
||
CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
|
||
Expr* DeallocArgs[1];
|
||
DeallocArgs[0] = &Null;
|
||
if (FindAllocationOverload(StartLoc, SourceRange(), Name,
|
||
DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
|
||
Operator))
|
||
return true;
|
||
|
||
assert(Operator && "Did not find a deallocation function!");
|
||
return false;
|
||
}
|
||
|
||
/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
|
||
/// @code ::delete ptr; @endcode
|
||
/// or
|
||
/// @code delete [] ptr; @endcode
|
||
ExprResult
|
||
Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
|
||
bool ArrayForm, Expr *Ex) {
|
||
// C++ [expr.delete]p1:
|
||
// The operand shall have a pointer type, or a class type having a single
|
||
// conversion function to a pointer type. The result has type void.
|
||
//
|
||
// DR599 amends "pointer type" to "pointer to object type" in both cases.
|
||
|
||
FunctionDecl *OperatorDelete = 0;
|
||
bool ArrayFormAsWritten = ArrayForm;
|
||
|
||
if (!Ex->isTypeDependent()) {
|
||
QualType Type = Ex->getType();
|
||
|
||
if (const RecordType *Record = Type->getAs<RecordType>()) {
|
||
if (RequireCompleteType(StartLoc, Type,
|
||
PDiag(diag::err_delete_incomplete_class_type)))
|
||
return ExprError();
|
||
|
||
llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
|
||
|
||
CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
|
||
const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
|
||
for (UnresolvedSetImpl::iterator I = Conversions->begin(),
|
||
E = Conversions->end(); I != E; ++I) {
|
||
NamedDecl *D = I.getDecl();
|
||
if (isa<UsingShadowDecl>(D))
|
||
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
||
|
||
// Skip over templated conversion functions; they aren't considered.
|
||
if (isa<FunctionTemplateDecl>(D))
|
||
continue;
|
||
|
||
CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
|
||
|
||
QualType ConvType = Conv->getConversionType().getNonReferenceType();
|
||
if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
|
||
if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
|
||
ObjectPtrConversions.push_back(Conv);
|
||
}
|
||
if (ObjectPtrConversions.size() == 1) {
|
||
// We have a single conversion to a pointer-to-object type. Perform
|
||
// that conversion.
|
||
// TODO: don't redo the conversion calculation.
|
||
if (!PerformImplicitConversion(Ex,
|
||
ObjectPtrConversions.front()->getConversionType(),
|
||
AA_Converting)) {
|
||
Type = Ex->getType();
|
||
}
|
||
}
|
||
else if (ObjectPtrConversions.size() > 1) {
|
||
Diag(StartLoc, diag::err_ambiguous_delete_operand)
|
||
<< Type << Ex->getSourceRange();
|
||
for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
|
||
NoteOverloadCandidate(ObjectPtrConversions[i]);
|
||
return ExprError();
|
||
}
|
||
}
|
||
|
||
if (!Type->isPointerType())
|
||
return ExprError(Diag(StartLoc, diag::err_delete_operand)
|
||
<< Type << Ex->getSourceRange());
|
||
|
||
QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
|
||
if (Pointee->isVoidType() && !isSFINAEContext()) {
|
||
// The C++ standard bans deleting a pointer to a non-object type, which
|
||
// effectively bans deletion of "void*". However, most compilers support
|
||
// this, so we treat it as a warning unless we're in a SFINAE context.
|
||
Diag(StartLoc, diag::ext_delete_void_ptr_operand)
|
||
<< Type << Ex->getSourceRange();
|
||
} else if (Pointee->isFunctionType() || Pointee->isVoidType())
|
||
return ExprError(Diag(StartLoc, diag::err_delete_operand)
|
||
<< Type << Ex->getSourceRange());
|
||
else if (!Pointee->isDependentType() &&
|
||
RequireCompleteType(StartLoc, Pointee,
|
||
PDiag(diag::warn_delete_incomplete)
|
||
<< Ex->getSourceRange()))
|
||
return ExprError();
|
||
|
||
// C++ [expr.delete]p2:
|
||
// [Note: a pointer to a const type can be the operand of a
|
||
// delete-expression; it is not necessary to cast away the constness
|
||
// (5.2.11) of the pointer expression before it is used as the operand
|
||
// of the delete-expression. ]
|
||
ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy),
|
||
CK_NoOp);
|
||
|
||
if (Pointee->isArrayType() && !ArrayForm) {
|
||
Diag(StartLoc, diag::warn_delete_array_type)
|
||
<< Type << Ex->getSourceRange()
|
||
<< FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
|
||
ArrayForm = true;
|
||
}
|
||
|
||
DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
|
||
ArrayForm ? OO_Array_Delete : OO_Delete);
|
||
|
||
QualType PointeeElem = Context.getBaseElementType(Pointee);
|
||
if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
|
||
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
||
|
||
if (!UseGlobal &&
|
||
FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
|
||
return ExprError();
|
||
|
||
if (!RD->hasTrivialDestructor())
|
||
if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
|
||
MarkDeclarationReferenced(StartLoc,
|
||
const_cast<CXXDestructorDecl*>(Dtor));
|
||
DiagnoseUseOfDecl(Dtor, StartLoc);
|
||
}
|
||
}
|
||
|
||
if (!OperatorDelete) {
|
||
// Look for a global declaration.
|
||
DeclareGlobalNewDelete();
|
||
DeclContext *TUDecl = Context.getTranslationUnitDecl();
|
||
if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
|
||
&Ex, 1, TUDecl, /*AllowMissing=*/false,
|
||
OperatorDelete))
|
||
return ExprError();
|
||
}
|
||
|
||
MarkDeclarationReferenced(StartLoc, OperatorDelete);
|
||
|
||
// FIXME: Check access and ambiguity of operator delete and destructor.
|
||
}
|
||
|
||
return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
|
||
ArrayFormAsWritten, OperatorDelete,
|
||
Ex, StartLoc));
|
||
}
|
||
|
||
/// \brief Check the use of the given variable as a C++ condition in an if,
|
||
/// while, do-while, or switch statement.
|
||
ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
|
||
SourceLocation StmtLoc,
|
||
bool ConvertToBoolean) {
|
||
QualType T = ConditionVar->getType();
|
||
|
||
// C++ [stmt.select]p2:
|
||
// The declarator shall not specify a function or an array.
|
||
if (T->isFunctionType())
|
||
return ExprError(Diag(ConditionVar->getLocation(),
|
||
diag::err_invalid_use_of_function_type)
|
||
<< ConditionVar->getSourceRange());
|
||
else if (T->isArrayType())
|
||
return ExprError(Diag(ConditionVar->getLocation(),
|
||
diag::err_invalid_use_of_array_type)
|
||
<< ConditionVar->getSourceRange());
|
||
|
||
Expr *Condition = DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar,
|
||
ConditionVar->getLocation(),
|
||
ConditionVar->getType().getNonReferenceType(),
|
||
VK_LValue);
|
||
if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc))
|
||
return ExprError();
|
||
|
||
return Owned(Condition);
|
||
}
|
||
|
||
/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
|
||
bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
|
||
// C++ 6.4p4:
|
||
// The value of a condition that is an initialized declaration in a statement
|
||
// other than a switch statement is the value of the declared variable
|
||
// implicitly converted to type bool. If that conversion is ill-formed, the
|
||
// program is ill-formed.
|
||
// The value of a condition that is an expression is the value of the
|
||
// expression, implicitly converted to bool.
|
||
//
|
||
return PerformContextuallyConvertToBool(CondExpr);
|
||
}
|
||
|
||
/// Helper function to determine whether this is the (deprecated) C++
|
||
/// conversion from a string literal to a pointer to non-const char or
|
||
/// non-const wchar_t (for narrow and wide string literals,
|
||
/// respectively).
|
||
bool
|
||
Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
|
||
// Look inside the implicit cast, if it exists.
|
||
if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
|
||
From = Cast->getSubExpr();
|
||
|
||
// A string literal (2.13.4) that is not a wide string literal can
|
||
// be converted to an rvalue of type "pointer to char"; a wide
|
||
// string literal can be converted to an rvalue of type "pointer
|
||
// to wchar_t" (C++ 4.2p2).
|
||
if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
|
||
if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
|
||
if (const BuiltinType *ToPointeeType
|
||
= ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
|
||
// This conversion is considered only when there is an
|
||
// explicit appropriate pointer target type (C++ 4.2p2).
|
||
if (!ToPtrType->getPointeeType().hasQualifiers() &&
|
||
((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
|
||
(!StrLit->isWide() &&
|
||
(ToPointeeType->getKind() == BuiltinType::Char_U ||
|
||
ToPointeeType->getKind() == BuiltinType::Char_S))))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
static ExprResult BuildCXXCastArgument(Sema &S,
|
||
SourceLocation CastLoc,
|
||
QualType Ty,
|
||
CastKind Kind,
|
||
CXXMethodDecl *Method,
|
||
Expr *From) {
|
||
switch (Kind) {
|
||
default: assert(0 && "Unhandled cast kind!");
|
||
case CK_ConstructorConversion: {
|
||
ASTOwningVector<Expr*> ConstructorArgs(S);
|
||
|
||
if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
|
||
MultiExprArg(&From, 1),
|
||
CastLoc, ConstructorArgs))
|
||
return ExprError();
|
||
|
||
ExprResult Result =
|
||
S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
|
||
move_arg(ConstructorArgs),
|
||
/*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
|
||
SourceRange());
|
||
if (Result.isInvalid())
|
||
return ExprError();
|
||
|
||
return S.MaybeBindToTemporary(Result.takeAs<Expr>());
|
||
}
|
||
|
||
case CK_UserDefinedConversion: {
|
||
assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
|
||
|
||
// Create an implicit call expr that calls it.
|
||
// FIXME: pass the FoundDecl for the user-defined conversion here
|
||
CXXMemberCallExpr *CE = S.BuildCXXMemberCallExpr(From, Method, Method);
|
||
return S.MaybeBindToTemporary(CE);
|
||
}
|
||
}
|
||
}
|
||
|
||
/// PerformImplicitConversion - Perform an implicit conversion of the
|
||
/// expression From to the type ToType using the pre-computed implicit
|
||
/// conversion sequence ICS. Returns true if there was an error, false
|
||
/// otherwise. The expression From is replaced with the converted
|
||
/// expression. Action is the kind of conversion we're performing,
|
||
/// used in the error message.
|
||
bool
|
||
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
|
||
const ImplicitConversionSequence &ICS,
|
||
AssignmentAction Action, bool IgnoreBaseAccess) {
|
||
switch (ICS.getKind()) {
|
||
case ImplicitConversionSequence::StandardConversion:
|
||
if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
|
||
IgnoreBaseAccess))
|
||
return true;
|
||
break;
|
||
|
||
case ImplicitConversionSequence::UserDefinedConversion: {
|
||
|
||
FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
|
||
CastKind CastKind;
|
||
QualType BeforeToType;
|
||
if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
|
||
CastKind = CK_UserDefinedConversion;
|
||
|
||
// If the user-defined conversion is specified by a conversion function,
|
||
// the initial standard conversion sequence converts the source type to
|
||
// the implicit object parameter of the conversion function.
