зеркало из https://github.com/microsoft/clang-1.git
7214 строки
280 KiB
C++
7214 строки
280 KiB
C++
//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Sema.h"
|
|
#include "Lookup.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Lex/LiteralSupport.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Parse/DeclSpec.h"
|
|
#include "clang/Parse/Designator.h"
|
|
#include "clang/Parse/Scope.h"
|
|
#include "clang/Parse/Template.h"
|
|
using namespace clang;
|
|
|
|
|
|
/// \brief Determine whether the use of this declaration is valid, and
|
|
/// emit any corresponding diagnostics.
|
|
///
|
|
/// This routine diagnoses various problems with referencing
|
|
/// declarations that can occur when using a declaration. For example,
|
|
/// it might warn if a deprecated or unavailable declaration is being
|
|
/// used, or produce an error (and return true) if a C++0x deleted
|
|
/// function is being used.
|
|
///
|
|
/// If IgnoreDeprecated is set to true, this should not want about deprecated
|
|
/// decls.
|
|
///
|
|
/// \returns true if there was an error (this declaration cannot be
|
|
/// referenced), false otherwise.
|
|
///
|
|
bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
|
|
// See if the decl is deprecated.
|
|
if (D->getAttr<DeprecatedAttr>()) {
|
|
EmitDeprecationWarning(D, Loc);
|
|
}
|
|
|
|
// See if the decl is unavailable
|
|
if (D->getAttr<UnavailableAttr>()) {
|
|
Diag(Loc, diag::warn_unavailable) << D->getDeclName();
|
|
Diag(D->getLocation(), diag::note_unavailable_here) << 0;
|
|
}
|
|
|
|
// See if this is a deleted function.
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (FD->isDeleted()) {
|
|
Diag(Loc, diag::err_deleted_function_use);
|
|
Diag(D->getLocation(), diag::note_unavailable_here) << true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
|
|
/// (and other functions in future), which have been declared with sentinel
|
|
/// attribute. It warns if call does not have the sentinel argument.
|
|
///
|
|
void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
|
|
Expr **Args, unsigned NumArgs) {
|
|
const SentinelAttr *attr = D->getAttr<SentinelAttr>();
|
|
if (!attr)
|
|
return;
|
|
int sentinelPos = attr->getSentinel();
|
|
int nullPos = attr->getNullPos();
|
|
|
|
// FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
|
|
// base class. Then we won't be needing two versions of the same code.
|
|
unsigned int i = 0;
|
|
bool warnNotEnoughArgs = false;
|
|
int isMethod = 0;
|
|
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
|
// skip over named parameters.
|
|
ObjCMethodDecl::param_iterator P, E = MD->param_end();
|
|
for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
|
|
if (nullPos)
|
|
--nullPos;
|
|
else
|
|
++i;
|
|
}
|
|
warnNotEnoughArgs = (P != E || i >= NumArgs);
|
|
isMethod = 1;
|
|
} else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
// skip over named parameters.
|
|
ObjCMethodDecl::param_iterator P, E = FD->param_end();
|
|
for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
|
|
if (nullPos)
|
|
--nullPos;
|
|
else
|
|
++i;
|
|
}
|
|
warnNotEnoughArgs = (P != E || i >= NumArgs);
|
|
} else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
|
|
// block or function pointer call.
|
|
QualType Ty = V->getType();
|
|
if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
|
|
const FunctionType *FT = Ty->isFunctionPointerType()
|
|
? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
|
|
: Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
|
|
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
unsigned k;
|
|
for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
|
|
if (nullPos)
|
|
--nullPos;
|
|
else
|
|
++i;
|
|
}
|
|
warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
|
|
}
|
|
if (Ty->isBlockPointerType())
|
|
isMethod = 2;
|
|
} else
|
|
return;
|
|
} else
|
|
return;
|
|
|
|
if (warnNotEnoughArgs) {
|
|
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
|
|
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
|
|
return;
|
|
}
|
|
int sentinel = i;
|
|
while (sentinelPos > 0 && i < NumArgs-1) {
|
|
--sentinelPos;
|
|
++i;
|
|
}
|
|
if (sentinelPos > 0) {
|
|
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
|
|
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
|
|
return;
|
|
}
|
|
while (i < NumArgs-1) {
|
|
++i;
|
|
++sentinel;
|
|
}
|
|
Expr *sentinelExpr = Args[sentinel];
|
|
if (sentinelExpr && (!isa<GNUNullExpr>(sentinelExpr) &&
|
|
(!sentinelExpr->getType()->isPointerType() ||
|
|
!sentinelExpr->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull)))) {
|
|
Diag(Loc, diag::warn_missing_sentinel) << isMethod;
|
|
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
|
|
}
|
|
return;
|
|
}
|
|
|
|
SourceRange Sema::getExprRange(ExprTy *E) const {
|
|
Expr *Ex = (Expr *)E;
|
|
return Ex? Ex->getSourceRange() : SourceRange();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Standard Promotions and Conversions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
|
|
void Sema::DefaultFunctionArrayConversion(Expr *&E) {
|
|
QualType Ty = E->getType();
|
|
assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
|
|
|
|
if (Ty->isFunctionType())
|
|
ImpCastExprToType(E, Context.getPointerType(Ty),
|
|
CastExpr::CK_FunctionToPointerDecay);
|
|
else if (Ty->isArrayType()) {
|
|
// In C90 mode, arrays only promote to pointers if the array expression is
|
|
// an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
|
|
// type 'array of type' is converted to an expression that has type 'pointer
|
|
// to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
|
|
// that has type 'array of type' ...". The relevant change is "an lvalue"
|
|
// (C90) to "an expression" (C99).
|
|
//
|
|
// C++ 4.2p1:
|
|
// An lvalue or rvalue of type "array of N T" or "array of unknown bound of
|
|
// T" can be converted to an rvalue of type "pointer to T".
|
|
//
|
|
if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
|
|
E->isLvalue(Context) == Expr::LV_Valid)
|
|
ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
|
|
CastExpr::CK_ArrayToPointerDecay);
|
|
}
|
|
}
|
|
|
|
/// UsualUnaryConversions - Performs various conversions that are common to most
|
|
/// operators (C99 6.3). The conversions of array and function types are
|
|
/// sometimes surpressed. For example, the array->pointer conversion doesn't
|
|
/// apply if the array is an argument to the sizeof or address (&) operators.
|
|
/// In these instances, this routine should *not* be called.
|
|
Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
|
|
QualType Ty = Expr->getType();
|
|
assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
|
|
|
|
// C99 6.3.1.1p2:
|
|
//
|
|
// The following may be used in an expression wherever an int or
|
|
// unsigned int may be used:
|
|
// - an object or expression with an integer type whose integer
|
|
// conversion rank is less than or equal to the rank of int
|
|
// and unsigned int.
|
|
// - A bit-field of type _Bool, int, signed int, or unsigned int.
|
|
//
|
|
// If an int can represent all values of the original type, the
|
|
// value is converted to an int; otherwise, it is converted to an
|
|
// unsigned int. These are called the integer promotions. All
|
|
// other types are unchanged by the integer promotions.
|
|
QualType PTy = Context.isPromotableBitField(Expr);
|
|
if (!PTy.isNull()) {
|
|
ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
|
|
return Expr;
|
|
}
|
|
if (Ty->isPromotableIntegerType()) {
|
|
QualType PT = Context.getPromotedIntegerType(Ty);
|
|
ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
|
|
return Expr;
|
|
}
|
|
|
|
DefaultFunctionArrayConversion(Expr);
|
|
return Expr;
|
|
}
|
|
|
|
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
|
|
/// do not have a prototype. Arguments that have type float are promoted to
|
|
/// double. All other argument types are converted by UsualUnaryConversions().
|
|
void Sema::DefaultArgumentPromotion(Expr *&Expr) {
|
|
QualType Ty = Expr->getType();
|
|
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
|
|
|
|
// If this is a 'float' (CVR qualified or typedef) promote to double.
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
|
|
if (BT->getKind() == BuiltinType::Float)
|
|
return ImpCastExprToType(Expr, Context.DoubleTy,
|
|
CastExpr::CK_FloatingCast);
|
|
|
|
UsualUnaryConversions(Expr);
|
|
}
|
|
|
|
/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
|
|
/// will warn if the resulting type is not a POD type, and rejects ObjC
|
|
/// interfaces passed by value. This returns true if the argument type is
|
|
/// completely illegal.
|
|
bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
|
|
DefaultArgumentPromotion(Expr);
|
|
|
|
if (Expr->getType()->isObjCInterfaceType()) {
|
|
switch (ExprEvalContexts.back().Context ) {
|
|
case Unevaluated:
|
|
// The argument will never be evaluated, so don't complain.
|
|
break;
|
|
|
|
case PotentiallyEvaluated:
|
|
Diag(Expr->getLocStart(),
|
|
diag::err_cannot_pass_objc_interface_to_vararg)
|
|
<< Expr->getType() << CT;
|
|
return true;
|
|
|
|
case PotentiallyPotentiallyEvaluated:
|
|
ExprEvalContexts.back().addDiagnostic(Expr->getLocStart(),
|
|
PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
|
|
<< Expr->getType() << CT);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Expr->getType()->isPODType()) {
|
|
switch (ExprEvalContexts.back().Context ) {
|
|
case Unevaluated:
|
|
// The argument will never be evaluated, so don't complain.
|
|
break;
|
|
|
|
case PotentiallyEvaluated:
|
|
Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
|
|
<< Expr->getType() << CT;
|
|
break;
|
|
|
|
case PotentiallyPotentiallyEvaluated:
|
|
ExprEvalContexts.back().addDiagnostic(Expr->getLocStart(),
|
|
PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
|
|
<< Expr->getType() << CT);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// UsualArithmeticConversions - Performs various conversions that are common to
|
|
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
|
|
/// routine returns the first non-arithmetic type found. The client is
|
|
/// responsible for emitting appropriate error diagnostics.
|
|
/// FIXME: verify the conversion rules for "complex int" are consistent with
|
|
/// GCC.
|
|
QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
|
|
bool isCompAssign) {
|
|
if (!isCompAssign)
|
|
UsualUnaryConversions(lhsExpr);
|
|
|
|
UsualUnaryConversions(rhsExpr);
|
|
|
|
// For conversion purposes, we ignore any qualifiers.
|
|
// For example, "const float" and "float" are equivalent.
|
|
QualType lhs =
|
|
Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
|
|
QualType rhs =
|
|
Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
|
|
|
|
// If both types are identical, no conversion is needed.
|
|
if (lhs == rhs)
|
|
return lhs;
|
|
|
|
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
|
|
// The caller can deal with this (e.g. pointer + int).
|
|
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
|
|
return lhs;
|
|
|
|
// Perform bitfield promotions.
|
|
QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
|
|
if (!LHSBitfieldPromoteTy.isNull())
|
|
lhs = LHSBitfieldPromoteTy;
|
|
QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
|
|
if (!RHSBitfieldPromoteTy.isNull())
|
|
rhs = RHSBitfieldPromoteTy;
|
|
|
|
QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
|
|
ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
|
|
return destType;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Semantic Analysis for various Expression Types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
|
|
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
|
|
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
|
|
/// multiple tokens. However, the common case is that StringToks points to one
|
|
/// string.
|
|
///
|
|
Action::OwningExprResult
|
|
Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
|
|
assert(NumStringToks && "Must have at least one string!");
|
|
|
|
StringLiteralParser Literal(StringToks, NumStringToks, PP);
|
|
if (Literal.hadError)
|
|
return ExprError();
|
|
|
|
llvm::SmallVector<SourceLocation, 4> StringTokLocs;
|
|
for (unsigned i = 0; i != NumStringToks; ++i)
|
|
StringTokLocs.push_back(StringToks[i].getLocation());
|
|
|
|
QualType StrTy = Context.CharTy;
|
|
if (Literal.AnyWide) StrTy = Context.getWCharType();
|
|
if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
|
|
|
|
// A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
|
|
if (getLangOptions().CPlusPlus)
|
|
StrTy.addConst();
|
|
|
|
// Get an array type for the string, according to C99 6.4.5. This includes
|
|
// the nul terminator character as well as the string length for pascal
|
|
// strings.
|
|
StrTy = Context.getConstantArrayType(StrTy,
|
|
llvm::APInt(32, Literal.GetNumStringChars()+1),
|
|
ArrayType::Normal, 0);
|
|
|
|
// Pass &StringTokLocs[0], StringTokLocs.size() to factory!
|
|
return Owned(StringLiteral::Create(Context, Literal.GetString(),
|
|
Literal.GetStringLength(),
|
|
Literal.AnyWide, StrTy,
|
|
&StringTokLocs[0],
|
|
StringTokLocs.size()));
|
|
}
|
|
|
|
/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
|
|
/// CurBlock to VD should cause it to be snapshotted (as we do for auto
|
|
/// variables defined outside the block) or false if this is not needed (e.g.
|
|
/// for values inside the block or for globals).
|
|
///
|
|
/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
|
|
/// up-to-date.
|
|
///
|
|
static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
|
|
ValueDecl *VD) {
|
|
// If the value is defined inside the block, we couldn't snapshot it even if
|
|
// we wanted to.
|
|
if (CurBlock->TheDecl == VD->getDeclContext())
|
|
return false;
|
|
|
|
// If this is an enum constant or function, it is constant, don't snapshot.
|
|
if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
|
|
return false;
|
|
|
|
// If this is a reference to an extern, static, or global variable, no need to
|
|
// snapshot it.
|
|
// FIXME: What about 'const' variables in C++?
|
|
if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
|
|
if (!Var->hasLocalStorage())
|
|
return false;
|
|
|
|
// Blocks that have these can't be constant.
|
|
CurBlock->hasBlockDeclRefExprs = true;
|
|
|
|
// If we have nested blocks, the decl may be declared in an outer block (in
|
|
// which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
|
|
// be defined outside all of the current blocks (in which case the blocks do
|
|
// all get the bit). Walk the nesting chain.
|
|
for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
|
|
NextBlock = NextBlock->PrevBlockInfo) {
|
|
// If we found the defining block for the variable, don't mark the block as
|
|
// having a reference outside it.
|
|
if (NextBlock->TheDecl == VD->getDeclContext())
|
|
break;
|
|
|
|
// Otherwise, the DeclRef from the inner block causes the outer one to need
|
|
// a snapshot as well.
|
|
NextBlock->hasBlockDeclRefExprs = true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
/// BuildDeclRefExpr - Build a DeclRefExpr.
|
|
Sema::OwningExprResult
|
|
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
|
|
const CXXScopeSpec *SS) {
|
|
if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
|
|
Diag(Loc,
|
|
diag::err_auto_variable_cannot_appear_in_own_initializer)
|
|
<< D->getDeclName();
|
|
return ExprError();
|
|
}
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
|
|
if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
|
|
if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
|
|
Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
|
|
<< D->getIdentifier() << FD->getDeclName();
|
|
Diag(D->getLocation(), diag::note_local_variable_declared_here)
|
|
<< D->getIdentifier();
|
|
return ExprError();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MarkDeclarationReferenced(Loc, D);
|
|
|
|
return Owned(DeclRefExpr::Create(Context,
|
|
SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
|
|
SS? SS->getRange() : SourceRange(),
|
|
D, Loc, Ty));
|
|
}
|
|
|
|
/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
|
|
/// variable corresponding to the anonymous union or struct whose type
|
|
/// is Record.
|
|
static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
|
|
RecordDecl *Record) {
|
|
assert(Record->isAnonymousStructOrUnion() &&
|
|
"Record must be an anonymous struct or union!");
|
|
|
|
// FIXME: Once Decls are directly linked together, this will be an O(1)
|
|
// operation rather than a slow walk through DeclContext's vector (which
|
|
// itself will be eliminated). DeclGroups might make this even better.
|
|
DeclContext *Ctx = Record->getDeclContext();
|
|
for (DeclContext::decl_iterator D = Ctx->decls_begin(),
|
|
DEnd = Ctx->decls_end();
|
|
D != DEnd; ++D) {
|
|
if (*D == Record) {
|
|
// The object for the anonymous struct/union directly
|
|
// follows its type in the list of declarations.
|
|
++D;
|
|
assert(D != DEnd && "Missing object for anonymous record");
|
|
assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
|
|
return *D;
|
|
}
|
|
}
|
|
|
|
assert(false && "Missing object for anonymous record");
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Given a field that represents a member of an anonymous
|
|
/// struct/union, build the path from that field's context to the
|
|
/// actual member.
|
|
///
|
|
/// Construct the sequence of field member references we'll have to
|
|
/// perform to get to the field in the anonymous union/struct. The
|
|
/// list of members is built from the field outward, so traverse it
|
|
/// backwards to go from an object in the current context to the field
|
|
/// we found.
|
|
///
|
|
/// \returns The variable from which the field access should begin,
|
|
/// for an anonymous struct/union that is not a member of another
|
|
/// class. Otherwise, returns NULL.
|
|
VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
|
|
llvm::SmallVectorImpl<FieldDecl *> &Path) {
|
|
assert(Field->getDeclContext()->isRecord() &&
|
|
cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
|
|
&& "Field must be stored inside an anonymous struct or union");
|
|
|
|
Path.push_back(Field);
|
|
VarDecl *BaseObject = 0;
|
|
DeclContext *Ctx = Field->getDeclContext();
|
|
do {
|
|
RecordDecl *Record = cast<RecordDecl>(Ctx);
|
|
Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
|
|
if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
|
|
Path.push_back(AnonField);
|
|
else {
|
|
BaseObject = cast<VarDecl>(AnonObject);
|
|
break;
|
|
}
|
|
Ctx = Ctx->getParent();
|
|
} while (Ctx->isRecord() &&
|
|
cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
|
|
|
|
return BaseObject;
|
|
}
|
|
|
|
Sema::OwningExprResult
|
|
Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
|
|
FieldDecl *Field,
|
|
Expr *BaseObjectExpr,
|
|
SourceLocation OpLoc) {
|
|
llvm::SmallVector<FieldDecl *, 4> AnonFields;
|
|
VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
|
|
AnonFields);
|
|
|
|
// Build the expression that refers to the base object, from
|
|
// which we will build a sequence of member references to each
|
|
// of the anonymous union objects and, eventually, the field we
|
|
// found via name lookup.
|
|
bool BaseObjectIsPointer = false;
|
|
Qualifiers BaseQuals;
|
|
if (BaseObject) {
|
|
// BaseObject is an anonymous struct/union variable (and is,
|
|
// therefore, not part of another non-anonymous record).
|
|
if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
|
|
MarkDeclarationReferenced(Loc, BaseObject);
|
|
BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
|
|
SourceLocation());
|
|
BaseQuals
|
|
= Context.getCanonicalType(BaseObject->getType()).getQualifiers();
|
|
} else if (BaseObjectExpr) {
|
|
// The caller provided the base object expression. Determine
|
|
// whether its a pointer and whether it adds any qualifiers to the
|
|
// anonymous struct/union fields we're looking into.
|
|
QualType ObjectType = BaseObjectExpr->getType();
|
|
if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
|
|
BaseObjectIsPointer = true;
|
|
ObjectType = ObjectPtr->getPointeeType();
|
|
}
|
|
BaseQuals
|
|
= Context.getCanonicalType(ObjectType).getQualifiers();
|
|
} else {
|
|
// We've found a member of an anonymous struct/union that is
|
|
// inside a non-anonymous struct/union, so in a well-formed
|
|
// program our base object expression is "this".
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
|
|
if (!MD->isStatic()) {
|
|
QualType AnonFieldType
|
|
= Context.getTagDeclType(
|
|
cast<RecordDecl>(AnonFields.back()->getDeclContext()));
|
|
QualType ThisType = Context.getTagDeclType(MD->getParent());
|
|
if ((Context.getCanonicalType(AnonFieldType)
|
|
== Context.getCanonicalType(ThisType)) ||
|
|
IsDerivedFrom(ThisType, AnonFieldType)) {
|
|
// Our base object expression is "this".
|
|
BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
|
|
MD->getThisType(Context));
|
|
BaseObjectIsPointer = true;
|
|
}
|
|
} else {
|
|
return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
|
|
<< Field->getDeclName());
|
|
}
|
|
BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
|
|
}
|
|
|
|
if (!BaseObjectExpr)
|
|
return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
|
|
<< Field->getDeclName());
|
|
}
|
|
|
|
// Build the implicit member references to the field of the
|
|
// anonymous struct/union.
|
|
Expr *Result = BaseObjectExpr;
|
|
Qualifiers ResultQuals = BaseQuals;
|
|
for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
|
|
FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
|
|
FI != FIEnd; ++FI) {
|
|
QualType MemberType = (*FI)->getType();
|
|
Qualifiers MemberTypeQuals =
|
|
Context.getCanonicalType(MemberType).getQualifiers();
|
|
|
|
// CVR attributes from the base are picked up by members,
|
|
// except that 'mutable' members don't pick up 'const'.
|
|
if ((*FI)->isMutable())
|
|
ResultQuals.removeConst();
|
|
|
|
// GC attributes are never picked up by members.
|
|
ResultQuals.removeObjCGCAttr();
|
|
|
|
// TR 18037 does not allow fields to be declared with address spaces.
|
|
assert(!MemberTypeQuals.hasAddressSpace());
|
|
|
|
Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
|
|
if (NewQuals != MemberTypeQuals)
|
|
MemberType = Context.getQualifiedType(MemberType, NewQuals);
|
|
|
|
MarkDeclarationReferenced(Loc, *FI);
|
|
PerformObjectMemberConversion(Result, *FI);
|
|
// FIXME: Might this end up being a qualified name?
|
|
Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
|
|
OpLoc, MemberType);
|
|
BaseObjectIsPointer = false;
|
|
ResultQuals = NewQuals;
|
|
}
|
|
|
|
return Owned(Result);
|
|
}
|
|
|
|
/// Decomposes the given name into a DeclarationName, its location, and
|
|
/// possibly a list of template arguments.
|
|
///
|
|
/// If this produces template arguments, it is permitted to call
|
|
/// DecomposeTemplateName.
|
|
///
|
|
/// This actually loses a lot of source location information for
|
|
/// non-standard name kinds; we should consider preserving that in
|
|
/// some way.
|
|
static void DecomposeUnqualifiedId(Sema &SemaRef,
|
|
const UnqualifiedId &Id,
|
|
TemplateArgumentListInfo &Buffer,
|
|
DeclarationName &Name,
|
|
SourceLocation &NameLoc,
|
|
const TemplateArgumentListInfo *&TemplateArgs) {
|
|
if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
|
|
Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
|
|
Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
|
|
|
|
ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
|
|
Id.TemplateId->getTemplateArgs(),
|
|
Id.TemplateId->NumArgs);
|
|
SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
|
|
TemplateArgsPtr.release();
|
|
|
|
TemplateName TName =
|
|
Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
|
|
|
|
Name = SemaRef.Context.getNameForTemplate(TName);
|
|
NameLoc = Id.TemplateId->TemplateNameLoc;
|
|
TemplateArgs = &Buffer;
|
|
} else {
|
|
Name = SemaRef.GetNameFromUnqualifiedId(Id);
|
|
NameLoc = Id.StartLocation;
|
|
TemplateArgs = 0;
|
|
}
|
|
}
|
|
|
|
/// Decompose the given template name into a list of lookup results.
|
|
///
|
|
/// The unqualified ID must name a non-dependent template, which can
|
|
/// be more easily tested by checking whether DecomposeUnqualifiedId
|
|
/// found template arguments.
|
|
static void DecomposeTemplateName(LookupResult &R, const UnqualifiedId &Id) {
|
|
assert(Id.getKind() == UnqualifiedId::IK_TemplateId);
|
|
TemplateName TName =
|
|
Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
|
|
|
|
if (TemplateDecl *TD = TName.getAsTemplateDecl())
|
|
R.addDecl(TD);
|
|
else if (OverloadedTemplateStorage *OT = TName.getAsOverloadedTemplate())
|
|
for (OverloadedTemplateStorage::iterator I = OT->begin(), E = OT->end();
|
|
I != E; ++I)
|
|
R.addDecl(*I);
|
|
|
|
R.resolveKind();
|
|
}
|
|
|
|
static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
|
|
for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
|
|
E = Record->bases_end(); I != E; ++I) {
|
|
CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
|
|
CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
|
|
if (!BaseRT) return false;
|
|
|
|
CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
|
|
if (!BaseRecord->isDefinition() ||
|
|
!IsFullyFormedScope(SemaRef, BaseRecord))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Determines whether we can lookup this id-expression now or whether
|
|
/// we have to wait until template instantiation is complete.
|
|
static bool IsDependentIdExpression(Sema &SemaRef, const CXXScopeSpec &SS) {
|
|
DeclContext *DC = SemaRef.computeDeclContext(SS, false);
|
|
|
|
// If the qualifier scope isn't computable, it's definitely dependent.
|
|
if (!DC) return true;
|
|
|
|
// If the qualifier scope doesn't name a record, we can always look into it.
|
|
if (!isa<CXXRecordDecl>(DC)) return false;
|
|
|
|
// We can't look into record types unless they're fully-formed.