|
||
BeforeToType = Context.getTagDeclType(Conv->getParent());
|
||
} else {
|
||
const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
|
||
CastKind = CK_ConstructorConversion;
|
||
// Do no conversion if dealing with ... for the first conversion.
|
||
if (!ICS.UserDefined.EllipsisConversion) {
|
||
// If the user-defined conversion is specified by a constructor, the
|
||
// initial standard conversion sequence converts the source type to the
|
||
// type required by the argument of the constructor
|
||
BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
|
||
}
|
||
}
|
||
// Watch out for elipsis conversion.
|
||
if (!ICS.UserDefined.EllipsisConversion) {
|
||
if (PerformImplicitConversion(From, BeforeToType,
|
||
ICS.UserDefined.Before, AA_Converting,
|
||
IgnoreBaseAccess))
|
||
return true;
|
||
}
|
||
|
||
ExprResult CastArg
|
||
= BuildCXXCastArgument(*this,
|
||
From->getLocStart(),
|
||
ToType.getNonReferenceType(),
|
||
CastKind, cast<CXXMethodDecl>(FD),
|
||
From);
|
||
|
||
if (CastArg.isInvalid())
|
||
return true;
|
||
|
||
From = CastArg.takeAs<Expr>();
|
||
|
||
return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
|
||
AA_Converting, IgnoreBaseAccess);
|
||
}
|
||
|
||
case ImplicitConversionSequence::AmbiguousConversion:
|
||
ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
|
||
PDiag(diag::err_typecheck_ambiguous_condition)
|
||
<< From->getSourceRange());
|
||
return true;
|
||
|
||
case ImplicitConversionSequence::EllipsisConversion:
|
||
assert(false && "Cannot perform an ellipsis conversion");
|
||
return false;
|
||
|
||
case ImplicitConversionSequence::BadConversion:
|
||
return true;
|
||
}
|
||
|
||
// Everything went well.
|
||
return false;
|
||
}
|
||
|
||
/// PerformImplicitConversion - Perform an implicit conversion of the
|
||
/// expression From to the type ToType by following the standard
|
||
/// conversion sequence SCS. Returns true if there was an error, false
|
||
/// otherwise. The expression From is replaced with the converted
|
||
/// expression. Flavor is the context in which we're performing this
|
||
/// conversion, for use in error messages.
|
||
bool
|
||
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
|
||
const StandardConversionSequence& SCS,
|
||
AssignmentAction Action, bool IgnoreBaseAccess) {
|
||
// Overall FIXME: we are recomputing too many types here and doing far too
|
||
// much extra work. What this means is that we need to keep track of more
|
||
// information that is computed when we try the implicit conversion initially,
|
||
// so that we don't need to recompute anything here.
|
||
QualType FromType = From->getType();
|
||
|
||
if (SCS.CopyConstructor) {
|
||
// FIXME: When can ToType be a reference type?
|
||
assert(!ToType->isReferenceType());
|
||
if (SCS.Second == ICK_Derived_To_Base) {
|
||
ASTOwningVector<Expr*> ConstructorArgs(*this);
|
||
if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
|
||
MultiExprArg(*this, &From, 1),
|
||
/*FIXME:ConstructLoc*/SourceLocation(),
|
||
ConstructorArgs))
|
||
return true;
|
||
ExprResult FromResult =
|
||
BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
|
||
ToType, SCS.CopyConstructor,
|
||
move_arg(ConstructorArgs),
|
||
/*ZeroInit*/ false,
|
||
CXXConstructExpr::CK_Complete,
|
||
SourceRange());
|
||
if (FromResult.isInvalid())
|
||
return true;
|
||
From = FromResult.takeAs<Expr>();
|
||
return false;
|
||
}
|
||
ExprResult FromResult =
|
||
BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
|
||
ToType, SCS.CopyConstructor,
|
||
MultiExprArg(*this, &From, 1),
|
||
/*ZeroInit*/ false,
|
||
CXXConstructExpr::CK_Complete,
|
||
SourceRange());
|
||
|
||
if (FromResult.isInvalid())
|
||
return true;
|
||
|
||
From = FromResult.takeAs<Expr>();
|
||
return false;
|
||
}
|
||
|
||
// Resolve overloaded function references.
|
||
if (Context.hasSameType(FromType, Context.OverloadTy)) {
|
||
DeclAccessPair Found;
|
||
FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
|
||
true, Found);
|
||
if (!Fn)
|
||
return true;
|
||
|
||
if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
|
||
return true;
|
||
|
||
From = FixOverloadedFunctionReference(From, Found, Fn);
|
||
FromType = From->getType();
|
||
}
|
||
|
||
// Perform the first implicit conversion.
|
||
switch (SCS.First) {
|
||
case ICK_Identity:
|
||
// Nothing to do.
|
||
break;
|
||
|
||
case ICK_Lvalue_To_Rvalue:
|
||
// Should this get its own ICK?
|
||
if (From->getObjectKind() == OK_ObjCProperty) {
|
||
ConvertPropertyForRValue(From);
|
||
if (!From->isGLValue()) break;
|
||
}
|
||
|
||
FromType = FromType.getUnqualifiedType();
|
||
From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
|
||
From, 0, VK_RValue);
|
||
break;
|
||
|
||
case ICK_Array_To_Pointer:
|
||
FromType = Context.getArrayDecayedType(FromType);
|
||
ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay);
|
||
break;
|
||
|
||
case ICK_Function_To_Pointer:
|
||
FromType = Context.getPointerType(FromType);
|
||
ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay);
|
||
break;
|
||
|
||
default:
|
||
assert(false && "Improper first standard conversion");
|
||
break;
|
||
}
|
||
|
||
// Perform the second implicit conversion
|
||
switch (SCS.Second) {
|
||
case ICK_Identity:
|
||
// If both sides are functions (or pointers/references to them), there could
|
||
// be incompatible exception declarations.
|
||
if (CheckExceptionSpecCompatibility(From, ToType))
|
||
return true;
|
||
// Nothing else to do.
|
||
break;
|
||
|
||
case ICK_NoReturn_Adjustment:
|
||
// If both sides are functions (or pointers/references to them), there could
|
||
// be incompatible exception declarations.
|
||
if (CheckExceptionSpecCompatibility(From, ToType))
|
||
return true;
|
||
|
||
ImpCastExprToType(From, ToType, CK_NoOp);
|
||
break;
|
||
|
||
case ICK_Integral_Promotion:
|
||
case ICK_Integral_Conversion:
|
||
ImpCastExprToType(From, ToType, CK_IntegralCast);
|
||
break;
|
||
|
||
case ICK_Floating_Promotion:
|
||
case ICK_Floating_Conversion:
|
||
ImpCastExprToType(From, ToType, CK_FloatingCast);
|
||
break;
|
||
|
||
case ICK_Complex_Promotion:
|
||
case ICK_Complex_Conversion: {
|
||
QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
|
||
QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
|
||
CastKind CK;
|
||
if (FromEl->isRealFloatingType()) {
|
||
if (ToEl->isRealFloatingType())
|
||
CK = CK_FloatingComplexCast;
|
||
else
|
||
CK = CK_FloatingComplexToIntegralComplex;
|
||
} else if (ToEl->isRealFloatingType()) {
|
||
CK = CK_IntegralComplexToFloatingComplex;
|
||
} else {
|
||
CK = CK_IntegralComplexCast;
|
||
}
|
||
ImpCastExprToType(From, ToType, CK);
|
||
break;
|
||
}
|
||
|
||
case ICK_Floating_Integral:
|
||
if (ToType->isRealFloatingType())
|
||
ImpCastExprToType(From, ToType, CK_IntegralToFloating);
|
||
else
|
||
ImpCastExprToType(From, ToType, CK_FloatingToIntegral);
|
||
break;
|
||
|
||
case ICK_Compatible_Conversion:
|
||
ImpCastExprToType(From, ToType, CK_NoOp);
|
||
break;
|
||
|
||
case ICK_Pointer_Conversion: {
|
||
if (SCS.IncompatibleObjC && Action != AA_Casting) {
|
||
// Diagnose incompatible Objective-C conversions
|
||
Diag(From->getSourceRange().getBegin(),
|
||
diag::ext_typecheck_convert_incompatible_pointer)
|
||
<< From->getType() << ToType << Action
|
||
<< From->getSourceRange();
|
||
}
|
||
|
||
CastKind Kind = CK_Invalid;
|
||
CXXCastPath BasePath;
|
||
if (CheckPointerConversion(From, ToType, Kind, BasePath, IgnoreBaseAccess))
|
||
return true;
|
||
ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
|
||
break;
|
||
}
|
||
|
||
case ICK_Pointer_Member: {
|
||
CastKind Kind = CK_Invalid;
|
||
CXXCastPath BasePath;
|
||
if (CheckMemberPointerConversion(From, ToType, Kind, BasePath,
|
||
IgnoreBaseAccess))
|
||
return true;
|
||
if (CheckExceptionSpecCompatibility(From, ToType))
|
||
return true;
|
||
ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
|
||
break;
|
||
}
|
||
case ICK_Boolean_Conversion: {
|
||
CastKind Kind = CK_Invalid;
|
||
switch (FromType->getScalarTypeKind()) {
|
||
case Type::STK_Pointer: Kind = CK_PointerToBoolean; break;
|
||
case Type::STK_MemberPointer: Kind = CK_MemberPointerToBoolean; break;
|
||
case Type::STK_Bool: llvm_unreachable("bool -> bool conversion?");
|
||
case Type::STK_Integral: Kind = CK_IntegralToBoolean; break;
|
||
case Type::STK_Floating: Kind = CK_FloatingToBoolean; break;
|
||
case Type::STK_IntegralComplex: Kind = CK_IntegralComplexToBoolean; break;
|
||
case Type::STK_FloatingComplex: Kind = CK_FloatingComplexToBoolean; break;
|
||
}
|
||
|
||
ImpCastExprToType(From, Context.BoolTy, Kind);
|
||
break;
|
||
}
|
||
|
||
case ICK_Derived_To_Base: {
|
||
CXXCastPath BasePath;
|
||
if (CheckDerivedToBaseConversion(From->getType(),
|
||
ToType.getNonReferenceType(),
|
||
From->getLocStart(),
|
||
From->getSourceRange(),
|
||
&BasePath,
|
||
IgnoreBaseAccess))
|
||
return true;
|
||
|
||
ImpCastExprToType(From, ToType.getNonReferenceType(),
|
||
CK_DerivedToBase, CastCategory(From),
|
||
&BasePath);
|
||
break;
|
||
}
|
||
|
||
case ICK_Vector_Conversion:
|
||
ImpCastExprToType(From, ToType, CK_BitCast);
|
||
break;
|
||
|
||
case ICK_Vector_Splat:
|
||
ImpCastExprToType(From, ToType, CK_VectorSplat);
|
||
break;
|
||
|
||
case ICK_Complex_Real:
|
||
// Case 1. x -> _Complex y
|
||
if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
|
||
QualType ElType = ToComplex->getElementType();
|
||
bool isFloatingComplex = ElType->isRealFloatingType();
|
||
|
||
// x -> y
|
||
if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
|
||
// do nothing
|
||
} else if (From->getType()->isRealFloatingType()) {
|
||
ImpCastExprToType(From, ElType,
|
||
isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral);
|
||
} else {
|
||
assert(From->getType()->isIntegerType());
|
||
ImpCastExprToType(From, ElType,
|
||
isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast);
|
||
}
|
||
// y -> _Complex y
|
||
ImpCastExprToType(From, ToType,
|
||
isFloatingComplex ? CK_FloatingRealToComplex
|
||
: CK_IntegralRealToComplex);
|
||
|
||
// Case 2. _Complex x -> y
|
||
} else {
|
||
const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
|
||
assert(FromComplex);
|
||
|
||
QualType ElType = FromComplex->getElementType();
|
||
bool isFloatingComplex = ElType->isRealFloatingType();
|
||
|
||
// _Complex x -> x
|
||
ImpCastExprToType(From, ElType,
|
||
isFloatingComplex ? CK_FloatingComplexToReal
|
||
: CK_IntegralComplexToReal);
|
||
|
||
// x -> y
|
||
if (Context.hasSameUnqualifiedType(ElType, ToType)) {
|
||
// do nothing
|
||
} else if (ToType->isRealFloatingType()) {
|
||
ImpCastExprToType(From, ToType,
|
||
isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating);
|
||
} else {
|
||
assert(ToType->isIntegerType());
|
||
ImpCastExprToType(From, ToType,
|
||
isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case ICK_Lvalue_To_Rvalue:
|
||
case ICK_Array_To_Pointer:
|
||
case ICK_Function_To_Pointer:
|
||
case ICK_Qualification:
|
||
case ICK_Num_Conversion_Kinds:
|
||
assert(false && "Improper second standard conversion");
|
||
break;
|
||
}
|
||
|
||
switch (SCS.Third) {
|
||
case ICK_Identity:
|
||
// Nothing to do.