|
|
if (!IsFullyFormedScope(SemaRef, cast<CXXRecordDecl>(DC))) return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Determines if the given class is provably not derived from all of
|
|
/// the prospective base classes.
|
|
static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
|
|
CXXRecordDecl *Record,
|
|
const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
|
|
if (Bases.count(Record->getCanonicalDecl()))
|
|
return false;
|
|
|
|
RecordDecl *RD = Record->getDefinition(SemaRef.Context);
|
|
if (!RD) return false;
|
|
Record = cast<CXXRecordDecl>(RD);
|
|
|
|
for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
|
|
E = Record->bases_end(); I != E; ++I) {
|
|
CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
|
|
CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
|
|
if (!BaseRT) return false;
|
|
|
|
CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
|
|
if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Determines if this a C++ class member.
|
|
static bool IsClassMember(NamedDecl *D) {
|
|
DeclContext *DC = D->getDeclContext();
|
|
|
|
// C++0x [class.mem]p1:
|
|
// The enumerators of an unscoped enumeration defined in
|
|
// the class are members of the class.
|
|
// FIXME: support C++0x scoped enumerations.
|
|
if (isa<EnumDecl>(DC))
|
|
DC = DC->getParent();
|
|
|
|
return DC->isRecord();
|
|
}
|
|
|
|
/// Determines if this is an instance member of a class.
|
|
static bool IsInstanceMember(NamedDecl *D) {
|
|
assert(IsClassMember(D) &&
|
|
"checking whether non-member is instance member");
|
|
|
|
if (isa<FieldDecl>(D)) return true;
|
|
|
|
if (isa<CXXMethodDecl>(D))
|
|
return !cast<CXXMethodDecl>(D)->isStatic();
|
|
|
|
if (isa<FunctionTemplateDecl>(D)) {
|
|
D = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
|
|
return !cast<CXXMethodDecl>(D)->isStatic();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
enum IMAKind {
|
|
/// The reference is definitely not an instance member access.
|
|
IMA_Static,
|
|
|
|
/// The reference may be an implicit instance member access.
|
|
IMA_Mixed,
|
|
|
|
/// The reference may be to an instance member, but it is invalid if
|
|
/// so, because the context is not an instance method.
|
|
IMA_Mixed_StaticContext,
|
|
|
|
/// The reference may be to an instance member, but it is invalid if
|
|
/// so, because the context is from an unrelated class.
|
|
IMA_Mixed_Unrelated,
|
|
|
|
/// The reference is definitely an implicit instance member access.
|
|
IMA_Instance,
|
|
|
|
/// The reference may be to an unresolved using declaration.
|
|
IMA_Unresolved,
|
|
|
|
/// The reference may be to an unresolved using declaration and the
|
|
/// context is not an instance method.
|
|
IMA_Unresolved_StaticContext,
|
|
|
|
/// The reference is to a member of an anonymous structure in a
|
|
/// non-class context.
|
|
IMA_AnonymousMember,
|
|
|
|
/// All possible referrents are instance members and the current
|
|
/// context is not an instance method.
|
|
IMA_Error_StaticContext,
|
|
|
|
/// All possible referrents are instance members of an unrelated
|
|
/// class.
|
|
IMA_Error_Unrelated
|
|
};
|
|
|
|
/// The given lookup names class member(s) and is not being used for
|
|
/// an address-of-member expression. Classify the type of access
|
|
/// according to whether it's possible that this reference names an
|
|
/// instance member. This is best-effort; it is okay to
|
|
/// conservatively answer "yes", in which case some errors will simply
|
|
/// not be caught until template-instantiation.
|
|
static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
|
|
const LookupResult &R) {
|
|
assert(!R.empty() && IsClassMember(*R.begin()));
|
|
|
|
bool isStaticContext =
|
|
(!isa<CXXMethodDecl>(SemaRef.CurContext) ||
|
|
cast<CXXMethodDecl>(SemaRef.CurContext)->isStatic());
|
|
|
|
if (R.isUnresolvableResult())
|
|
return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
|
|
|
|
// Collect all the declaring classes of instance members we find.
|
|
bool hasNonInstance = false;
|
|
llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
|
|
NamedDecl *D = (*I)->getUnderlyingDecl();
|
|
if (IsInstanceMember(D)) {
|
|
CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
|
|
|
|
// If this is a member of an anonymous record, move out to the
|
|
// innermost non-anonymous struct or union. If there isn't one,
|
|
// that's a special case.
|
|
while (R->isAnonymousStructOrUnion()) {
|
|
R = dyn_cast<CXXRecordDecl>(R->getParent());
|
|
if (!R) return IMA_AnonymousMember;
|
|
}
|
|
Classes.insert(R->getCanonicalDecl());
|
|
}
|
|
else
|
|
hasNonInstance = true;
|
|
}
|
|
|
|
// If we didn't find any instance members, it can't be an implicit
|
|
// member reference.
|
|
if (Classes.empty())
|
|
return IMA_Static;
|
|
|
|
// If the current context is not an instance method, it can't be
|
|
// an implicit member reference.
|
|
if (isStaticContext)
|
|
return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
|
|
|
|
// If we can prove that the current context is unrelated to all the
|
|
// declaring classes, it can't be an implicit member reference (in
|
|
// which case it's an error if any of those members are selected).
|
|
if (IsProvablyNotDerivedFrom(SemaRef,
|
|
cast<CXXMethodDecl>(SemaRef.CurContext)->getParent(),
|
|
Classes))
|
|
return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
|
|
|
|
return (hasNonInstance ? IMA_Mixed : IMA_Instance);
|
|
}
|
|
|
|
/// Diagnose a reference to a field with no object available.
|
|
static void DiagnoseInstanceReference(Sema &SemaRef,
|
|
const CXXScopeSpec &SS,
|
|
const LookupResult &R) {
|
|
SourceLocation Loc = R.getNameLoc();
|
|
SourceRange Range(Loc);
|
|
if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
|
|
|
|
if (R.getAsSingle<FieldDecl>()) {
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
|
|
if (MD->isStatic()) {
|
|
// "invalid use of member 'x' in static member function"
|
|
SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
|
|
<< Range << R.getLookupName();
|
|
return;
|
|
}
|
|
}
|
|
|
|
SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
|
|
<< R.getLookupName() << Range;
|
|
return;
|
|
}
|
|
|
|
SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
|
|
}
|
|
|
|
Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
|
|
const CXXScopeSpec &SS,
|
|
UnqualifiedId &Id,
|
|
bool HasTrailingLParen,
|
|
bool isAddressOfOperand) {
|
|
assert(!(isAddressOfOperand && HasTrailingLParen) &&
|
|
"cannot be direct & operand and have a trailing lparen");
|
|
|
|
if (SS.isInvalid())
|
|
return ExprError();
|
|
|
|
TemplateArgumentListInfo TemplateArgsBuffer;
|
|
|
|
// Decompose the UnqualifiedId into the following data.
|
|
DeclarationName Name;
|
|
SourceLocation NameLoc;
|
|
const TemplateArgumentListInfo *TemplateArgs;
|
|
DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
|
|
Name, NameLoc, TemplateArgs);
|
|
|
|
IdentifierInfo *II = Name.getAsIdentifierInfo();
|
|
|
|
// C++ [temp.dep.expr]p3:
|
|
// An id-expression is type-dependent if it contains:
|
|
// -- a nested-name-specifier that contains a class-name that
|
|
// names a dependent type.
|
|
// Determine whether this is a member of an unknown specialization;
|
|
// we need to handle these differently.
|
|
if (SS.isSet() && IsDependentIdExpression(*this, SS)) {
|
|
return ActOnDependentIdExpression(SS, Name, NameLoc,
|
|
isAddressOfOperand,
|
|
TemplateArgs);
|
|
}
|
|
|
|
// Perform the required lookup.
|
|
LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
|
|
if (TemplateArgs) {
|
|
// Just re-use the lookup done by isTemplateName.
|
|
DecomposeTemplateName(R, Id);
|
|
} else {
|
|
LookupParsedName(R, S, &SS, true);
|
|
|
|
// If this reference is in an Objective-C method, then we need to do
|
|
// some special Objective-C lookup, too.
|
|
if (!SS.isSet() && II && getCurMethodDecl()) {
|
|
OwningExprResult E(LookupInObjCMethod(R, S, II));
|
|
if (E.isInvalid())
|
|
return ExprError();
|
|
|
|
Expr *Ex = E.takeAs<Expr>();
|
|
if (Ex) return Owned(Ex);
|
|
}
|
|
}
|
|
|
|
if (R.isAmbiguous())
|
|
return ExprError();
|
|
|
|
// Determine whether this name might be a candidate for
|
|
// argument-dependent lookup.
|
|
bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
|
|
|
|
if (R.empty() && !ADL) {
|
|
// Otherwise, this could be an implicitly declared function reference (legal
|
|
// in C90, extension in C99, forbidden in C++).
|
|
if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
|
|
NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
|
|
if (D) R.addDecl(D);
|
|
}
|
|
|
|
// If this name wasn't predeclared and if this is not a function
|
|
// call, diagnose the problem.
|
|
if (R.empty()) {
|
|
if (!SS.isEmpty())
|
|
return ExprError(Diag(NameLoc, diag::err_no_member)
|
|
<< Name << computeDeclContext(SS, false)
|
|
<< SS.getRange());
|
|
else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
|
|
Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
|
|
Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
|
|
return ExprError(Diag(NameLoc, diag::err_undeclared_use)
|
|
<< Name);
|
|
else
|
|
return ExprError(Diag(NameLoc, diag::err_undeclared_var_use) << Name);
|
|
}
|
|
}
|
|
|
|
// This is guaranteed from this point on.
|
|
assert(!R.empty() || ADL);
|
|
|
|
if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
|
|
// Warn about constructs like:
|
|
// if (void *X = foo()) { ... } else { X }.
|
|
// In the else block, the pointer is always false.
|
|
|
|
if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
|
|
Scope *CheckS = S;
|
|
while (CheckS && CheckS->getControlParent()) {
|
|
if (CheckS->isWithinElse() &&
|
|
CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
|
|
ExprError(Diag(NameLoc, diag::warn_value_always_zero)
|
|
<< Var->getDeclName()
|
|
<< (Var->getType()->isPointerType()? 2 :
|
|
Var->getType()->isBooleanType()? 1 : 0));
|
|
break;
|
|
}
|
|
|
|
// Move to the parent of this scope.
|
|
CheckS = CheckS->getParent();
|
|
}
|
|
}
|
|
} else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
|
|
if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
|
|
// C99 DR 316 says that, if a function type comes from a
|
|
// function definition (without a prototype), that type is only
|
|
// used for checking compatibility. Therefore, when referencing
|
|
// the function, we pretend that we don't have the full function
|
|
// type.
|
|
if (DiagnoseUseOfDecl(Func, NameLoc))
|
|
return ExprError();
|
|
|
|
QualType T = Func->getType();
|
|
QualType NoProtoType = T;
|
|
if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
|
|
NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
|
|
return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
|
|
}
|
|
}
|
|
|
|
// Check whether this might be a C++ implicit instance member access.
|
|
// C++ [expr.prim.general]p6:
|
|
// Within the definition of a non-static member function, an
|
|
// identifier that names a non-static member is transformed to a
|
|
// class member access expression.
|
|
// But note that &SomeClass::foo is grammatically distinct, even
|
|
// though we don't parse it that way.
|
|
if (!R.empty() && IsClassMember(*R.begin())) {
|
|
bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
|
|
|
|
if (!isAbstractMemberPointer) {
|
|
switch (ClassifyImplicitMemberAccess(*this, R)) {
|
|
case IMA_Instance:
|
|
return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
|
|
|
|
case IMA_AnonymousMember:
|
|
assert(R.isSingleResult());
|
|
return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
|
|
R.getAsSingle<FieldDecl>());
|
|
|
|
case IMA_Mixed:
|
|
case IMA_Mixed_Unrelated:
|
|
case IMA_Unresolved:
|
|
return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
|
|
|
|
case IMA_Static:
|
|
case IMA_Mixed_StaticContext:
|
|
case IMA_Unresolved_StaticContext:
|
|
break;
|
|
|
|
case IMA_Error_StaticContext:
|
|
case IMA_Error_Unrelated:
|
|
DiagnoseInstanceReference(*this, SS, R);
|
|
return ExprError();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (TemplateArgs)
|
|
return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
|
|
|
|
return BuildDeclarationNameExpr(SS, R, ADL);
|
|
}
|
|
|
|
/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
|
|
/// declaration name, generally during template instantiation.
|
|
/// There's a large number of things which don't need to be done along
|
|
/// this path.
|
|
Sema::OwningExprResult
|
|
Sema::BuildQualifiedDeclarationNameExpr(const CXXScopeSpec &SS,
|
|
DeclarationName Name,
|
|
SourceLocation NameLoc) {
|
|
DeclContext *DC;
|
|
if (!(DC = computeDeclContext(SS, false)) ||
|
|
DC->isDependentContext() ||
|
|
RequireCompleteDeclContext(SS))
|
|
return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0);
|
|
|
|
LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
|
|
LookupQualifiedName(R, DC);
|
|
|
|
if (R.isAmbiguous())
|
|
return ExprError();
|
|
|
|
if (R.empty()) {
|
|
Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange();
|
|
return ExprError();
|
|
}
|
|
|
|
return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
|
|
}
|
|
|
|
/// LookupInObjCMethod - The parser has read a name in, and Sema has
|
|
/// detected that we're currently inside an ObjC method. Perform some
|
|
/// additional lookup.
|
|
///
|
|
/// Ideally, most of this would be done by lookup, but there's
|
|
/// actually quite a lot of extra work involved.
|
|
///
|
|
/// Returns a null sentinel to indicate trivial success.
|
|
Sema::OwningExprResult
|
|
Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
|
|
IdentifierInfo *II) {
|
|
SourceLocation Loc = Lookup.getNameLoc();
|
|
|
|
// There are two cases to handle here. 1) scoped lookup could have failed,
|
|
// in which case we should look for an ivar. 2) scoped lookup could have
|
|
// found a decl, but that decl is outside the current instance method (i.e.
|
|
// a global variable). In these two cases, we do a lookup for an ivar with
|
|
// this name, if the lookup sucedes, we replace it our current decl.
|
|
|
|
// If we're in a class method, we don't normally want to look for
|
|
// ivars. But if we don't find anything else, and there's an
|
|
// ivar, that's an error.
|
|
bool IsClassMethod = getCurMethodDecl()->isClassMethod();
|
|
|
|
bool LookForIvars;
|
|
if (Lookup.empty())
|
|
LookForIvars = true;
|
|
else if (IsClassMethod)
|
|
LookForIvars = false;
|
|
else
|
|
LookForIvars = (Lookup.isSingleResult() &&
|
|
Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
|
|
|
|
if (LookForIvars) {
|
|
ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
|
|
ObjCInterfaceDecl *ClassDeclared;
|
|
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
|
|
// Diagnose using an ivar in a class method.
|
|
if (IsClassMethod)
|
|
return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
|
|
<< IV->getDeclName());
|
|
|
|
// If we're referencing an invalid decl, just return this as a silent
|
|
// error node. The error diagnostic was already emitted on the decl.
|
|
if (IV->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
// Check if referencing a field with __attribute__((deprecated)).
|
|
if (DiagnoseUseOfDecl(IV, Loc))
|
|
return ExprError();
|
|
|
|
// Diagnose the use of an ivar outside of the declaring class.
|
|
if (IV->getAccessControl() == ObjCIvarDecl::Private &&
|
|
ClassDeclared != IFace)
|
|
Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
|
|
|
|
// FIXME: This should use a new expr for a direct reference, don't
|
|
// turn this into Self->ivar, just return a BareIVarExpr or something.
|
|
IdentifierInfo &II = Context.Idents.get("self");
|
|
UnqualifiedId SelfName;
|
|
SelfName.setIdentifier(&II, SourceLocation());
|
|
CXXScopeSpec SelfScopeSpec;
|
|
OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
|
|
SelfName, false, false);
|
|
MarkDeclarationReferenced(Loc, IV);
|
|
return Owned(new (Context)
|
|
ObjCIvarRefExpr(IV, IV->getType(), Loc,
|
|
SelfExpr.takeAs<Expr>(), true, true));
|
|
}
|
|
} else if (getCurMethodDecl()->isInstanceMethod()) {
|
|
// We should warn if a local variable hides an ivar.
|
|
ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
|
|
ObjCInterfaceDecl *ClassDeclared;
|
|
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
|
|
if (IV->getAccessControl() != ObjCIvarDecl::Private ||
|
|
IFace == ClassDeclared)
|
|
Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
|
|
}
|
|
}
|
|
|
|
// Needed to implement property "super.method" notation.
|
|
if (Lookup.empty() && II->isStr("super")) {
|
|
QualType T;
|
|
|
|
if (getCurMethodDecl()->isInstanceMethod())
|
|
T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
|
|
getCurMethodDecl()->getClassInterface()));
|
|
else
|
|
T = Context.getObjCClassType();
|
|
return Owned(new (Context) ObjCSuperExpr(Loc, T));
|
|
}
|
|
|
|
// Sentinel value saying that we didn't do anything special.
|
|
return Owned((Expr*) 0);
|
|
}
|
|
|
|
/// \brief Cast member's object to its own class if necessary.
|
|
bool
|
|
Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) {
|
|
if (FieldDecl *FD = dyn_cast<FieldDecl>(Member))
|
|
if (CXXRecordDecl *RD =
|
|
dyn_cast<CXXRecordDecl>(FD->getDeclContext())) {
|
|
QualType DestType =
|
|
Context.getCanonicalType(Context.getTypeDeclType(RD));
|
|
if (DestType->isDependentType() || From->getType()->isDependentType())
|
|
return false;
|
|
QualType FromRecordType = From->getType();
|
|
QualType DestRecordType = DestType;
|
|
if (FromRecordType->getAs<PointerType>()) {
|
|
DestType = Context.getPointerType(DestType);
|
|
FromRecordType = FromRecordType->getPointeeType();
|
|
}
|
|
if (!Context.hasSameUnqualifiedType(FromRecordType, DestRecordType) &&
|
|
CheckDerivedToBaseConversion(FromRecordType,
|
|
DestRecordType,
|
|
From->getSourceRange().getBegin(),
|
|
From->getSourceRange()))
|
|
return true;
|
|
ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
|
|
/*isLvalue=*/true);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \brief Build a MemberExpr AST node.
|
|
static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
|
|
const CXXScopeSpec &SS, ValueDecl *Member,
|
|
SourceLocation Loc, QualType Ty,
|
|
const TemplateArgumentListInfo *TemplateArgs = 0) {
|
|
NestedNameSpecifier *Qualifier = 0;
|
|
SourceRange QualifierRange;
|
|
if (SS.isSet()) {
|
|
Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
|
|
QualifierRange = SS.getRange();
|
|
}
|
|
|
|
return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
|
|
Member, Loc, TemplateArgs, Ty);
|
|
}
|
|
|
|
/// Builds an implicit member access expression. The current context
|
|
/// is known to be an instance method, and the given unqualified lookup
|
|
/// set is known to contain only instance members, at least one of which
|
|
/// is from an appropriate type.
|
|
Sema::OwningExprResult
|
|
Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
|
|
LookupResult &R,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
bool IsKnownInstance) {
|
|
assert(!R.empty() && !R.isAmbiguous());
|
|
|
|
SourceLocation Loc = R.getNameLoc();
|
|
|
|
// We may have found a field within an anonymous union or struct
|
|
// (C++ [class.union]).
|
|
// FIXME: This needs to happen post-isImplicitMemberReference?
|
|
// FIXME: template-ids inside anonymous structs?
|
|
if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
|
|
if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
|
|
return BuildAnonymousStructUnionMemberReference(Loc, FD);
|
|
|
|
// If this is known to be an instance access, go ahead and build a
|
|
// 'this' expression now.
|
|
QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
|
|
Expr *This = 0; // null signifies implicit access
|
|
if (IsKnownInstance) {
|
|
This = new (Context) CXXThisExpr(SourceLocation(), ThisType);
|
|
}
|
|
|
|
return BuildMemberReferenceExpr(ExprArg(*this, This), ThisType,
|
|
/*OpLoc*/ SourceLocation(),
|
|
/*IsArrow*/ true,
|
|
SS, R, TemplateArgs);
|
|
}
|
|
|
|
bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
|
|
const LookupResult &R,
|
|
bool HasTrailingLParen) {
|
|
// Only when used directly as the postfix-expression of a call.
|
|
if (!HasTrailingLParen)
|
|
return false;
|
|
|
|
// Never if a scope specifier was provided.
|
|
if (SS.isSet())
|
|
return false;
|
|
|
|
// Only in C++ or ObjC++.
|
|
if (!getLangOptions().CPlusPlus)
|
|
return false;
|
|
|
|
// Turn off ADL when we find certain kinds of declarations during
|
|
// normal lookup:
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
|
|
// C++0x [basic.lookup.argdep]p3:
|
|
// -- a declaration of a class member
|
|
// Since using decls preserve this property, we check this on the
|
|
// original decl.
|
|
if (IsClassMember(D))
|
|
return false;
|
|
|
|
// C++0x [basic.lookup.argdep]p3:
|
|
// -- a block-scope function declaration that is not a
|
|
// using-declaration
|
|
// NOTE: we also trigger this for function templates (in fact, we
|
|
// don't check the decl type at all, since all other decl types
|
|
// turn off ADL anyway).
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
else if (D->getDeclContext()->isFunctionOrMethod())
|
|
return false;
|
|
|
|
// C++0x [basic.lookup.argdep]p3:
|
|
// -- a declaration that is neither a function or a function
|
|
// template
|
|
// And also for builtin functions.
|
|
if (isa<FunctionDecl>(D)) {
|
|
FunctionDecl *FDecl = cast<FunctionDecl>(D);
|
|
|
|
// But also builtin functions.
|
|
if (FDecl->getBuiltinID() && FDecl->isImplicit())
|
|
return false;
|
|
} else if (!isa<FunctionTemplateDecl>(D))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Diagnoses obvious problems with the use of the given declaration
|
|
/// as an expression. This is only actually called for lookups that
|
|
/// were not overloaded, and it doesn't promise that the declaration
|
|
/// will in fact be used.
|
|
static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
|
|
if (isa<TypedefDecl>(D)) {
|
|
S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
|
|
return true;
|
|
}
|
|
|
|
if (isa<ObjCInterfaceDecl>(D)) {
|
|
S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
|
|
return true;
|
|
}
|
|
|
|
if (isa<NamespaceDecl>(D)) {
|
|
S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Sema::OwningExprResult
|
|
Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
|
|
LookupResult &R,
|
|
bool NeedsADL) {
|
|
// If this is a single, fully-resolved result and we don't need ADL,
|
|
// just build an ordinary singleton decl ref.
|
|
if (!NeedsADL && R.isSingleResult())
|
|
return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());
|
|
|
|
// We only need to check the declaration if there's exactly one
|
|
// result, because in the overloaded case the results can only be
|
|
// functions and function templates.
|
|
if (R.isSingleResult() &&
|
|
CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
|
|
return ExprError();
|
|
|
|
bool Dependent
|
|
= UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
|
|
UnresolvedLookupExpr *ULE
|
|
= UnresolvedLookupExpr::Create(Context, Dependent,
|
|
(NestedNameSpecifier*) SS.getScopeRep(),
|
|
SS.getRange(),
|
|
R.getLookupName(), R.getNameLoc(),
|
|
NeedsADL, R.isOverloadedResult());
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
|
|
ULE->addDecl(*I);
|
|
|
|
return Owned(ULE);
|
|
}
|
|
|
|
|
|
/// \brief Complete semantic analysis for a reference to the given declaration.
|
|
Sema::OwningExprResult
|
|
Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
|
|
SourceLocation Loc, NamedDecl *D) {
|
|
assert(D && "Cannot refer to a NULL declaration");
|
|
assert(!isa<FunctionTemplateDecl>(D) &&
|
|
"Cannot refer unambiguously to a function template");
|
|
DeclarationName Name = D->getDeclName();
|
|
|
|
if (CheckDeclInExpr(*this, Loc, D))
|
|
return ExprError();
|
|
|
|
if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
|
|
// Specifically diagnose references to class templates that are missing
|
|
// a template argument list.
|
|
Diag(Loc, diag::err_template_decl_ref)
|
|
<< Template << SS.getRange();
|
|
Diag(Template->getLocation(), diag::note_template_decl_here);
|
|
return ExprError();
|
|
}
|
|
|
|
// Make sure that we're referring to a value.
|
|
ValueDecl *VD = dyn_cast<ValueDecl>(D);
|
|
if (!VD) {
|
|
Diag(Loc, diag::err_ref_non_value)
|
|
<< D << SS.getRange();
|
|
Diag(D->getLocation(), diag::note_previous_decl);
|
|
return ExprError();
|
|
}
|
|
|
|
// Check whether this declaration can be used. Note that we suppress
|
|
// this check when we're going to perform argument-dependent lookup
|
|
// on this function name, because this might not be the function
|
|
// that overload resolution actually selects.