|
||
break;
|
||
|
||
case ICK_Qualification: {
|
||
// The qualification keeps the category of the inner expression, unless the
|
||
// target type isn't a reference.
|
||
ExprValueKind VK = ToType->isReferenceType() ?
|
||
CastCategory(From) : VK_RValue;
|
||
ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
|
||
CK_NoOp, VK);
|
||
|
||
if (SCS.DeprecatedStringLiteralToCharPtr)
|
||
Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
|
||
<< ToType.getNonReferenceType();
|
||
|
||
break;
|
||
}
|
||
|
||
default:
|
||
assert(false && "Improper third standard conversion");
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
|
||
SourceLocation KWLoc,
|
||
ParsedType Ty,
|
||
SourceLocation RParen) {
|
||
TypeSourceInfo *TSInfo;
|
||
QualType T = GetTypeFromParser(Ty, &TSInfo);
|
||
|
||
if (!TSInfo)
|
||
TSInfo = Context.getTrivialTypeSourceInfo(T);
|
||
return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
|
||
}
|
||
|
||
static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, QualType T,
|
||
SourceLocation KeyLoc) {
|
||
assert(!T->isDependentType() &&
|
||
"Cannot evaluate traits for dependent types.");
|
||
ASTContext &C = Self.Context;
|
||
switch(UTT) {
|
||
default: assert(false && "Unknown type trait or not implemented");
|
||
case UTT_IsPOD: return T->isPODType();
|
||
case UTT_IsLiteral: return T->isLiteralType();
|
||
case UTT_IsClass: // Fallthrough
|
||
case UTT_IsUnion:
|
||
if (const RecordType *Record = T->getAs<RecordType>()) {
|
||
bool Union = Record->getDecl()->isUnion();
|
||
return UTT == UTT_IsUnion ? Union : !Union;
|
||
}
|
||
return false;
|
||
case UTT_IsEnum: return T->isEnumeralType();
|
||
case UTT_IsPolymorphic:
|
||
if (const RecordType *Record = T->getAs<RecordType>()) {
|
||
// Type traits are only parsed in C++, so we've got CXXRecords.
|
||
return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic();
|
||
}
|
||
return false;
|
||
case UTT_IsAbstract:
|
||
if (const RecordType *RT = T->getAs<RecordType>())
|
||
return cast<CXXRecordDecl>(RT->getDecl())->isAbstract();
|
||
return false;
|
||
case UTT_IsEmpty:
|
||
if (const RecordType *Record = T->getAs<RecordType>()) {
|
||
return !Record->getDecl()->isUnion()
|
||
&& cast<CXXRecordDecl>(Record->getDecl())->isEmpty();
|
||
}
|
||
return false;
|
||
case UTT_HasTrivialConstructor:
|
||
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
||
// If __is_pod (type) is true then the trait is true, else if type is
|
||
// a cv class or union type (or array thereof) with a trivial default
|
||
// constructor ([class.ctor]) then the trait is true, else it is false.
|
||
if (T->isPODType())
|
||
return true;
|
||
if (const RecordType *RT =
|
||
C.getBaseElementType(T)->getAs<RecordType>())
|
||
return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor();
|
||
return false;
|
||
case UTT_HasTrivialCopy:
|
||
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
||
// If __is_pod (type) is true or type is a reference type then
|
||
// the trait is true, else if type is a cv class or union type
|
||
// with a trivial copy constructor ([class.copy]) then the trait
|
||
// is true, else it is false.
|
||
if (T->isPODType() || T->isReferenceType())
|
||
return true;
|
||
if (const RecordType *RT = T->getAs<RecordType>())
|
||
return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
|
||
return false;
|
||
case UTT_HasTrivialAssign:
|
||
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
||
// If type is const qualified or is a reference type then the
|
||
// trait is false. Otherwise if __is_pod (type) is true then the
|
||
// trait is true, else if type is a cv class or union type with
|
||
// a trivial copy assignment ([class.copy]) then the trait is
|
||
// true, else it is false.
|
||
// Note: the const and reference restrictions are interesting,
|
||
// given that const and reference members don't prevent a class
|
||
// from having a trivial copy assignment operator (but do cause
|
||
// errors if the copy assignment operator is actually used, q.v.
|
||
// [class.copy]p12).
|
||
|
||
if (C.getBaseElementType(T).isConstQualified())
|
||
return false;
|
||
if (T->isPODType())
|
||
return true;
|
||
if (const RecordType *RT = T->getAs<RecordType>())
|
||
return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
|
||
return false;
|
||
case UTT_HasTrivialDestructor:
|
||
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
||
// If __is_pod (type) is true or type is a reference type
|
||
// then the trait is true, else if type is a cv class or union
|
||
// type (or array thereof) with a trivial destructor
|
||
// ([class.dtor]) then the trait is true, else it is
|
||
// false.
|
||
if (T->isPODType() || T->isReferenceType())
|
||
return true;
|
||
if (const RecordType *RT =
|
||
C.getBaseElementType(T)->getAs<RecordType>())
|
||
return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
|
||
return false;
|
||
// TODO: Propagate nothrowness for implicitly declared special members.
|
||
case UTT_HasNothrowAssign:
|
||
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
||
// If type is const qualified or is a reference type then the
|
||
// trait is false. Otherwise if __has_trivial_assign (type)
|
||
// is true then the trait is true, else if type is a cv class
|
||
// or union type with copy assignment operators that are known
|
||
// not to throw an exception then the trait is true, else it is
|
||
// false.
|
||
if (C.getBaseElementType(T).isConstQualified())
|
||
return false;
|
||
if (T->isReferenceType())
|
||
return false;
|
||
if (T->isPODType())
|
||
return true;
|
||
if (const RecordType *RT = T->getAs<RecordType>()) {
|
||
CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
|
||
if (RD->hasTrivialCopyAssignment())
|
||
return true;
|
||
|
||
bool FoundAssign = false;
|
||
bool AllNoThrow = true;
|
||
DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
|
||
LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
|
||
Sema::LookupOrdinaryName);
|
||
if (Self.LookupQualifiedName(Res, RD)) {
|
||
for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
|
||
Op != OpEnd; ++Op) {
|
||
CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
|
||
if (Operator->isCopyAssignmentOperator()) {
|
||
FoundAssign = true;
|
||
const FunctionProtoType *CPT
|
||
= Operator->getType()->getAs<FunctionProtoType>();
|
||
if (!CPT->hasEmptyExceptionSpec()) {
|
||
AllNoThrow = false;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return FoundAssign && AllNoThrow;
|
||
}
|
||
return false;
|
||
case UTT_HasNothrowCopy:
|
||
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
||
// If __has_trivial_copy (type) is true then the trait is true, else
|
||
// if type is a cv class or union type with copy constructors that are
|
||
// known not to throw an exception then the trait is true, else it is
|
||
// false.
|
||
if (T->isPODType() || T->isReferenceType())
|
||
return true;
|
||
if (const RecordType *RT = T->getAs<RecordType>()) {
|
||
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
||
if (RD->hasTrivialCopyConstructor())
|
||
return true;
|
||
|
||
bool FoundConstructor = false;
|
||
bool AllNoThrow = true;
|
||
unsigned FoundTQs;
|
||
DeclContext::lookup_const_iterator Con, ConEnd;
|
||
for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
|
||
Con != ConEnd; ++Con) {
|
||
// A template constructor is never a copy constructor.
|
||
// FIXME: However, it may actually be selected at the actual overload
|
||
// resolution point.
|
||
if (isa<FunctionTemplateDecl>(*Con))
|
||
continue;
|
||
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
|
||
if (Constructor->isCopyConstructor(FoundTQs)) {
|
||
FoundConstructor = true;
|
||
const FunctionProtoType *CPT
|
||
= Constructor->getType()->getAs<FunctionProtoType>();
|
||
// TODO: check whether evaluating default arguments can throw.
|
||
// For now, we'll be conservative and assume that they can throw.
|
||
if (!CPT->hasEmptyExceptionSpec() || CPT->getNumArgs() > 1) {
|
||
AllNoThrow = false;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return FoundConstructor && AllNoThrow;
|
||
}
|
||
return false;
|
||
case UTT_HasNothrowConstructor:
|
||
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
||
// If __has_trivial_constructor (type) is true then the trait is
|
||
// true, else if type is a cv class or union type (or array
|
||
// thereof) with a default constructor that is known not to
|
||
// throw an exception then the trait is true, else it is false.
|
||
if (T->isPODType())
|
||
return true;
|
||
if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
|
||
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
||
if (RD->hasTrivialConstructor())
|
||
return true;
|
||
|
||
DeclContext::lookup_const_iterator Con, ConEnd;
|
||
for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
|
||
Con != ConEnd; ++Con) {
|
||
// FIXME: In C++0x, a constructor template can be a default constructor.
|
||
if (isa<FunctionTemplateDecl>(*Con))
|
||
continue;
|
||
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
|
||
if (Constructor->isDefaultConstructor()) {
|
||
const FunctionProtoType *CPT
|
||
= Constructor->getType()->getAs<FunctionProtoType>();
|
||
// TODO: check whether evaluating default arguments can throw.
|
||
// For now, we'll be conservative and assume that they can throw.
|
||
return CPT->hasEmptyExceptionSpec() && CPT->getNumArgs() == 0;
|
||
}
|
||
}
|
||
}
|
||
return false;
|
||
case UTT_HasVirtualDestructor:
|
||
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
||
// If type is a class type with a virtual destructor ([class.dtor])
|
||
// then the trait is true, else it is false.
|
||
if (const RecordType *Record = T->getAs<RecordType>()) {
|
||
CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
|
||
if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
|
||
return Destructor->isVirtual();
|
||
}
|
||
return false;
|
||
}
|
||
}
|
||
|
||
ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
|
||
SourceLocation KWLoc,
|
||
TypeSourceInfo *TSInfo,
|
||
SourceLocation RParen) {
|
||
QualType T = TSInfo->getType();
|
||
|
||
// According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
|
||
// all traits except __is_class, __is_enum and __is_union require a the type
|
||
// to be complete, an array of unknown bound, or void.
|
||
if (UTT != UTT_IsClass && UTT != UTT_IsEnum && UTT != UTT_IsUnion) {
|
||
QualType E = T;
|
||
if (T->isIncompleteArrayType())
|
||
E = Context.getAsArrayType(T)->getElementType();
|
||
if (!T->isVoidType() &&
|
||
RequireCompleteType(KWLoc, E,
|
||
diag::err_incomplete_type_used_in_type_trait_expr))
|
||
return ExprError();
|
||
}
|
||
|
||
bool Value = false;
|
||
if (!T->isDependentType())
|
||
Value = EvaluateUnaryTypeTrait(*this, UTT, T, KWLoc);
|
||
|
||
return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
|
||
RParen, Context.BoolTy));
|
||
}
|
||
|
||
ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
|
||
SourceLocation KWLoc,
|
||
ParsedType LhsTy,
|
||
ParsedType RhsTy,
|
||
SourceLocation RParen) {
|
||
TypeSourceInfo *LhsTSInfo;
|
||
QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
|
||
if (!LhsTSInfo)
|
||
LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
|
||
|
||
TypeSourceInfo *RhsTSInfo;
|
||
QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
|
||
if (!RhsTSInfo)
|
||
RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
|
||
|
||
return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
|
||
}
|
||
|
||
static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
|
||
QualType LhsT, QualType RhsT,
|
||
SourceLocation KeyLoc) {
|
||
assert((!LhsT->isDependentType() || RhsT->isDependentType()) &&
|
||
"Cannot evaluate traits for dependent types.");
|
||
|
||
switch(BTT) {
|
||
case BTT_IsBaseOf:
|
||
// C++0x [meta.rel]p2
|
||
// Base is a base class of Derived without regard to cv-qualifiers or
|
||
// Base and Derived are not unions and name the same class type without
|
||
// regard to cv-qualifiers.
|
||
if (Self.IsDerivedFrom(RhsT, LhsT) ||
|
||
(!LhsT->isUnionType() && !RhsT->isUnionType()
|
||
&& LhsT->getAsCXXRecordDecl() == RhsT->getAsCXXRecordDecl()))
|
||
return true;
|
||
|
||
return false;
|
||
case BTT_TypeCompatible:
|
||
return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
|
||
RhsT.getUnqualifiedType());
|
||
}
|
||
llvm_unreachable("Unknown type trait or not implemented");
|
||
}
|
||
|
||
ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
|
||
SourceLocation KWLoc,
|
||
TypeSourceInfo *LhsTSInfo,
|
||
TypeSourceInfo *RhsTSInfo,
|
||
SourceLocation RParen) {
|
||
QualType LhsT = LhsTSInfo->getType();
|
||
QualType RhsT = RhsTSInfo->getType();
|
||
|
||
if (BTT == BTT_IsBaseOf) {
|
||
// C++0x [meta.rel]p2
|
||
// If Base and Derived are class types and are different types
|
||
// (ignoring possible cv-qualifiers) then Derived shall be a complete
|
||
// type. []
|
||
CXXRecordDecl *LhsDecl = LhsT->getAsCXXRecordDecl();
|
||
CXXRecordDecl *RhsDecl = RhsT->getAsCXXRecordDecl();
|
||
if (!LhsT->isDependentType() && !RhsT->isDependentType() &&
|
||
LhsDecl && RhsDecl && LhsT != RhsT &&
|
||
RequireCompleteType(KWLoc, RhsT,
|
||
diag::err_incomplete_type_used_in_type_trait_expr))
|
||
return ExprError();
|
||
} else if (BTT == BTT_TypeCompatible) {
|
||
if (getLangOptions().CPlusPlus) {
|
||
Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
|
||
<< SourceRange(KWLoc, RParen);
|
||
return ExprError();
|
||
}
|
||
}
|
||
|
||
bool Value = false;
|
||
if (!LhsT->isDependentType() && !RhsT->isDependentType())
|
||
Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
|
||
|
||
// Select trait result type.
|
||
QualType ResultType;
|
||
switch (BTT) {
|
||
default: llvm_unreachable("Unknown type trait or not implemented");
|
||
case BTT_IsBaseOf: ResultType = Context.BoolTy; break;
|
||
case BTT_TypeCompatible: ResultType = Context.IntTy; break;
|
||
}
|
||
|
||
return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
|
||
RhsTSInfo, Value, RParen,
|
||
ResultType));
|
||
}
|
||
|
||
QualType Sema::CheckPointerToMemberOperands(Expr *&lex, Expr *&rex,
|
||
ExprValueKind &VK,
|
||
SourceLocation Loc,
|
||
bool isIndirect) {
|
||
const char *OpSpelling = isIndirect ? "->*" : ".*";
|
||
// C++ 5.5p2
|
||
// The binary operator .* [p3: ->*] binds its second operand, which shall
|
||
// be of type "pointer to member of T" (where T is a completely-defined
|
||
// class type) [...]
|
||
QualType RType = rex->getType();
|
||
const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
|
||
if (!MemPtr) {
|
||
Diag(Loc, diag::err_bad_memptr_rhs)
|
||
<< OpSpelling << RType << rex->getSourceRange();
|
||
return QualType();
|
||
}
|
||
|
||
QualType Class(MemPtr->getClass(), 0);
|
||
|
||
// Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
|
||
// member pointer points must be completely-defined. However, there is no
|
||
// reason for this semantic distinction, and the rule is not enforced by
|
||
// other compilers. Therefore, we do not check this property, as it is
|
||
// likely to be considered a defect.
|
||
|
||
// C++ 5.5p2
|
||
// [...] to its first operand, which shall be of class T or of a class of
|
||
// which T is an unambiguous and accessible base class. [p3: a pointer to
|
||
// such a class]
|
||
QualType LType = lex->getType();
|
||
if (isIndirect) {
|
||
if (const PointerType *Ptr = LType->getAs<PointerType>())
|
||
LType = Ptr->getPointeeType();
|
||
else {
|
||
Diag(Loc, diag::err_bad_memptr_lhs)
|
||
<< OpSpelling << 1 << LType
|
||
<< FixItHint::CreateReplacement(SourceRange(Loc), ".*");
|
||
return QualType();
|
||
}
|
||
}
|
||
|
||
if (!Context.hasSameUnqualifiedType(Class, LType)) {
|
||
// If we want to check the hierarchy, we need a complete type.
|
||
if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
|
||
<< OpSpelling << (int)isIndirect)) {
|
||
return QualType();
|
||
}
|
||
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
|
||
/*DetectVirtual=*/false);
|
||
// FIXME: Would it be useful to print full ambiguity paths, or is that
|
||
// overkill?
|
||
if (!IsDerivedFrom(LType, Class, Paths) ||
|
||
Paths.isAmbiguous(Context.getCanonicalType(Class))) {
|
||
Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
|
||
<< (int)isIndirect << lex->getType();
|
||
return QualType();
|
||
}
|
||
// Cast LHS to type of use.
|
||
QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
|
||
ExprValueKind VK =
|
||
isIndirect ? VK_RValue : CastCategory(lex);
|
||
|
||
CXXCastPath BasePath;
|
||
BuildBasePathArray(Paths, BasePath);
|
||
ImpCastExprToType(lex, UseType, CK_DerivedToBase, VK, &BasePath);
|
||
}
|
||
|
||
if (isa<CXXScalarValueInitExpr>(rex->IgnoreParens())) {
|
||
// Diagnose use of pointer-to-member type which when used as
|
||
// the functional cast in a pointer-to-member expression.
|
||
Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
|
||
return QualType();
|
||
}
|
||
|
||
// C++ 5.5p2
|
||
// The result is an object or a function of the type specified by the
|
||
// second operand.
|
||
// The cv qualifiers are the union of those in the pointer and the left side,
|
||
// in accordance with 5.5p5 and 5.2.5.
|
||
// FIXME: This returns a dereferenced member function pointer as a normal
|
||
// function type. However, the only operation valid on such functions is
|
||
// calling them. There's also a GCC extension to get a function pointer to the
|
||
// thing, which is another complication, because this type - unlike the type
|
||
// that is the result of this expression - takes the class as the first
|
||
// argument.
|
||
// We probably need a "MemberFunctionClosureType" or something like that.
|
||
QualType Result = MemPtr->getPointeeType();
|
||
Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
|
||
|
||
// C++ [expr.mptr.oper]p6:
|
||
// The result of a .* expression whose second operand is a pointer
|
||
// to a data member is of the same value category as its
|
||
// first operand. The result of a .* expression whose second
|
||
// operand is a pointer to a member function is a prvalue. The
|
||
// result of an ->* expression is an lvalue if its second operand
|
||
// is a pointer to data member and a prvalue otherwise.
|
||
if (Result->isFunctionType())
|
||
VK = VK_RValue;
|
||
else if (isIndirect)
|
||
VK = VK_LValue;
|
||
else
|
||
VK = lex->getValueKind();
|
||
|
||
return Result;
|
||
}
|
||
|
||
/// \brief Try to convert a type to another according to C++0x 5.16p3.