|
|
if (DiagnoseUseOfDecl(VD, Loc))
|
|
return ExprError();
|
|
|
|
// Only create DeclRefExpr's for valid Decl's.
|
|
if (VD->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
// If the identifier reference is inside a block, and it refers to a value
|
|
// that is outside the block, create a BlockDeclRefExpr instead of a
|
|
// DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
|
|
// the block is formed.
|
|
//
|
|
// We do not do this for things like enum constants, global variables, etc,
|
|
// as they do not get snapshotted.
|
|
//
|
|
if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
|
|
MarkDeclarationReferenced(Loc, VD);
|
|
QualType ExprTy = VD->getType().getNonReferenceType();
|
|
// The BlocksAttr indicates the variable is bound by-reference.
|
|
if (VD->getAttr<BlocksAttr>())
|
|
return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
|
|
// This is to record that a 'const' was actually synthesize and added.
|
|
bool constAdded = !ExprTy.isConstQualified();
|
|
// Variable will be bound by-copy, make it const within the closure.
|
|
|
|
ExprTy.addConst();
|
|
return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
|
|
constAdded));
|
|
}
|
|
// If this reference is not in a block or if the referenced variable is
|
|
// within the block, create a normal DeclRefExpr.
|
|
|
|
return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS);
|
|
}
|
|
|
|
Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
|
|
tok::TokenKind Kind) {
|
|
PredefinedExpr::IdentType IT;
|
|
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown simple primary expr!");
|
|
case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
|
|
case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
|
|
case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
|
|
}
|
|
|
|
// Pre-defined identifiers are of type char[x], where x is the length of the
|
|
// string.
|
|
|
|
Decl *currentDecl = getCurFunctionOrMethodDecl();
|
|
if (!currentDecl) {
|
|
Diag(Loc, diag::ext_predef_outside_function);
|
|
currentDecl = Context.getTranslationUnitDecl();
|
|
}
|
|
|
|
QualType ResTy;
|
|
if (cast<DeclContext>(currentDecl)->isDependentContext()) {
|
|
ResTy = Context.DependentTy;
|
|
} else {
|
|
unsigned Length =
|
|
PredefinedExpr::ComputeName(Context, IT, currentDecl).length();
|
|
|
|
llvm::APInt LengthI(32, Length + 1);
|
|
ResTy = Context.CharTy.withConst();
|
|
ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
|
|
}
|
|
return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
|
|
}
|
|
|
|
Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
|
|
llvm::SmallString<16> CharBuffer;
|
|
CharBuffer.resize(Tok.getLength());
|
|
const char *ThisTokBegin = &CharBuffer[0];
|
|
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
|
|
|
|
CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
|
|
Tok.getLocation(), PP);
|
|
if (Literal.hadError())
|
|
return ExprError();
|
|
|
|
QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
|
|
|
|
return Owned(new (Context) CharacterLiteral(Literal.getValue(),
|
|
Literal.isWide(),
|
|
type, Tok.getLocation()));
|
|
}
|
|
|
|
Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
|
|
// Fast path for a single digit (which is quite common). A single digit
|
|
// cannot have a trigraph, escaped newline, radix prefix, or type suffix.
|
|
if (Tok.getLength() == 1) {
|
|
const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
|
|
unsigned IntSize = Context.Target.getIntWidth();
|
|
return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
|
|
Context.IntTy, Tok.getLocation()));
|
|
}
|
|
|
|
llvm::SmallString<512> IntegerBuffer;
|
|
// Add padding so that NumericLiteralParser can overread by one character.
|
|
IntegerBuffer.resize(Tok.getLength()+1);
|
|
const char *ThisTokBegin = &IntegerBuffer[0];
|
|
|
|
// Get the spelling of the token, which eliminates trigraphs, etc.
|
|
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
|
|
|
|
NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
|
|
Tok.getLocation(), PP);
|
|
if (Literal.hadError)
|
|
return ExprError();
|
|
|
|
Expr *Res;
|
|
|
|
if (Literal.isFloatingLiteral()) {
|
|
QualType Ty;
|
|
if (Literal.isFloat)
|
|
Ty = Context.FloatTy;
|
|
else if (!Literal.isLong)
|
|
Ty = Context.DoubleTy;
|
|
else
|
|
Ty = Context.LongDoubleTy;
|
|
|
|
const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
|
|
|
|
// isExact will be set by GetFloatValue().
|
|
bool isExact = false;
|
|
llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact);
|
|
Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
|
|
|
|
} else if (!Literal.isIntegerLiteral()) {
|
|
return ExprError();
|
|
} else {
|
|
QualType Ty;
|
|
|
|
// long long is a C99 feature.
|
|
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
|
|
Literal.isLongLong)
|
|
Diag(Tok.getLocation(), diag::ext_longlong);
|
|
|
|
// Get the value in the widest-possible width.
|
|
llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
|
|
|
|
if (Literal.GetIntegerValue(ResultVal)) {
|
|
// If this value didn't fit into uintmax_t, warn and force to ull.
|
|
Diag(Tok.getLocation(), diag::warn_integer_too_large);
|
|
Ty = Context.UnsignedLongLongTy;
|
|
assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
|
|
"long long is not intmax_t?");
|
|
} else {
|
|
// If this value fits into a ULL, try to figure out what else it fits into
|
|
// according to the rules of C99 6.4.4.1p5.
|
|
|
|
// Octal, Hexadecimal, and integers with a U suffix are allowed to
|
|
// be an unsigned int.
|
|
bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
|
|
|
|
// Check from smallest to largest, picking the smallest type we can.
|
|
unsigned Width = 0;
|
|
if (!Literal.isLong && !Literal.isLongLong) {
|
|
// Are int/unsigned possibilities?
|
|
unsigned IntSize = Context.Target.getIntWidth();
|
|
|
|
// Does it fit in a unsigned int?
|
|
if (ResultVal.isIntN(IntSize)) {
|
|
// Does it fit in a signed int?
|
|
if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
|
|
Ty = Context.IntTy;
|
|
else if (AllowUnsigned)
|
|
Ty = Context.UnsignedIntTy;
|
|
Width = IntSize;
|
|
}
|
|
}
|
|
|
|
// Are long/unsigned long possibilities?
|
|
if (Ty.isNull() && !Literal.isLongLong) {
|
|
unsigned LongSize = Context.Target.getLongWidth();
|
|
|
|
// Does it fit in a unsigned long?
|
|
if (ResultVal.isIntN(LongSize)) {
|
|
// Does it fit in a signed long?
|
|
if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
|
|
Ty = Context.LongTy;
|
|
else if (AllowUnsigned)
|
|
Ty = Context.UnsignedLongTy;
|
|
Width = LongSize;
|
|
}
|
|
}
|
|
|
|
// Finally, check long long if needed.
|
|
if (Ty.isNull()) {
|
|
unsigned LongLongSize = Context.Target.getLongLongWidth();
|
|
|
|
// Does it fit in a unsigned long long?
|
|
if (ResultVal.isIntN(LongLongSize)) {
|
|
// Does it fit in a signed long long?
|
|
if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
|
|
Ty = Context.LongLongTy;
|
|
else if (AllowUnsigned)
|
|
Ty = Context.UnsignedLongLongTy;
|
|
Width = LongLongSize;
|
|
}
|
|
}
|
|
|
|
// If we still couldn't decide a type, we probably have something that
|
|
// does not fit in a signed long long, but has no U suffix.
|
|
if (Ty.isNull()) {
|
|
Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
|
|
Ty = Context.UnsignedLongLongTy;
|
|
Width = Context.Target.getLongLongWidth();
|
|
}
|
|
|
|
if (ResultVal.getBitWidth() != Width)
|
|
ResultVal.trunc(Width);
|
|
}
|
|
Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
|
|
}
|
|
|
|
// If this is an imaginary literal, create the ImaginaryLiteral wrapper.
|
|
if (Literal.isImaginary)
|
|
Res = new (Context) ImaginaryLiteral(Res,
|
|
Context.getComplexType(Res->getType()));
|
|
|
|
return Owned(Res);
|
|
}
|
|
|
|
Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
|
|
SourceLocation R, ExprArg Val) {
|
|
Expr *E = Val.takeAs<Expr>();
|
|
assert((E != 0) && "ActOnParenExpr() missing expr");
|
|
return Owned(new (Context) ParenExpr(L, R, E));
|
|
}
|
|
|
|
/// The UsualUnaryConversions() function is *not* called by this routine.
|
|
/// See C99 6.3.2.1p[2-4] for more details.
|
|
bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
|
|
SourceLocation OpLoc,
|
|
const SourceRange &ExprRange,
|
|
bool isSizeof) {
|
|
if (exprType->isDependentType())
|
|
return false;
|
|
|
|
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
|
|
// the result is the size of the referenced type."
|
|
// C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
|
|
// result shall be the alignment of the referenced type."
|
|
if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
|
|
exprType = Ref->getPointeeType();
|
|
|
|
// C99 6.5.3.4p1:
|
|
if (exprType->isFunctionType()) {
|
|
// alignof(function) is allowed as an extension.
|
|
if (isSizeof)
|
|
Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
|
|
return false;
|
|
}
|
|
|
|
// Allow sizeof(void)/alignof(void) as an extension.
|
|
if (exprType->isVoidType()) {
|
|
Diag(OpLoc, diag::ext_sizeof_void_type)
|
|
<< (isSizeof ? "sizeof" : "__alignof") << ExprRange;
|
|
return false;
|
|
}
|
|
|
|
if (RequireCompleteType(OpLoc, exprType,
|
|
isSizeof ? diag::err_sizeof_incomplete_type :
|
|
PDiag(diag::err_alignof_incomplete_type)
|
|
<< ExprRange))
|
|
return true;
|
|
|
|
// Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
|
|
if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
|
|
Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
|
|
<< exprType << isSizeof << ExprRange;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
|
|
const SourceRange &ExprRange) {
|
|
E = E->IgnoreParens();
|
|
|
|
// alignof decl is always ok.
|
|
if (isa<DeclRefExpr>(E))
|
|
return false;
|
|
|
|
// Cannot know anything else if the expression is dependent.
|
|
if (E->isTypeDependent())
|
|
return false;
|
|
|
|
if (E->getBitField()) {
|
|
Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
|
|
return true;
|
|
}
|
|
|
|
// Alignment of a field access is always okay, so long as it isn't a
|
|
// bit-field.
|
|
if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
|
|
if (isa<FieldDecl>(ME->getMemberDecl()))
|
|
return false;
|
|
|
|
return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
|
|
}
|
|
|
|
/// \brief Build a sizeof or alignof expression given a type operand.
|
|
Action::OwningExprResult
|
|
Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
|
|
SourceLocation OpLoc,
|
|
bool isSizeOf, SourceRange R) {
|
|
if (!TInfo)
|
|
return ExprError();
|
|
|
|
QualType T = TInfo->getType();
|
|
|
|
if (!T->isDependentType() &&
|
|
CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
|
|
return ExprError();
|
|
|
|
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
|
|
return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
|
|
Context.getSizeType(), OpLoc,
|
|
R.getEnd()));
|
|
}
|
|
|
|
/// \brief Build a sizeof or alignof expression given an expression
|
|
/// operand.
|
|
Action::OwningExprResult
|
|
Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
|
|
bool isSizeOf, SourceRange R) {
|
|
// Verify that the operand is valid.
|
|
bool isInvalid = false;
|
|
if (E->isTypeDependent()) {
|
|
// Delay type-checking for type-dependent expressions.
|
|
} else if (!isSizeOf) {
|
|
isInvalid = CheckAlignOfExpr(E, OpLoc, R);
|
|
} else if (E->getBitField()) { // C99 6.5.3.4p1.
|
|
Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
|
|
isInvalid = true;
|
|
} else {
|
|
isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
|
|
}
|
|
|
|
if (isInvalid)
|
|
return ExprError();
|
|
|
|
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
|
|
return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
|
|
Context.getSizeType(), OpLoc,
|
|
R.getEnd()));
|
|
}
|
|
|
|
/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
|
|
/// the same for @c alignof and @c __alignof
|
|
/// Note that the ArgRange is invalid if isType is false.
|
|
Action::OwningExprResult
|
|
Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
|
|
void *TyOrEx, const SourceRange &ArgRange) {
|
|
// If error parsing type, ignore.
|
|
if (TyOrEx == 0) return ExprError();
|
|
|
|
if (isType) {
|
|
TypeSourceInfo *TInfo;
|
|
(void) GetTypeFromParser(TyOrEx, &TInfo);
|
|
return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
|
|
}
|
|
|
|
Expr *ArgEx = (Expr *)TyOrEx;
|
|
Action::OwningExprResult Result
|
|
= CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
|
|
|
|
if (Result.isInvalid())
|
|
DeleteExpr(ArgEx);
|
|
|
|
return move(Result);
|
|
}
|
|
|
|
QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
|
|
if (V->isTypeDependent())
|
|
return Context.DependentTy;
|
|
|
|
// These operators return the element type of a complex type.