|
||
///
|
||
/// This is part of the parameter validation for the ? operator. If either
|
||
/// value operand is a class type, the two operands are attempted to be
|
||
/// converted to each other. This function does the conversion in one direction.
|
||
/// It returns true if the program is ill-formed and has already been diagnosed
|
||
/// as such.
|
||
static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
|
||
SourceLocation QuestionLoc,
|
||
bool &HaveConversion,
|
||
QualType &ToType) {
|
||
HaveConversion = false;
|
||
ToType = To->getType();
|
||
|
||
InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
|
||
SourceLocation());
|
||
// C++0x 5.16p3
|
||
// The process for determining whether an operand expression E1 of type T1
|
||
// can be converted to match an operand expression E2 of type T2 is defined
|
||
// as follows:
|
||
// -- If E2 is an lvalue:
|
||
bool ToIsLvalue = To->isLValue();
|
||
if (ToIsLvalue) {
|
||
// E1 can be converted to match E2 if E1 can be implicitly converted to
|
||
// type "lvalue reference to T2", subject to the constraint that in the
|
||
// conversion the reference must bind directly to E1.
|
||
QualType T = Self.Context.getLValueReferenceType(ToType);
|
||
InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
|
||
|
||
InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
|
||
if (InitSeq.isDirectReferenceBinding()) {
|
||
ToType = T;
|
||
HaveConversion = true;
|
||
return false;
|
||
}
|
||
|
||
if (InitSeq.isAmbiguous())
|
||
return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
|
||
}
|
||
|
||
// -- If E2 is an rvalue, or if the conversion above cannot be done:
|
||
// -- if E1 and E2 have class type, and the underlying class types are
|
||
// the same or one is a base class of the other:
|
||
QualType FTy = From->getType();
|
||
QualType TTy = To->getType();
|
||
const RecordType *FRec = FTy->getAs<RecordType>();
|
||
const RecordType *TRec = TTy->getAs<RecordType>();
|
||
bool FDerivedFromT = FRec && TRec && FRec != TRec &&
|
||
Self.IsDerivedFrom(FTy, TTy);
|
||
if (FRec && TRec &&
|
||
(FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
|
||
// E1 can be converted to match E2 if the class of T2 is the
|
||
// same type as, or a base class of, the class of T1, and
|
||
// [cv2 > cv1].
|
||
if (FRec == TRec || FDerivedFromT) {
|
||
if (TTy.isAtLeastAsQualifiedAs(FTy)) {
|
||
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
|
||
InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
|
||
if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
|
||
HaveConversion = true;
|
||
return false;
|
||
}
|
||
|
||
if (InitSeq.isAmbiguous())
|
||
return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
// -- Otherwise: E1 can be converted to match E2 if E1 can be
|
||
// implicitly converted to the type that expression E2 would have
|
||
// if E2 were converted to an rvalue (or the type it has, if E2 is
|
||
// an rvalue).
|
||
//
|
||
// This actually refers very narrowly to the lvalue-to-rvalue conversion, not
|
||
// to the array-to-pointer or function-to-pointer conversions.
|
||
if (!TTy->getAs<TagType>())
|
||
TTy = TTy.getUnqualifiedType();
|
||
|
||
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
|
||
InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
|
||
HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
|
||
ToType = TTy;
|
||
if (InitSeq.isAmbiguous())
|
||
return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
|
||
|
||
return false;
|
||
}
|
||
|
||
/// \brief Try to find a common type for two according to C++0x 5.16p5.
|
||
///
|
||
/// This is part of the parameter validation for the ? operator. If either
|
||
/// value operand is a class type, overload resolution is used to find a
|
||
/// conversion to a common type.
|
||
static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
|
||
SourceLocation Loc) {
|
||
Expr *Args[2] = { LHS, RHS };
|
||
OverloadCandidateSet CandidateSet(Loc);
|
||
Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet);
|
||
|
||
OverloadCandidateSet::iterator Best;
|
||
switch (CandidateSet.BestViableFunction(Self, Loc, Best)) {
|
||
case OR_Success:
|
||
// We found a match. Perform the conversions on the arguments and move on.
|
||
if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
|
||
Best->Conversions[0], Sema::AA_Converting) ||
|
||
Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
|
||
Best->Conversions[1], Sema::AA_Converting))
|
||
break;
|
||
return false;
|
||
|
||
case OR_No_Viable_Function:
|
||
Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
|
||
<< LHS->getType() << RHS->getType()
|
||
<< LHS->getSourceRange() << RHS->getSourceRange();
|
||
return true;
|
||
|
||
case OR_Ambiguous:
|
||
Self.Diag(Loc, diag::err_conditional_ambiguous_ovl)
|
||
<< LHS->getType() << RHS->getType()
|
||
<< LHS->getSourceRange() << RHS->getSourceRange();
|
||
// FIXME: Print the possible common types by printing the return types of
|
||
// the viable candidates.
|
||
break;
|
||
|
||
case OR_Deleted:
|
||
assert(false && "Conditional operator has only built-in overloads");
|
||
break;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/// \brief Perform an "extended" implicit conversion as returned by
|
||
/// TryClassUnification.
|
||
static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) {
|
||
InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
|
||
InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(),
|
||
SourceLocation());
|
||
InitializationSequence InitSeq(Self, Entity, Kind, &E, 1);
|
||
ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&E, 1));
|
||
if (Result.isInvalid())
|
||
return true;
|
||
|
||
E = Result.takeAs<Expr>();
|
||
return false;
|
||
}
|
||
|
||
/// \brief Check the operands of ?: under C++ semantics.
|
||
///
|
||
/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
|
||
/// extension. In this case, LHS == Cond. (But they're not aliases.)
|
||
QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
|
||
Expr *&SAVE, ExprValueKind &VK,
|
||
ExprObjectKind &OK,
|
||
SourceLocation QuestionLoc) {
|
||
// FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
|
||
// interface pointers.
|
||
|
||
// C++0x 5.16p1
|
||
// The first expression is contextually converted to bool.
|
||
if (!Cond->isTypeDependent()) {
|
||
if (SAVE && Cond->getType()->isArrayType()) {
|
||
QualType CondTy = Cond->getType();
|
||
CondTy = Context.getArrayDecayedType(CondTy);
|
||
ImpCastExprToType(Cond, CondTy, CK_ArrayToPointerDecay);
|
||
SAVE = LHS = Cond;
|
||
}
|
||
if (CheckCXXBooleanCondition(Cond))
|
||
return QualType();
|
||
}
|
||
|
||
// Assume r-value.
|
||
VK = VK_RValue;
|
||
OK = OK_Ordinary;
|
||
|
||
// Either of the arguments dependent?
|
||
if (LHS->isTypeDependent() || RHS->isTypeDependent())
|
||
return Context.DependentTy;
|
||
|
||
// C++0x 5.16p2
|
||
// If either the second or the third operand has type (cv) void, ...
|
||
QualType LTy = LHS->getType();
|
||
QualType RTy = RHS->getType();
|
||
bool LVoid = LTy->isVoidType();
|
||
bool RVoid = RTy->isVoidType();
|
||
if (LVoid || RVoid) {
|
||
// ... then the [l2r] conversions are performed on the second and third
|
||
// operands ...
|
||
DefaultFunctionArrayLvalueConversion(LHS);
|
||
DefaultFunctionArrayLvalueConversion(RHS);
|
||
LTy = LHS->getType();
|
||
RTy = RHS->getType();
|
||
|
||
// ... and one of the following shall hold:
|
||
// -- The second or the third operand (but not both) is a throw-
|
||
// expression; the result is of the type of the other and is an rvalue.
|
||
bool LThrow = isa<CXXThrowExpr>(LHS);
|
||
bool RThrow = isa<CXXThrowExpr>(RHS);
|
||
if (LThrow && !RThrow)
|
||
return RTy;
|
||
if (RThrow && !LThrow)
|
||
return LTy;
|
||
|
||
// -- Both the second and third operands have type void; the result is of
|
||
// type void and is an rvalue.
|
||
if (LVoid && RVoid)
|
||
return Context.VoidTy;
|
||
|
||
// Neither holds, error.
|
||
Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
|
||
<< (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
|
||
<< LHS->getSourceRange() << RHS->getSourceRange();
|
||
return QualType();
|
||
}
|
||
|
||
// Neither is void.
|
||
|
||
// C++0x 5.16p3
|
||
// Otherwise, if the second and third operand have different types, and
|
||
// either has (cv) class type, and attempt is made to convert each of those
|
||
// operands to the other.
|
||
if (!Context.hasSameType(LTy, RTy) &&
|
||
(LTy->isRecordType() || RTy->isRecordType())) {
|
||
ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
|
||
// These return true if a single direction is already ambiguous.
|
||
QualType L2RType, R2LType;
|
||
bool HaveL2R, HaveR2L;
|
||
if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType))
|
||
return QualType();
|
||
if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType))
|
||
return QualType();
|
||
|
||
// If both can be converted, [...] the program is ill-formed.
|
||
if (HaveL2R && HaveR2L) {
|
||
Diag(QuestionLoc, diag::err_conditional_ambiguous)
|
||
<< LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
|
||
return QualType();
|
||
}
|
||
|
||
// If exactly one conversion is possible, that conversion is applied to
|
||
// the chosen operand and the converted operands are used in place of the
|
||
// original operands for the remainder of this section.
|
||
if (HaveL2R) {
|
||
if (ConvertForConditional(*this, LHS, L2RType))
|
||
return QualType();
|
||
LTy = LHS->getType();
|
||
} else if (HaveR2L) {
|
||
if (ConvertForConditional(*this, RHS, R2LType))
|
||
return QualType();
|
||
RTy = RHS->getType();
|
||
}
|
||
}
|
||
|
||
// C++0x 5.16p4
|
||
// If the second and third operands are glvalues of the same value
|
||
// category and have the same type, the result is of that type and
|
||
// value category and it is a bit-field if the second or the third
|
||
// operand is a bit-field, or if both are bit-fields.
|
||
// We only extend this to bitfields, not to the crazy other kinds of
|
||
// l-values.
|
||
bool Same = Context.hasSameType(LTy, RTy);
|
||
if (Same &&
|
||
LHS->getValueKind() != VK_RValue &&
|
||
LHS->getValueKind() == RHS->getValueKind() &&
|
||
(LHS->getObjectKind() == OK_Ordinary ||
|
||
LHS->getObjectKind() == OK_BitField) &&
|
||
(RHS->getObjectKind() == OK_Ordinary ||
|
||
RHS->getObjectKind() == OK_BitField)) {
|
||
VK = LHS->getValueKind();
|
||
if (LHS->getObjectKind() == OK_BitField ||
|
||
RHS->getObjectKind() == OK_BitField)
|
||
OK = OK_BitField;
|
||
return LTy;
|
||
}
|
||
|
||
// C++0x 5.16p5
|
||
// Otherwise, the result is an rvalue. If the second and third operands
|
||
// do not have the same type, and either has (cv) class type, ...