|
|
if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
|
|
return CT->getElementType();
|
|
|
|
// Otherwise they pass through real integer and floating point types here.
|
|
if (V->getType()->isArithmeticType())
|
|
return V->getType();
|
|
|
|
// Reject anything else.
|
|
Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
|
|
<< (isReal ? "__real" : "__imag");
|
|
return QualType();
|
|
}
|
|
|
|
|
|
|
|
Action::OwningExprResult
|
|
Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
tok::TokenKind Kind, ExprArg Input) {
|
|
UnaryOperator::Opcode Opc;
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown unary op!");
|
|
case tok::plusplus: Opc = UnaryOperator::PostInc; break;
|
|
case tok::minusminus: Opc = UnaryOperator::PostDec; break;
|
|
}
|
|
|
|
return BuildUnaryOp(S, OpLoc, Opc, move(Input));
|
|
}
|
|
|
|
Action::OwningExprResult
|
|
Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
|
|
ExprArg Idx, SourceLocation RLoc) {
|
|
// Since this might be a postfix expression, get rid of ParenListExprs.
|
|
Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
|
|
|
|
Expr *LHSExp = static_cast<Expr*>(Base.get()),
|
|
*RHSExp = static_cast<Expr*>(Idx.get());
|
|
|
|
if (getLangOptions().CPlusPlus &&
|
|
(LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
|
|
Base.release();
|
|
Idx.release();
|
|
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
|
|
Context.DependentTy, RLoc));
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus &&
|
|
(LHSExp->getType()->isRecordType() ||
|
|
LHSExp->getType()->isEnumeralType() ||
|
|
RHSExp->getType()->isRecordType() ||
|
|
RHSExp->getType()->isEnumeralType())) {
|
|
return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
|
|
}
|
|
|
|
return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
|
|
}
|
|
|
|
|
|
Action::OwningExprResult
|
|
Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
|
|
ExprArg Idx, SourceLocation RLoc) {
|
|
Expr *LHSExp = static_cast<Expr*>(Base.get());
|
|
Expr *RHSExp = static_cast<Expr*>(Idx.get());
|
|
|
|
// Perform default conversions.
|
|
DefaultFunctionArrayConversion(LHSExp);
|
|
DefaultFunctionArrayConversion(RHSExp);
|
|
|
|
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
|
|
|
|
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
|
|
// to the expression *((e1)+(e2)). This means the array "Base" may actually be
|
|
// in the subscript position. As a result, we need to derive the array base
|
|
// and index from the expression types.
|
|
Expr *BaseExpr, *IndexExpr;
|
|
QualType ResultType;
|
|
if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
ResultType = Context.DependentTy;
|
|
} else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
|
|
// Handle the uncommon case of "123[Ptr]".
|
|
BaseExpr = RHSExp;
|
|
IndexExpr = LHSExp;
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const ObjCObjectPointerType *PTy =
|
|
LHSTy->getAs<ObjCObjectPointerType>()) {
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const ObjCObjectPointerType *PTy =
|
|
RHSTy->getAs<ObjCObjectPointerType>()) {
|
|
// Handle the uncommon case of "123[Ptr]".
|
|
BaseExpr = RHSExp;
|
|
IndexExpr = LHSExp;
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
|
|
BaseExpr = LHSExp; // vectors: V[123]
|
|
IndexExpr = RHSExp;
|
|
|
|
// FIXME: need to deal with const...
|
|
ResultType = VTy->getElementType();
|
|
} else if (LHSTy->isArrayType()) {
|
|
// If we see an array that wasn't promoted by
|
|
// DefaultFunctionArrayConversion, it must be an array that
|
|
// wasn't promoted because of the C90 rule that doesn't
|
|
// allow promoting non-lvalue arrays. Warn, then
|
|
// force the promotion here.
|
|
Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
|
|
LHSExp->getSourceRange();
|
|
ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
|
|
CastExpr::CK_ArrayToPointerDecay);
|
|
LHSTy = LHSExp->getType();
|
|
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
|
|
} else if (RHSTy->isArrayType()) {
|
|
// Same as previous, except for 123[f().a] case
|
|
Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
|
|
RHSExp->getSourceRange();
|
|
ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
|
|
CastExpr::CK_ArrayToPointerDecay);
|
|
RHSTy = RHSExp->getType();
|
|
|
|
BaseExpr = RHSExp;
|
|
IndexExpr = LHSExp;
|
|
ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
|
|
} else {
|
|
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
|
|
<< LHSExp->getSourceRange() << RHSExp->getSourceRange());
|
|
}
|
|
// C99 6.5.2.1p1
|
|
if (!(IndexExpr->getType()->isIntegerType() &&
|
|
IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
|
|
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
|
|
<< IndexExpr->getSourceRange());
|
|
|
|
if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
|
|
IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
|
|
&& !IndexExpr->isTypeDependent())
|
|
Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
|
|
|
|
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
|
|
// C++ [expr.sub]p1: The type "T" shall be a completely-defined object
|
|
// type. Note that Functions are not objects, and that (in C99 parlance)
|
|
// incomplete types are not object types.
|
|
if (ResultType->isFunctionType()) {
|
|
Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
|
|
<< ResultType << BaseExpr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
if (!ResultType->isDependentType() &&
|
|
RequireCompleteType(LLoc, ResultType,
|
|
PDiag(diag::err_subscript_incomplete_type)
|
|
<< BaseExpr->getSourceRange()))
|
|
return ExprError();
|
|
|
|
// Diagnose bad cases where we step over interface counts.
|
|
if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
|
|
Diag(LLoc, diag::err_subscript_nonfragile_interface)
|
|
<< ResultType << BaseExpr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
Base.release();
|
|
Idx.release();
|
|
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
|
|
ResultType, RLoc));
|
|
}
|
|
|
|
QualType Sema::
|
|
CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
|
|
const IdentifierInfo *CompName,
|
|
SourceLocation CompLoc) {
|
|
// FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
|
|
// see FIXME there.
|
|
//
|
|
// FIXME: This logic can be greatly simplified by splitting it along
|
|
// halving/not halving and reworking the component checking.
|
|
const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
|
|
|
|
// The vector accessor can't exceed the number of elements.
|
|
const char *compStr = CompName->getNameStart();
|
|
|
|
// This flag determines whether or not the component is one of the four
|
|
// special names that indicate a subset of exactly half the elements are
|
|
// to be selected.
|
|
bool HalvingSwizzle = false;
|
|
|
|
// This flag determines whether or not CompName has an 's' char prefix,
|
|
// indicating that it is a string of hex values to be used as vector indices.
|
|
bool HexSwizzle = *compStr == 's' || *compStr == 'S';
|
|
|
|
// Check that we've found one of the special components, or that the component
|
|
// names must come from the same set.
|
|
if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
|
|
!strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
|
|
HalvingSwizzle = true;
|
|
} else if (vecType->getPointAccessorIdx(*compStr) != -1) {
|
|
do
|
|
compStr++;
|
|
while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
|
|
} else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
|
|
do
|
|
compStr++;
|
|
while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
|
|
}
|
|
|
|
if (!HalvingSwizzle && *compStr) {
|
|
// We didn't get to the end of the string. This means the component names
|
|
// didn't come from the same set *or* we encountered an illegal name.
|
|
Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
|
|
<< std::string(compStr,compStr+1) << SourceRange(CompLoc);
|
|
return QualType();
|
|
}
|
|
|
|
// Ensure no component accessor exceeds the width of the vector type it
|
|
// operates on.
|
|
if (!HalvingSwizzle) {
|
|
compStr = CompName->getNameStart();
|
|
|
|
if (HexSwizzle)
|
|
compStr++;
|
|
|
|
while (*compStr) {
|
|
if (!vecType->isAccessorWithinNumElements(*compStr++)) {
|
|
Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
|
|
<< baseType << SourceRange(CompLoc);
|
|
return QualType();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is a halving swizzle, verify that the base type has an even
|
|
// number of elements.
|
|
if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
|
|
Diag(OpLoc, diag::err_ext_vector_component_requires_even)
|
|
<< baseType << SourceRange(CompLoc);
|
|
return QualType();
|
|
}
|
|
|
|
// The component accessor looks fine - now we need to compute the actual type.
|
|
// The vector type is implied by the component accessor. For example,
|
|
// vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
|
|
// vec4.s0 is a float, vec4.s23 is a vec3, etc.
|
|
// vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
|
|
unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
|
|
: CompName->getLength();
|
|
if (HexSwizzle)
|
|
CompSize--;
|
|
|
|
if (CompSize == 1)
|
|
return vecType->getElementType();
|
|
|
|
QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
|
|
// Now look up the TypeDefDecl from the vector type. Without this,
|
|
// diagostics look bad. We want extended vector types to appear built-in.
|
|
for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
|
|
if (ExtVectorDecls[i]->getUnderlyingType() == VT)
|
|
return Context.getTypedefType(ExtVectorDecls[i]);
|
|
}
|
|
return VT; // should never get here (a typedef type should always be found).
|
|
}
|
|
|
|
static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
|
|
IdentifierInfo *Member,
|
|
const Selector &Sel,
|
|
ASTContext &Context) {
|
|
|
|
if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
|
|
return PD;
|
|
if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
|
|
return OMD;
|
|
|
|
for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
|
|
E = PDecl->protocol_end(); I != E; ++I) {
|
|
if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
|
|
Context))
|
|
return D;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
|
|
IdentifierInfo *Member,
|
|
const Selector &Sel,
|
|
ASTContext &Context) {
|
|
// Check protocols on qualified interfaces.
|
|
Decl *GDecl = 0;
|
|
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
|
|
E = QIdTy->qual_end(); I != E; ++I) {
|
|
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
|
|
GDecl = PD;
|
|
break;
|
|
}
|
|
// Also must look for a getter name which uses property syntax.
|
|
if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
|
|
GDecl = OMD;
|
|
break;
|
|
}
|
|
}
|
|
if (!GDecl) {
|
|
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
|
|
E = QIdTy->qual_end(); I != E; ++I) {
|
|
// Search in the protocol-qualifier list of current protocol.
|
|
GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
|
|
if (GDecl)
|
|
return GDecl;
|
|
}
|
|
}
|
|
return GDecl;
|
|
}
|
|
|
|
Sema::OwningExprResult
|
|
Sema::ActOnDependentMemberExpr(ExprArg Base, QualType BaseType,
|
|
bool IsArrow, SourceLocation OpLoc,
|
|
const CXXScopeSpec &SS,
|
|
NamedDecl *FirstQualifierInScope,
|
|
DeclarationName Name, SourceLocation NameLoc,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
Expr *BaseExpr = Base.takeAs<Expr>();
|
|
|
|
// Even in dependent contexts, try to diagnose base expressions with
|
|
// obviously wrong types, e.g.:
|
|
//
|
|
// T* t;
|
|
// t.f;
|
|
//
|
|
// In Obj-C++, however, the above expression is valid, since it could be
|
|
// accessing the 'f' property if T is an Obj-C interface. The extra check
|
|
// allows this, while still reporting an error if T is a struct pointer.
|
|
if (!IsArrow) {
|
|
const PointerType *PT = BaseType->getAs<PointerType>();
|
|
if (PT && (!getLangOptions().ObjC1 ||
|
|
PT->getPointeeType()->isRecordType())) {
|
|
assert(BaseExpr && "cannot happen with implicit member accesses");
|
|
Diag(NameLoc, diag::err_typecheck_member_reference_struct_union)
|
|
<< BaseType << BaseExpr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
assert(BaseType->isDependentType());
|
|
|
|
// Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
|
|
// must have pointer type, and the accessed type is the pointee.
|
|
return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
|
|
IsArrow, OpLoc,
|
|
static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
|
|
SS.getRange(),
|
|
FirstQualifierInScope,
|
|
Name, NameLoc,
|
|
TemplateArgs));
|
|
}
|
|
|
|
/// We know that the given qualified member reference points only to
|
|
/// declarations which do not belong to the static type of the base
|
|
/// expression. Diagnose the problem.
|
|
static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
|
|
Expr *BaseExpr,
|
|
QualType BaseType,
|
|
const CXXScopeSpec &SS,
|
|
const LookupResult &R) {
|
|
// If this is an implicit member access, use a different set of
|
|
// diagnostics.
|
|
if (!BaseExpr)
|
|
return DiagnoseInstanceReference(SemaRef, SS, R);
|
|
|
|
// FIXME: this is an exceedingly lame diagnostic for some of the more
|
|
// complicated cases here.