|
||
if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
|
||
// ... overload resolution is used to determine the conversions (if any)
|
||
// to be applied to the operands. If the overload resolution fails, the
|
||
// program is ill-formed.
|
||
if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
|
||
return QualType();
|
||
}
|
||
|
||
// C++0x 5.16p6
|
||
// LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
|
||
// conversions are performed on the second and third operands.
|
||
DefaultFunctionArrayLvalueConversion(LHS);
|
||
DefaultFunctionArrayLvalueConversion(RHS);
|
||
LTy = LHS->getType();
|
||
RTy = RHS->getType();
|
||
|
||
// After those conversions, one of the following shall hold:
|
||
// -- The second and third operands have the same type; the result
|
||
// is of that type. If the operands have class type, the result
|
||
// is a prvalue temporary of the result type, which is
|
||
// copy-initialized from either the second operand or the third
|
||
// operand depending on the value of the first operand.
|
||
if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
|
||
if (LTy->isRecordType()) {
|
||
// The operands have class type. Make a temporary copy.
|
||
InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
|
||
ExprResult LHSCopy = PerformCopyInitialization(Entity,
|
||
SourceLocation(),
|
||
Owned(LHS));
|
||
if (LHSCopy.isInvalid())
|
||
return QualType();
|
||
|
||
ExprResult RHSCopy = PerformCopyInitialization(Entity,
|
||
SourceLocation(),
|
||
Owned(RHS));
|
||
if (RHSCopy.isInvalid())
|
||
return QualType();
|
||
|
||
LHS = LHSCopy.takeAs<Expr>();
|
||
RHS = RHSCopy.takeAs<Expr>();
|
||
}
|
||
|
||
return LTy;
|
||
}
|
||
|
||
// Extension: conditional operator involving vector types.
|
||
if (LTy->isVectorType() || RTy->isVectorType())
|
||
return CheckVectorOperands(QuestionLoc, LHS, RHS);
|
||
|
||
// -- The second and third operands have arithmetic or enumeration type;
|
||
// the usual arithmetic conversions are performed to bring them to a
|
||
// common type, and the result is of that type.
|
||
if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
|
||
UsualArithmeticConversions(LHS, RHS);
|
||
return LHS->getType();
|
||
}
|
||
|
||
// -- The second and third operands have pointer type, or one has pointer
|
||
// type and the other is a null pointer constant; pointer conversions
|
||
// and qualification conversions are performed to bring them to their
|
||
// composite pointer type. The result is of the composite pointer type.
|
||
// -- The second and third operands have pointer to member type, or one has
|
||
// pointer to member type and the other is a null pointer constant;
|
||
// pointer to member conversions and qualification conversions are
|
||
// performed to bring them to a common type, whose cv-qualification
|
||
// shall match the cv-qualification of either the second or the third
|
||
// operand. The result is of the common type.
|
||
bool NonStandardCompositeType = false;
|
||
QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
|
||
isSFINAEContext()? 0 : &NonStandardCompositeType);
|
||
if (!Composite.isNull()) {
|
||
if (NonStandardCompositeType)
|
||
Diag(QuestionLoc,
|
||
diag::ext_typecheck_cond_incompatible_operands_nonstandard)
|
||
<< LTy << RTy << Composite
|
||
<< LHS->getSourceRange() << RHS->getSourceRange();
|
||
|
||
return Composite;
|
||
}
|
||
|
||
// Similarly, attempt to find composite type of two objective-c pointers.
|
||
Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
|
||
if (!Composite.isNull())
|
||
return Composite;
|
||
|
||
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
|
||
<< LHS->getType() << RHS->getType()
|
||
<< LHS->getSourceRange() << RHS->getSourceRange();
|
||
return QualType();
|
||
}
|
||
|
||
/// \brief Find a merged pointer type and convert the two expressions to it.
|
||
///
|
||
/// This finds the composite pointer type (or member pointer type) for @p E1
|
||
/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
|
||
/// type and returns it.
|
||
/// It does not emit diagnostics.
|
||
///
|
||
/// \param Loc The location of the operator requiring these two expressions to
|
||
/// be converted to the composite pointer type.
|
||
///
|
||
/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
|
||
/// a non-standard (but still sane) composite type to which both expressions
|
||
/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
|
||
/// will be set true.
|
||
QualType Sema::FindCompositePointerType(SourceLocation Loc,
|
||
Expr *&E1, Expr *&E2,
|
||
bool *NonStandardCompositeType) {
|
||
if (NonStandardCompositeType)
|
||
*NonStandardCompositeType = false;
|
||
|
||
assert(getLangOptions().CPlusPlus && "This function assumes C++");
|
||
QualType T1 = E1->getType(), T2 = E2->getType();
|
||
|
||
if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
|
||
!T2->isAnyPointerType() && !T2->isMemberPointerType())
|
||
return QualType();
|
||
|
||
// C++0x 5.9p2
|
||
// Pointer conversions and qualification conversions are performed on
|
||
// pointer operands to bring them to their composite pointer type. If
|
||
// one operand is a null pointer constant, the composite pointer type is
|
||
// the type of the other operand.
|
||
if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
|
||
if (T2->isMemberPointerType())
|
||
ImpCastExprToType(E1, T2, CK_NullToMemberPointer);
|
||
else
|
||
ImpCastExprToType(E1, T2, CK_NullToPointer);
|
||
return T2;
|
||
}
|
||
if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
|
||
if (T1->isMemberPointerType())
|
||
ImpCastExprToType(E2, T1, CK_NullToMemberPointer);
|
||
else
|
||
ImpCastExprToType(E2, T1, CK_NullToPointer);
|
||
return T1;
|
||
}
|
||
|
||
// Now both have to be pointers or member pointers.
|
||
if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
|
||
(!T2->isPointerType() && !T2->isMemberPointerType()))
|
||
return QualType();
|
||
|
||
// Otherwise, of one of the operands has type "pointer to cv1 void," then
|
||
// the other has type "pointer to cv2 T" and the composite pointer type is
|
||
// "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
|
||
// Otherwise, the composite pointer type is a pointer type similar to the
|
||
// type of one of the operands, with a cv-qualification signature that is
|
||
// the union of the cv-qualification signatures of the operand types.
|
||
// In practice, the first part here is redundant; it's subsumed by the second.
|
||
// What we do here is, we build the two possible composite types, and try the
|
||
// conversions in both directions. If only one works, or if the two composite
|
||
// types are the same, we have succeeded.
|
||
// FIXME: extended qualifiers?
|
||
typedef llvm::SmallVector<unsigned, 4> QualifierVector;
|
||
QualifierVector QualifierUnion;
|
||
typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
|
||
ContainingClassVector;
|
||
ContainingClassVector MemberOfClass;
|
||
QualType Composite1 = Context.getCanonicalType(T1),
|
||
Composite2 = Context.getCanonicalType(T2);
|
||
unsigned NeedConstBefore = 0;
|
||
do {
|
||
const PointerType *Ptr1, *Ptr2;
|
||
if ((Ptr1 = Composite1->getAs<PointerType>()) &&
|
||
(Ptr2 = Composite2->getAs<PointerType>())) {
|
||
Composite1 = Ptr1->getPointeeType();
|
||
Composite2 = Ptr2->getPointeeType();
|
||
|
||
// If we're allowed to create a non-standard composite type, keep track
|
||
// of where we need to fill in additional 'const' qualifiers.
|
||
if (NonStandardCompositeType &&
|
||
Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
|
||
NeedConstBefore = QualifierUnion.size();
|
||
|
||
QualifierUnion.push_back(
|
||
Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
|
||
MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
|
||
continue;
|
||
}
|
||
|
||
const MemberPointerType *MemPtr1, *MemPtr2;
|
||
if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
|
||
(MemPtr2 = Composite2->getAs<MemberPointerType>())) {
|
||
Composite1 = MemPtr1->getPointeeType();
|
||
Composite2 = MemPtr2->getPointeeType();
|
||
|
||
// If we're allowed to create a non-standard composite type, keep track
|
||
// of where we need to fill in additional 'const' qualifiers.
|
||
if (NonStandardCompositeType &&
|
||
Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
|
||
NeedConstBefore = QualifierUnion.size();
|
||
|
||
QualifierUnion.push_back(
|
||
Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
|
||
MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
|
||
MemPtr2->getClass()));
|
||
continue;
|
||
}
|
||
|
||
// FIXME: block pointer types?
|
||
|
||
// Cannot unwrap any more types.
|
||
break;
|
||
} while (true);
|
||
|
||
if (NeedConstBefore && NonStandardCompositeType) {
|
||
// Extension: Add 'const' to qualifiers that come before the first qualifier
|
||
// mismatch, so that our (non-standard!) composite type meets the
|
||
// requirements of C++ [conv.qual]p4 bullet 3.
|
||
for (unsigned I = 0; I != NeedConstBefore; ++I) {
|
||
if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
|
||
QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
|
||
*NonStandardCompositeType = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Rewrap the composites as pointers or member pointers with the union CVRs.
|
||
ContainingClassVector::reverse_iterator MOC
|
||
= MemberOfClass.rbegin();
|
||
for (QualifierVector::reverse_iterator
|
||
I = QualifierUnion.rbegin(),
|
||
E = QualifierUnion.rend();
|
||
I != E; (void)++I, ++MOC) {
|
||
Qualifiers Quals = Qualifiers::fromCVRMask(*I);
|
||
if (MOC->first && MOC->second) {
|
||
// Rebuild member pointer type
|
||
Composite1 = Context.getMemberPointerType(
|
||
Context.getQualifiedType(Composite1, Quals),
|
||
MOC->first);
|
||
Composite2 = Context.getMemberPointerType(
|
||
Context.getQualifiedType(Composite2, Quals),
|
||
MOC->second);
|
||
} else {
|
||
// Rebuild pointer type
|
||
Composite1
|
||
= Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
|
||
Composite2
|
||
= Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
|
||
}
|
||
}
|
||
|
||
// Try to convert to the first composite pointer type.
|
||
InitializedEntity Entity1
|
||
= InitializedEntity::InitializeTemporary(Composite1);
|
||
InitializationKind Kind
|
||
= InitializationKind::CreateCopy(Loc, SourceLocation());
|
||
InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
|
||
InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
|
||
|
||
if (E1ToC1 && E2ToC1) {
|
||
// Conversion to Composite1 is viable.
|
||
if (!Context.hasSameType(Composite1, Composite2)) {
|
||
// Composite2 is a different type from Composite1. Check whether
|
||
// Composite2 is also viable.
|
||
InitializedEntity Entity2
|
||
= InitializedEntity::InitializeTemporary(Composite2);
|
||
InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
|
||
InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
|
||
if (E1ToC2 && E2ToC2) {
|
||
// Both Composite1 and Composite2 are viable and are different;
|
||
// this is an ambiguity.