|
|
DeclContext *DC = R.getRepresentativeDecl()->getDeclContext();
|
|
SemaRef.Diag(R.getNameLoc(), diag::err_not_direct_base_or_virtual)
|
|
<< SS.getRange() << DC << BaseType;
|
|
}
|
|
|
|
// Check whether the declarations we found through a nested-name
|
|
// specifier in a member expression are actually members of the base
|
|
// type. The restriction here is:
|
|
//
|
|
// C++ [expr.ref]p2:
|
|
// ... In these cases, the id-expression shall name a
|
|
// member of the class or of one of its base classes.
|
|
//
|
|
// So it's perfectly legitimate for the nested-name specifier to name
|
|
// an unrelated class, and for us to find an overload set including
|
|
// decls from classes which are not superclasses, as long as the decl
|
|
// we actually pick through overload resolution is from a superclass.
|
|
bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
|
|
QualType BaseType,
|
|
const CXXScopeSpec &SS,
|
|
const LookupResult &R) {
|
|
const RecordType *BaseRT = BaseType->getAs<RecordType>();
|
|
if (!BaseRT) {
|
|
// We can't check this yet because the base type is still
|
|
// dependent.
|
|
assert(BaseType->isDependentType());
|
|
return false;
|
|
}
|
|
CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
|
|
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
|
|
// If this is an implicit member reference and we find a
|
|
// non-instance member, it's not an error.
|
|
if (!BaseExpr && !IsInstanceMember((*I)->getUnderlyingDecl()))
|
|
return false;
|
|
|
|
// Note that we use the DC of the decl, not the underlying decl.
|
|
CXXRecordDecl *RecordD = cast<CXXRecordDecl>((*I)->getDeclContext());
|
|
while (RecordD->isAnonymousStructOrUnion())
|
|
RecordD = cast<CXXRecordDecl>(RecordD->getParent());
|
|
|
|
llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
|
|
MemberRecord.insert(RecordD->getCanonicalDecl());
|
|
|
|
if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
|
|
return false;
|
|
}
|
|
|
|
DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
|
|
SourceRange BaseRange, const RecordType *RTy,
|
|
SourceLocation OpLoc, const CXXScopeSpec &SS) {
|
|
RecordDecl *RDecl = RTy->getDecl();
|
|
if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
|
|
PDiag(diag::err_typecheck_incomplete_tag)
|
|
<< BaseRange))
|
|
return true;
|
|
|
|
DeclContext *DC = RDecl;
|
|
if (SS.isSet()) {
|
|
// If the member name was a qualified-id, look into the
|
|
// nested-name-specifier.
|
|
DC = SemaRef.computeDeclContext(SS, false);
|
|
|
|
if (SemaRef.RequireCompleteDeclContext(SS)) {
|
|
SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
|
|
<< SS.getRange() << DC;
|
|
return true;
|
|
}
|
|
|
|
assert(DC && "Cannot handle non-computable dependent contexts in lookup");
|
|
|
|
if (!isa<TypeDecl>(DC)) {
|
|
SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
|
|
<< DC << SS.getRange();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// The record definition is complete, now look up the member.
|
|
SemaRef.LookupQualifiedName(R, DC);
|
|
|
|
return false;
|
|
}
|
|
|
|
Sema::OwningExprResult
|
|
Sema::BuildMemberReferenceExpr(ExprArg BaseArg, QualType BaseType,
|
|
SourceLocation OpLoc, bool IsArrow,
|
|
const CXXScopeSpec &SS,
|
|
NamedDecl *FirstQualifierInScope,
|
|
DeclarationName Name, SourceLocation NameLoc,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
Expr *Base = BaseArg.takeAs<Expr>();
|
|
|
|
if (BaseType->isDependentType() ||
|
|
(SS.isSet() && isDependentScopeSpecifier(SS)))
|
|
return ActOnDependentMemberExpr(ExprArg(*this, Base), BaseType,
|
|
IsArrow, OpLoc,
|
|
SS, FirstQualifierInScope,
|
|
Name, NameLoc,
|
|
TemplateArgs);
|
|
|
|
LookupResult R(*this, Name, NameLoc, LookupMemberName);
|
|
|
|
// Implicit member accesses.
|
|
if (!Base) {
|
|
QualType RecordTy = BaseType;
|
|
if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
|
|
if (LookupMemberExprInRecord(*this, R, SourceRange(),
|
|
RecordTy->getAs<RecordType>(),
|
|
OpLoc, SS))
|
|
return ExprError();
|
|
|
|
// Explicit member accesses.
|
|
} else {
|
|
OwningExprResult Result =
|
|
LookupMemberExpr(R, Base, IsArrow, OpLoc,
|
|
SS, FirstQualifierInScope,
|
|
/*ObjCImpDecl*/ DeclPtrTy());
|
|
|
|
if (Result.isInvalid()) {
|
|
Owned(Base);
|
|
return ExprError();
|
|
}
|
|
|
|
if (Result.get())
|
|
return move(Result);
|
|
}
|
|
|
|
return BuildMemberReferenceExpr(ExprArg(*this, Base), BaseType,
|
|
OpLoc, IsArrow, SS, R, TemplateArgs);
|
|
}
|
|
|
|
Sema::OwningExprResult
|
|
Sema::BuildMemberReferenceExpr(ExprArg Base, QualType BaseExprType,
|
|
SourceLocation OpLoc, bool IsArrow,
|
|
const CXXScopeSpec &SS,
|
|
LookupResult &R,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
Expr *BaseExpr = Base.takeAs<Expr>();
|
|
QualType BaseType = BaseExprType;
|
|
if (IsArrow) {
|
|
assert(BaseType->isPointerType());
|
|
BaseType = BaseType->getAs<PointerType>()->getPointeeType();
|
|
}
|
|
|
|
NestedNameSpecifier *Qualifier =
|
|
static_cast<NestedNameSpecifier*>(SS.getScopeRep());
|
|
DeclarationName MemberName = R.getLookupName();
|
|
SourceLocation MemberLoc = R.getNameLoc();
|
|
|
|
if (R.isAmbiguous())
|
|
return ExprError();
|
|
|
|
if (R.empty()) {
|
|
// Rederive where we looked up.
|
|
DeclContext *DC = (SS.isSet()
|
|
? computeDeclContext(SS, false)
|
|
: BaseType->getAs<RecordType>()->getDecl());
|
|
|
|
Diag(R.getNameLoc(), diag::err_no_member)
|
|
<< MemberName << DC
|
|
<< (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
|
|
return ExprError();
|
|
}
|
|
|
|
// Diagnose qualified lookups that find only declarations from a
|
|
// non-base type. Note that it's okay for lookup to find
|
|
// declarations from a non-base type as long as those aren't the
|
|
// ones picked by overload resolution.
|
|
if (SS.isSet() && CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
|
|
return ExprError();
|
|
|
|
// Construct an unresolved result if we in fact got an unresolved
|
|
// result.
|
|
if (R.isOverloadedResult() || R.isUnresolvableResult()) {
|
|
bool Dependent =
|
|
R.isUnresolvableResult() ||
|
|
UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
|
|
|
|
UnresolvedMemberExpr *MemExpr
|
|
= UnresolvedMemberExpr::Create(Context, Dependent,
|
|
R.isUnresolvableResult(),
|
|
BaseExpr, BaseExprType,
|
|
IsArrow, OpLoc,
|
|
Qualifier, SS.getRange(),
|
|
MemberName, MemberLoc,
|
|
TemplateArgs);
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
|
|
MemExpr->addDecl(*I);
|
|
|
|
return Owned(MemExpr);
|
|
}
|
|
|
|
assert(R.isSingleResult());
|
|
NamedDecl *MemberDecl = R.getFoundDecl();
|
|
|
|
// FIXME: diagnose the presence of template arguments now.
|
|
|
|
// If the decl being referenced had an error, return an error for this
|
|
// sub-expr without emitting another error, in order to avoid cascading
|
|
// error cases.
|
|
if (MemberDecl->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
// Handle the implicit-member-access case.
|
|
if (!BaseExpr) {
|
|
// If this is not an instance member, convert to a non-member access.
|
|
if (!IsInstanceMember(MemberDecl))
|
|
return BuildDeclarationNameExpr(SS, R.getNameLoc(), MemberDecl);
|
|
|
|
BaseExpr = new (Context) CXXThisExpr(SourceLocation(), BaseExprType);
|
|
}
|
|
|
|
bool ShouldCheckUse = true;
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
|
|
// Don't diagnose the use of a virtual member function unless it's
|
|
// explicitly qualified.
|
|
if (MD->isVirtual() && !SS.isSet())
|
|
ShouldCheckUse = false;
|
|
}
|
|
|
|
// Check the use of this member.
|
|
if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
|
|
Owned(BaseExpr);
|
|
return ExprError();
|
|
}
|
|
|
|
if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
|
|
// We may have found a field within an anonymous union or struct
|
|
// (C++ [class.union]).
|
|
if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
|
|
!BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
|
|
return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
|
|
BaseExpr, OpLoc);
|
|
|
|
// Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
|
|
QualType MemberType = FD->getType();
|
|
if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
|
|
MemberType = Ref->getPointeeType();
|
|
else {
|
|
Qualifiers BaseQuals = BaseType.getQualifiers();
|
|
BaseQuals.removeObjCGCAttr();
|
|
if (FD->isMutable()) BaseQuals.removeConst();
|
|
|
|
Qualifiers MemberQuals
|
|
= Context.getCanonicalType(MemberType).getQualifiers();
|
|
|
|
Qualifiers Combined = BaseQuals + MemberQuals;
|
|
if (Combined != MemberQuals)
|
|
MemberType = Context.getQualifiedType(MemberType, Combined);
|
|
}
|
|
|
|
MarkDeclarationReferenced(MemberLoc, FD);
|
|
if (PerformObjectMemberConversion(BaseExpr, FD))
|
|
return ExprError();
|
|
return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
|
|
FD, MemberLoc, MemberType));
|
|
}
|
|
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
|
|
MarkDeclarationReferenced(MemberLoc, Var);
|
|
return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
|
|
Var, MemberLoc,
|
|
Var->getType().getNonReferenceType()));
|
|
}
|
|
|
|
if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
|
|
MarkDeclarationReferenced(MemberLoc, MemberDecl);
|
|
return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
|
|
MemberFn, MemberLoc,
|
|
MemberFn->getType()));
|
|
}
|
|
|
|
if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
|
|
MarkDeclarationReferenced(MemberLoc, MemberDecl);
|
|
return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
|
|
Enum, MemberLoc, Enum->getType()));
|
|
}
|
|
|
|
Owned(BaseExpr);
|
|
|
|
if (isa<TypeDecl>(MemberDecl))
|
|
return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
|
|
<< MemberName << int(IsArrow));
|
|
|
|
// We found a declaration kind that we didn't expect. This is a
|
|
// generic error message that tells the user that she can't refer
|
|
// to this member with '.' or '->'.
|
|
return ExprError(Diag(MemberLoc,
|
|
diag::err_typecheck_member_reference_unknown)
|
|
<< MemberName << int(IsArrow));
|
|
}
|
|
|
|
/// Look up the given member of the given non-type-dependent
|
|
/// expression. This can return in one of two ways:
|
|
/// * If it returns a sentinel null-but-valid result, the caller will
|
|
/// assume that lookup was performed and the results written into
|
|
/// the provided structure. It will take over from there.
|
|
/// * Otherwise, the returned expression will be produced in place of
|
|
/// an ordinary member expression.
|
|
///
|
|
/// The ObjCImpDecl bit is a gross hack that will need to be properly
|
|
/// fixed for ObjC++.
|
|
Sema::OwningExprResult
|
|
Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
|
|
bool &IsArrow, SourceLocation OpLoc,
|
|
const CXXScopeSpec &SS,
|
|
NamedDecl *FirstQualifierInScope,
|
|
DeclPtrTy ObjCImpDecl) {
|
|
assert(BaseExpr && "no base expression");
|
|
|
|
// Perform default conversions.
|
|
DefaultFunctionArrayConversion(BaseExpr);
|
|
|
|
QualType BaseType = BaseExpr->getType();
|
|
assert(!BaseType->isDependentType());
|
|
|
|
DeclarationName MemberName = R.getLookupName();
|
|
SourceLocation MemberLoc = R.getNameLoc();
|
|
|
|
// If the user is trying to apply -> or . to a function pointer
|
|
// type, it's probably because they forgot parentheses to call that
|
|
// function. Suggest the addition of those parentheses, build the
|
|
// call, and continue on.