|
||
return QualType();
|
||
}
|
||
}
|
||
|
||
// Convert E1 to Composite1
|
||
ExprResult E1Result
|
||
= E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
|
||
if (E1Result.isInvalid())
|
||
return QualType();
|
||
E1 = E1Result.takeAs<Expr>();
|
||
|
||
// Convert E2 to Composite1
|
||
ExprResult E2Result
|
||
= E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
|
||
if (E2Result.isInvalid())
|
||
return QualType();
|
||
E2 = E2Result.takeAs<Expr>();
|
||
|
||
return Composite1;
|
||
}
|
||
|
||
// Check whether Composite2 is viable.
|
||
InitializedEntity Entity2
|
||
= InitializedEntity::InitializeTemporary(Composite2);
|
||
InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
|
||
InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
|
||
if (!E1ToC2 || !E2ToC2)
|
||
return QualType();
|
||
|
||
// Convert E1 to Composite2
|
||
ExprResult E1Result
|
||
= E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
|
||
if (E1Result.isInvalid())
|
||
return QualType();
|
||
E1 = E1Result.takeAs<Expr>();
|
||
|
||
// Convert E2 to Composite2
|
||
ExprResult E2Result
|
||
= E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
|
||
if (E2Result.isInvalid())
|
||
return QualType();
|
||
E2 = E2Result.takeAs<Expr>();
|
||
|
||
return Composite2;
|
||
}
|
||
|
||
ExprResult Sema::MaybeBindToTemporary(Expr *E) {
|
||
if (!E)
|
||
return ExprError();
|
||
|
||
if (!Context.getLangOptions().CPlusPlus)
|
||
return Owned(E);
|
||
|
||
assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
|
||
|
||
const RecordType *RT = E->getType()->getAs<RecordType>();
|
||
if (!RT)
|
||
return Owned(E);
|
||
|
||
// If this is the result of a call or an Objective-C message send expression,
|
||
// our source might actually be a reference, in which case we shouldn't bind.
|
||
if (CallExpr *CE = dyn_cast<CallExpr>(E)) {
|
||
if (CE->getCallReturnType()->isReferenceType())
|
||
return Owned(E);
|
||
} else if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
|
||
if (const ObjCMethodDecl *MD = ME->getMethodDecl()) {
|
||
if (MD->getResultType()->isReferenceType())
|
||
return Owned(E);
|
||
}
|
||
}
|
||
|
||
// That should be enough to guarantee that this type is complete.
|
||
// If it has a trivial destructor, we can avoid the extra copy.
|
||
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
||
if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
|
||
return Owned(E);
|
||
|
||
CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
|
||
ExprTemporaries.push_back(Temp);
|
||
if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
|
||
MarkDeclarationReferenced(E->getExprLoc(), Destructor);
|
||
CheckDestructorAccess(E->getExprLoc(), Destructor,
|
||
PDiag(diag::err_access_dtor_temp)
|
||
<< E->getType());
|
||
}
|
||
// FIXME: Add the temporary to the temporaries vector.
|
||
return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
|
||
}
|
||
|
||
Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
|
||
assert(SubExpr && "sub expression can't be null!");
|
||
|
||
unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
|
||
assert(ExprTemporaries.size() >= FirstTemporary);
|
||
if (ExprTemporaries.size() == FirstTemporary)
|
||
return SubExpr;
|
||
|
||
Expr *E = ExprWithCleanups::Create(Context, SubExpr,
|
||
&ExprTemporaries[FirstTemporary],
|
||
ExprTemporaries.size() - FirstTemporary);
|
||
ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
|
||
ExprTemporaries.end());
|
||
|
||
return E;
|
||
}
|
||
|
||
ExprResult
|
||
Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
|
||
if (SubExpr.isInvalid())
|
||
return ExprError();
|
||
|
||
return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
|
||
}
|
||
|
||
Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
|
||
assert(SubStmt && "sub statement can't be null!");
|
||
|
||
unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
|
||
assert(ExprTemporaries.size() >= FirstTemporary);
|
||
if (ExprTemporaries.size() == FirstTemporary)
|
||
return SubStmt;
|
||
|
||
// FIXME: In order to attach the temporaries, wrap the statement into
|
||
// a StmtExpr; currently this is only used for asm statements.
|
||
// This is hacky, either create a new CXXStmtWithTemporaries statement or
|
||
// a new AsmStmtWithTemporaries.
|
||
CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
|
||
SourceLocation(),
|
||
SourceLocation());
|
||
Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
|
||
SourceLocation());
|
||
return MaybeCreateExprWithCleanups(E);
|
||
}
|
||
|
||
ExprResult
|
||
Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
|
||
tok::TokenKind OpKind, ParsedType &ObjectType,
|
||
bool &MayBePseudoDestructor) {
|
||
// Since this might be a postfix expression, get rid of ParenListExprs.
|
||
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
|
||
if (Result.isInvalid()) return ExprError();
|
||
Base = Result.get();
|
||
|
||
QualType BaseType = Base->getType();
|
||
MayBePseudoDestructor = false;
|
||
if (BaseType->isDependentType()) {
|
||
// If we have a pointer to a dependent type and are using the -> operator,
|
||
// the object type is the type that the pointer points to. We might still
|
||
// have enough information about that type to do something useful.
|
||
if (OpKind == tok::arrow)
|
||
if (const PointerType *Ptr = BaseType->getAs<PointerType>())
|
||
BaseType = Ptr->getPointeeType();
|
||
|
||
ObjectType = ParsedType::make(BaseType);
|
||
MayBePseudoDestructor = true;
|
||
return Owned(Base);
|
||
}
|
||
|
||
// C++ [over.match.oper]p8:
|
||
// [...] When operator->returns, the operator-> is applied to the value
|
||
// returned, with the original second operand.
|
||
if (OpKind == tok::arrow) {
|
||
// The set of types we've considered so far.
|
||
llvm::SmallPtrSet<CanQualType,8> CTypes;
|
||
llvm::SmallVector<SourceLocation, 8> Locations;
|
||
CTypes.insert(Context.getCanonicalType(BaseType));
|
||
|
||
while (BaseType->isRecordType()) {
|
||
Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
|
||
if (Result.isInvalid())
|
||
return ExprError();
|
||
Base = Result.get();
|
||
if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
|
||
Locations.push_back(OpCall->getDirectCallee()->getLocation());
|
||
BaseType = Base->getType();
|
||
CanQualType CBaseType = Context.getCanonicalType(BaseType);
|
||
if (!CTypes.insert(CBaseType)) {
|
||
Diag(OpLoc, diag::err_operator_arrow_circular);
|
||
for (unsigned i = 0; i < Locations.size(); i++)
|
||
Diag(Locations[i], diag::note_declared_at);
|
||
return ExprError();
|
||
}
|
||
}
|
||
|
||
if (BaseType->isPointerType())
|
||
BaseType = BaseType->getPointeeType();
|
||
}
|
||
|
||
// We could end up with various non-record types here, such as extended
|
||
// vector types or Objective-C interfaces. Just return early and let
|
||
// ActOnMemberReferenceExpr do the work.
|
||
if (!BaseType->isRecordType()) {
|
||
// C++ [basic.lookup.classref]p2:
|
||
// [...] If the type of the object expression is of pointer to scalar
|
||
// type, the unqualified-id is looked up in the context of the complete
|
||
// postfix-expression.
|
||
//
|
||
// This also indicates that we should be parsing a
|
||
// pseudo-destructor-name.
|
||
ObjectType = ParsedType();
|
||
MayBePseudoDestructor = true;
|
||
return Owned(Base);
|
||
}
|
||
|
||
// The object type must be complete (or dependent).
|
||
if (!BaseType->isDependentType() &&
|
||
RequireCompleteType(OpLoc, BaseType,
|
||
PDiag(diag::err_incomplete_member_access)))
|
||
return ExprError();
|
||
|
||
// C++ [basic.lookup.classref]p2:
|
||
// If the id-expression in a class member access (5.2.5) is an
|
||
// unqualified-id, and the type of the object expression is of a class
|
||
// type C (or of pointer to a class type C), the unqualified-id is looked
|
||
// up in the scope of class C. [...]
|
||
ObjectType = ParsedType::make(BaseType);
|
||
return move(Base);
|
||
}
|
||
|
||
ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
|
||
Expr *MemExpr) {
|
||
SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
|
||
Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
|
||
<< isa<CXXPseudoDestructorExpr>(MemExpr)
|
||
<< FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
|
||
|
||
return ActOnCallExpr(/*Scope*/ 0,
|
||
MemExpr,
|
||
/*LPLoc*/ ExpectedLParenLoc,
|
||
MultiExprArg(),
|
||
/*RPLoc*/ ExpectedLParenLoc);
|
||
}
|
||
|
||
ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
|
||
SourceLocation OpLoc,
|
||
tok::TokenKind OpKind,
|
||
const CXXScopeSpec &SS,
|
||
TypeSourceInfo *ScopeTypeInfo,
|
||
SourceLocation CCLoc,
|
||
SourceLocation TildeLoc,
|
||
PseudoDestructorTypeStorage Destructed,
|
||
bool HasTrailingLParen) {
|
||
TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
|
||
|
||
// C++ [expr.pseudo]p2:
|
||
// The left-hand side of the dot operator shall be of scalar type. The
|
||
// left-hand side of the arrow operator shall be of pointer to scalar type.
|
||
// This scalar type is the object type.
|
||
QualType ObjectType = Base->getType();
|
||
if (OpKind == tok::arrow) {
|
||
if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
|
||
ObjectType = Ptr->getPointeeType();
|
||
} else if (!Base->isTypeDependent()) {
|
||
// The user wrote "p->" when she probably meant "p."; fix it.
|
||
Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
|
||
<< ObjectType << true
|
||
<< FixItHint::CreateReplacement(OpLoc, ".");
|
||
if (isSFINAEContext())
|
||
return ExprError();
|
||
|
||
OpKind = tok::period;
|
||
}
|
||
}
|
||
|
||
if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
|
||
Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
|
||
<< ObjectType << Base->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
|
||
// C++ [expr.pseudo]p2:
|
||
// [...] The cv-unqualified versions of the object type and of the type
|
||
// designated by the pseudo-destructor-name shall be the same type.
|
||
if (DestructedTypeInfo) {
|
||
QualType DestructedType = DestructedTypeInfo->getType();
|
||
SourceLocation DestructedTypeStart
|
||
= DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
|
||
if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
|
||
!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
|
||
Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
|
||
<< ObjectType << DestructedType << Base->getSourceRange()
|
||
<< DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
|
||
|
||
// Recover by setting the destructed type to the object type.
|
||
DestructedType = ObjectType;
|
||
DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
|
||
DestructedTypeStart);
|
||
Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
|
||
}
|
||
}
|
||
|
||
// C++ [expr.pseudo]p2:
|
||
// [...] Furthermore, the two type-names in a pseudo-destructor-name of the
|
||
// form
|
||
//
|
||
// ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
|
||
//
|
||
// shall designate the same scalar type.
|
||
if (ScopeTypeInfo) {
|
||
QualType ScopeType = ScopeTypeInfo->getType();
|
||
if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
|
||
!Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
|
||
|
||
Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
|
||
diag::err_pseudo_dtor_type_mismatch)
|
||
<< ObjectType << ScopeType << Base->getSourceRange()
|
||
<< ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
|
||
|
||
ScopeType = QualType();
|
||
ScopeTypeInfo = 0;
|
||
}
|
||
}
|
||
|
||
Expr *Result
|
||
= new (Context) CXXPseudoDestructorExpr(Context, Base,
|
||
OpKind == tok::arrow, OpLoc,
|
||
SS.getScopeRep(), SS.getRange(),
|
||
ScopeTypeInfo,
|
||
CCLoc,
|
||
TildeLoc,
|
||
Destructed);
|
||
|
||
if (HasTrailingLParen)
|
||
return Owned(Result);
|
||
|
||
return DiagnoseDtorReference(Destructed.getLocation(), Result);
|
||
}
|
||
|
||
ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
|
||
SourceLocation OpLoc,
|
||
tok::TokenKind OpKind,
|
||
CXXScopeSpec &SS,
|
||
UnqualifiedId &FirstTypeName,
|
||
SourceLocation CCLoc,
|
||
SourceLocation TildeLoc,
|
||
UnqualifiedId &SecondTypeName,
|
||
bool HasTrailingLParen) {
|
||
assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
|
||
FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
|
||
"Invalid first type name in pseudo-destructor");
|
||
assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
|
||
SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
|
||
"Invalid second type name in pseudo-destructor");
|
||
|
||
// C++ [expr.pseudo]p2:
|
||
// The left-hand side of the dot operator shall be of scalar type. The
|
||
// left-hand side of the arrow operator shall be of pointer to scalar type.
|
||
// This scalar type is the object type.
|
||
QualType ObjectType = Base->getType();
|
||
if (OpKind == tok::arrow) {
|
||
if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
|
||
ObjectType = Ptr->getPointeeType();
|
||
} else if (!ObjectType->isDependentType()) {
|
||
// The user wrote "p->" when she probably meant "p."; fix it.
|
||
Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
|
||
<< ObjectType << true
|
||
<< FixItHint::CreateReplacement(OpLoc, ".");
|
||
if (isSFINAEContext())
|
||
return ExprError();
|
||
|
||
OpKind = tok::period;
|
||
}
|
||
}
|
||
|
||
// Compute the object type that we should use for name lookup purposes. Only
|
||
// record types and dependent types matter.
|
||
ParsedType ObjectTypePtrForLookup;
|
||
if (!SS.isSet()) {
|
||
if (const Type *T = ObjectType->getAs<RecordType>())
|
||
ObjectTypePtrForLookup = ParsedType::make(QualType(T, 0));
|
||
else if (ObjectType->isDependentType())
|
||
ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
|
||
}
|
||
|
||
// Convert the name of the type being destructed (following the ~) into a
|
||
// type (with source-location information).
|
||
QualType DestructedType;
|
||
TypeSourceInfo *DestructedTypeInfo = 0;
|
||
PseudoDestructorTypeStorage Destructed;
|
||
if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
|
||
ParsedType T = getTypeName(*SecondTypeName.Identifier,
|
||
SecondTypeName.StartLocation,
|
||
S, &SS, true, ObjectTypePtrForLookup);
|
||
if (!T &&
|
||
((SS.isSet() && !computeDeclContext(SS, false)) ||
|
||
(!SS.isSet() && ObjectType->isDependentType()))) {
|
||
// The name of the type being destroyed is a dependent name, and we
|
||
// couldn't find anything useful in scope. Just store the identifier and
|
||
// it's location, and we'll perform (qualified) name lookup again at
|
||
// template instantiation time.
|
||
Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
|
||
SecondTypeName.StartLocation);
|
||
} else if (!T) {
|
||
Diag(SecondTypeName.StartLocation,
|
||
diag::err_pseudo_dtor_destructor_non_type)
|
||
<< SecondTypeName.Identifier << ObjectType;
|
||
if (isSFINAEContext())
|
||
return ExprError();
|
||
|
||
// Recover by assuming we had the right type all along.
|
||
DestructedType = ObjectType;
|
||
} else
|
||
DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
|
||
} else {
|
||
// Resolve the template-id to a type.
|
||
TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
|
||
ASTTemplateArgsPtr TemplateArgsPtr(*this,
|
||
TemplateId->getTemplateArgs(),
|
||
TemplateId->NumArgs);
|
||
TypeResult T = ActOnTemplateIdType(TemplateId->Template,
|
||
TemplateId->TemplateNameLoc,
|
||
TemplateId->LAngleLoc,
|
||
TemplateArgsPtr,
|
||
TemplateId->RAngleLoc);
|
||
if (T.isInvalid() || !T.get()) {
|
||
// Recover by assuming we had the right type all along.
|
||
DestructedType = ObjectType;
|
||
} else
|
||
DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
|
||
}
|
||
|
||
// If we've performed some kind of recovery, (re-)build the type source
|
||
// information.
|
||
if (!DestructedType.isNull()) {
|
||
if (!DestructedTypeInfo)
|
||
DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
|
||
SecondTypeName.StartLocation);
|
||
Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
|
||
}
|
||
|
||
// Convert the name of the scope type (the type prior to '::') into a type.
|
||
TypeSourceInfo *ScopeTypeInfo = 0;
|
||
QualType ScopeType;
|
||
if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
|
||
FirstTypeName.Identifier) {
|
||
if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
|
||
ParsedType T = getTypeName(*FirstTypeName.Identifier,
|
||
FirstTypeName.StartLocation,
|
||
S, &SS, false, ObjectTypePtrForLookup);
|
||
if (!T) {
|
||
Diag(FirstTypeName.StartLocation,
|
||
diag::err_pseudo_dtor_destructor_non_type)
|
||
<< FirstTypeName.Identifier << ObjectType;
|
||
|
||
if (isSFINAEContext())
|
||
return ExprError();
|
||
|
||
// Just drop this type. It's unnecessary anyway.
|
||
ScopeType = QualType();
|
||
} else
|
||
ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
|
||
} else {
|
||
// Resolve the template-id to a type.
|
||
TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
|
||
ASTTemplateArgsPtr TemplateArgsPtr(*this,
|
||
TemplateId->getTemplateArgs(),
|
||
TemplateId->NumArgs);
|
||
TypeResult T = ActOnTemplateIdType(TemplateId->Template,
|
||
TemplateId->TemplateNameLoc,
|
||
TemplateId->LAngleLoc,
|
||
TemplateArgsPtr,
|
||
TemplateId->RAngleLoc);
|
||
if (T.isInvalid() || !T.get()) {
|
||
// Recover by dropping this type.
|
||
ScopeType = QualType();
|
||
} else
|
||
ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
|
||
}
|
||
}
|
||
|
||
if (!ScopeType.isNull() && !ScopeTypeInfo)
|
||
ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
|
||
FirstTypeName.StartLocation);
|
||
|
||
|
||
return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
|
||
ScopeTypeInfo, CCLoc, TildeLoc,
|
||
Destructed, HasTrailingLParen);
|
||
}
|
||
|
||
CXXMemberCallExpr *Sema::BuildCXXMemberCallExpr(Expr *Exp,
|
||
NamedDecl *FoundDecl,
|
||
CXXMethodDecl *Method) {
|
||
if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0,
|
||
FoundDecl, Method))
|
||
assert(0 && "Calling BuildCXXMemberCallExpr with invalid call?");
|
||
|
||
MemberExpr *ME =
|
||
new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method,
|
||
SourceLocation(), Method->getType(),
|
||
VK_RValue, OK_Ordinary);
|
||
QualType ResultType = Method->getResultType();
|
||
ExprValueKind VK = Expr::getValueKindForType(ResultType);
|
||
ResultType = ResultType.getNonLValueExprType(Context);
|
||
|
||
MarkDeclarationReferenced(Exp->getLocStart(), Method);
|
||
CXXMemberCallExpr *CE =
|
||
new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
|
||
Exp->getLocEnd());
|
||
return CE;
|
||
}
|
||
|
||
ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
|
||
SourceLocation RParen) {
|
||
return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
|
||
Operand->CanThrow(Context),
|
||
KeyLoc, RParen));
|
||
}
|
||
|
||
ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
|
||
Expr *Operand, SourceLocation RParen) {
|
||
return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
|
||
}
|
||
|
||
/// Perform the conversions required for an expression used in a
|
||
/// context that ignores the result.
|
||
void Sema::IgnoredValueConversions(Expr *&E) {
|
||
// C99 6.3.2.1:
|
||
// [Except in specific positions,] an lvalue that does not have
|
||
// array type is converted to the value stored in the
|
||
// designated object (and is no longer an lvalue).
|
||
if (E->isRValue()) return;
|
||
|
||
// We always want to do this on ObjC property references.
|
||
if (E->getObjectKind() == OK_ObjCProperty) {
|
||
ConvertPropertyForRValue(E);
|
||
if (E->isRValue()) return;
|
||
}
|
||
|
||
// Otherwise, this rule does not apply in C++, at least not for the moment.
|
||
if (getLangOptions().CPlusPlus) return;
|
||
|
||
// GCC seems to also exclude expressions of incomplete enum type.
|
||
if (const EnumType *T = E->getType()->getAs<EnumType>()) {
|
||
if (!T->getDecl()->isComplete()) {
|
||
// FIXME: stupid workaround for a codegen bug!
|
||
ImpCastExprToType(E, Context.VoidTy, CK_ToVoid);
|
||
return;
|
||
}
|
||
}
|
||
|
||
DefaultFunctionArrayLvalueConversion(E);
|
||
if (!E->getType()->isVoidType())
|
||
RequireCompleteType(E->getExprLoc(), E->getType(),
|
||
diag::err_incomplete_type);
|
||
}
|
||
|
||
ExprResult Sema::ActOnFinishFullExpr(Expr *FullExpr) {
|
||
if (!FullExpr)
|
||
return ExprError();
|
||
|
||
if (DiagnoseUnexpandedParameterPack(FullExpr))
|
||
return ExprError();
|
||
|
||
IgnoredValueConversions(FullExpr);
|
||
CheckImplicitConversions(FullExpr);
|
||
return MaybeCreateExprWithCleanups(FullExpr);
|
||
}
|
||
|
||
StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
|
||
if (!FullStmt) return StmtError();
|
||
|
||
return MaybeCreateStmtWithCleanups(FullStmt);
|
||
}
|