|
|
if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
|
|
if (const FunctionProtoType *Fun
|
|
= Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
|
|
QualType ResultTy = Fun->getResultType();
|
|
if (Fun->getNumArgs() == 0 &&
|
|
((!IsArrow && ResultTy->isRecordType()) ||
|
|
(IsArrow && ResultTy->isPointerType() &&
|
|
ResultTy->getAs<PointerType>()->getPointeeType()
|
|
->isRecordType()))) {
|
|
SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
|
|
Diag(Loc, diag::err_member_reference_needs_call)
|
|
<< QualType(Fun, 0)
|
|
<< CodeModificationHint::CreateInsertion(Loc, "()");
|
|
|
|
OwningExprResult NewBase
|
|
= ActOnCallExpr(0, ExprArg(*this, BaseExpr), Loc,
|
|
MultiExprArg(*this, 0, 0), 0, Loc);
|
|
if (NewBase.isInvalid())
|
|
return ExprError();
|
|
|
|
BaseExpr = NewBase.takeAs<Expr>();
|
|
DefaultFunctionArrayConversion(BaseExpr);
|
|
BaseType = BaseExpr->getType();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is an Objective-C pseudo-builtin and a definition is provided then
|
|
// use that.
|
|
if (BaseType->isObjCIdType()) {
|
|
if (IsArrow) {
|
|
// Handle the following exceptional case PObj->isa.
|
|
if (const ObjCObjectPointerType *OPT =
|
|
BaseType->getAs<ObjCObjectPointerType>()) {
|
|
if (OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
|
|
MemberName.getAsIdentifierInfo()->isStr("isa"))
|
|
return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
|
|
Context.getObjCClassType()));
|
|
}
|
|
}
|
|
// We have an 'id' type. Rather than fall through, we check if this
|
|
// is a reference to 'isa'.
|
|
if (BaseType != Context.ObjCIdRedefinitionType) {
|
|
BaseType = Context.ObjCIdRedefinitionType;
|
|
ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
|
|
}
|
|
}
|
|
|
|
// If this is an Objective-C pseudo-builtin and a definition is provided then
|
|
// use that.
|
|
if (Context.isObjCSelType(BaseType)) {
|
|
// We have an 'SEL' type. Rather than fall through, we check if this
|
|
// is a reference to 'sel_id'.
|
|
if (BaseType != Context.ObjCSelRedefinitionType) {
|
|
BaseType = Context.ObjCSelRedefinitionType;
|
|
ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
|
|
}
|
|
}
|
|
|
|
assert(!BaseType.isNull() && "no type for member expression");
|
|
|
|
// Handle properties on ObjC 'Class' types.
|
|
if (!IsArrow && BaseType->isObjCClassType()) {
|
|
// Also must look for a getter name which uses property syntax.
|
|
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
|
|
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
|
|
if (ObjCMethodDecl *MD = getCurMethodDecl()) {
|
|
ObjCInterfaceDecl *IFace = MD->getClassInterface();
|
|
ObjCMethodDecl *Getter;
|
|
// FIXME: need to also look locally in the implementation.
|
|
if ((Getter = IFace->lookupClassMethod(Sel))) {
|
|
// Check the use of this method.
|
|
if (DiagnoseUseOfDecl(Getter, MemberLoc))
|
|
return ExprError();
|
|
}
|
|
// If we found a getter then this may be a valid dot-reference, we
|
|
// will look for the matching setter, in case it is needed.
|
|
Selector SetterSel =
|
|
SelectorTable::constructSetterName(PP.getIdentifierTable(),
|
|
PP.getSelectorTable(), Member);
|
|
ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
|
|
if (!Setter) {
|
|
// If this reference is in an @implementation, also check for 'private'
|
|
// methods.
|
|
Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
|
|
}
|
|
// Look through local category implementations associated with the class.
|
|
if (!Setter)
|
|
Setter = IFace->getCategoryClassMethod(SetterSel);
|
|
|
|
if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
|
|
return ExprError();
|
|
|
|
if (Getter || Setter) {
|
|
QualType PType;
|
|
|
|
if (Getter)
|
|
PType = Getter->getResultType();
|
|
else
|
|
// Get the expression type from Setter's incoming parameter.
|
|
PType = (*(Setter->param_end() -1))->getType();
|
|
// FIXME: we must check that the setter has property type.
|
|
return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
|
|
PType,
|
|
Setter, MemberLoc, BaseExpr));
|
|
}
|
|
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
|
|
<< MemberName << BaseType);
|
|
}
|
|
}
|
|
|
|
if (BaseType->isObjCClassType() &&
|
|
BaseType != Context.ObjCClassRedefinitionType) {
|
|
BaseType = Context.ObjCClassRedefinitionType;
|
|
ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
|
|
}
|
|
|
|
if (IsArrow) {
|
|
if (const PointerType *PT = BaseType->getAs<PointerType>())
|
|
BaseType = PT->getPointeeType();
|
|
else if (BaseType->isObjCObjectPointerType())
|
|
;
|
|
else if (BaseType->isRecordType()) {
|
|
// Recover from arrow accesses to records, e.g.:
|
|
// struct MyRecord foo;
|
|
// foo->bar
|
|
// This is actually well-formed in C++ if MyRecord has an
|
|
// overloaded operator->, but that should have been dealt with
|
|
// by now.
|
|
Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
|
|
<< BaseType << int(IsArrow) << BaseExpr->getSourceRange()
|
|
<< CodeModificationHint::CreateReplacement(OpLoc, ".");
|
|
IsArrow = false;
|
|
} else {
|
|
Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
|
|
<< BaseType << BaseExpr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
} else {
|
|
// Recover from dot accesses to pointers, e.g.:
|
|
// type *foo;
|
|
// foo.bar
|
|
// This is actually well-formed in two cases:
|
|
// - 'type' is an Objective C type
|
|
// - 'bar' is a pseudo-destructor name which happens to refer to
|
|
// the appropriate pointer type
|
|
if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
|
|
const PointerType *PT = BaseType->getAs<PointerType>();
|
|
if (PT && PT->getPointeeType()->isRecordType()) {
|
|
Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
|
|
<< BaseType << int(IsArrow) << BaseExpr->getSourceRange()
|
|
<< CodeModificationHint::CreateReplacement(OpLoc, "->");
|
|
BaseType = PT->getPointeeType();
|
|
IsArrow = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle field access to simple records. This also handles access
|
|
// to fields of the ObjC 'id' struct.
|
|
if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
|
|
if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
|
|
RTy, OpLoc, SS))
|
|
return ExprError();
|
|
return Owned((Expr*) 0);
|
|
}
|
|
|
|
// Handle pseudo-destructors (C++ [expr.pseudo]). Since anything referring
|
|
// into a record type was handled above, any destructor we see here is a
|
|
// pseudo-destructor.
|
|
if (MemberName.getNameKind() == DeclarationName::CXXDestructorName) {
|
|
// C++ [expr.pseudo]p2:
|
|
// The left hand side of the dot operator shall be of scalar type. The
|
|
// left hand side of the arrow operator shall be of pointer to scalar
|
|
// type.
|
|
if (!BaseType->isScalarType())
|
|
return Owned(Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
|
|
<< BaseType << BaseExpr->getSourceRange());
|
|
|
|
// [...] The type designated by the pseudo-destructor-name shall be the
|
|
// same as the object type.
|
|
if (!MemberName.getCXXNameType()->isDependentType() &&
|
|
!Context.hasSameUnqualifiedType(BaseType, MemberName.getCXXNameType()))
|
|
return Owned(Diag(OpLoc, diag::err_pseudo_dtor_type_mismatch)
|
|
<< BaseType << MemberName.getCXXNameType()
|
|
<< BaseExpr->getSourceRange() << SourceRange(MemberLoc));
|
|
|
|
// [...] Furthermore, the two type-names in a pseudo-destructor-name of
|
|
// the form
|
|
//
|
|
// ::[opt] nested-name-specifier[opt] type-name :: ̃ type-name
|
|
//
|
|
// shall designate the same scalar type.
|
|
//
|
|
// FIXME: DPG can't see any way to trigger this particular clause, so it
|
|
// isn't checked here.
|
|
|
|
// FIXME: We've lost the precise spelling of the type by going through
|
|
// DeclarationName. Can we do better?
|
|
return Owned(new (Context) CXXPseudoDestructorExpr(Context, BaseExpr,
|
|
IsArrow, OpLoc,
|
|
(NestedNameSpecifier *) SS.getScopeRep(),
|
|
SS.getRange(),
|
|
MemberName.getCXXNameType(),
|
|
MemberLoc));
|
|
}
|
|
|
|
// Handle access to Objective-C instance variables, such as "Obj->ivar" and
|
|
// (*Obj).ivar.
|
|
if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
|
|
(!IsArrow && BaseType->isObjCInterfaceType())) {
|
|
const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
|
|
const ObjCInterfaceType *IFaceT =
|
|
OPT ? OPT->getInterfaceType() : BaseType->getAs<ObjCInterfaceType>();
|
|
if (IFaceT) {
|
|
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
|
|
|
|
ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
|
|
ObjCInterfaceDecl *ClassDeclared;
|
|
ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
|
|
|
|
if (IV) {
|
|
// If the decl being referenced had an error, return an error for this
|
|
// sub-expr without emitting another error, in order to avoid cascading
|
|
// error cases.
|
|
if (IV->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
// Check whether we can reference this field.
|
|
if (DiagnoseUseOfDecl(IV, MemberLoc))
|
|
return ExprError();
|
|
if (IV->getAccessControl() != ObjCIvarDecl::Public &&
|
|
IV->getAccessControl() != ObjCIvarDecl::Package) {
|
|
ObjCInterfaceDecl *ClassOfMethodDecl = 0;
|
|
if (ObjCMethodDecl *MD = getCurMethodDecl())
|
|
ClassOfMethodDecl = MD->getClassInterface();
|
|
else if (ObjCImpDecl && getCurFunctionDecl()) {
|
|
// Case of a c-function declared inside an objc implementation.
|
|
// FIXME: For a c-style function nested inside an objc implementation
|
|
// class, there is no implementation context available, so we pass
|
|
// down the context as argument to this routine. Ideally, this context
|
|
// need be passed down in the AST node and somehow calculated from the
|
|
// AST for a function decl.
|
|
Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
|
|
if (ObjCImplementationDecl *IMPD =
|
|
dyn_cast<ObjCImplementationDecl>(ImplDecl))
|
|
ClassOfMethodDecl = IMPD->getClassInterface();
|
|
else if (ObjCCategoryImplDecl* CatImplClass =
|
|
dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
|
|
ClassOfMethodDecl = CatImplClass->getClassInterface();
|
|
}
|
|
|
|
if (IV->getAccessControl() == ObjCIvarDecl::Private) {
|
|
if (ClassDeclared != IDecl ||
|
|
ClassOfMethodDecl != ClassDeclared)
|
|
Diag(MemberLoc, diag::error_private_ivar_access)
|
|
<< IV->getDeclName();
|
|
} else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
|
|
// @protected
|
|
Diag(MemberLoc, diag::error_protected_ivar_access)
|
|
<< IV->getDeclName();
|
|
}
|
|
|
|
return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
|
|
MemberLoc, BaseExpr,
|
|
IsArrow));
|
|
}
|
|
return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
|
|
<< IDecl->getDeclName() << MemberName
|
|
<< BaseExpr->getSourceRange());
|
|
}
|
|
}
|
|
// Handle properties on 'id' and qualified "id".
|
|
if (!IsArrow && (BaseType->isObjCIdType() ||
|
|
BaseType->isObjCQualifiedIdType())) {
|
|
const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
|
|
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
|
|
|
|
// Check protocols on qualified interfaces.
|
|
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
|
|
if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
|
|
if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
|
|
// Check the use of this declaration
|
|
if (DiagnoseUseOfDecl(PD, MemberLoc))
|
|
return ExprError();
|
|
|
|
return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
|
|
MemberLoc, BaseExpr));
|
|
}
|
|
if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
|
|
// Check the use of this method.
|
|
if (DiagnoseUseOfDecl(OMD, MemberLoc))
|
|
return ExprError();
|
|
|
|
return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
|
|
OMD->getResultType(),
|
|
OMD, OpLoc, MemberLoc,
|
|
NULL, 0));
|
|
}
|
|
}
|
|
|
|
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
|
|
<< MemberName << BaseType);
|
|
}
|
|
// Handle Objective-C property access, which is "Obj.property" where Obj is a
|
|
// pointer to a (potentially qualified) interface type.
|
|
const ObjCObjectPointerType *OPT;
|
|
if (!IsArrow && (OPT = BaseType->getAsObjCInterfacePointerType())) {
|
|
const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
|
|
ObjCInterfaceDecl *IFace = IFaceT->getDecl();
|
|
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
|
|
|
|
// Search for a declared property first.
|
|
if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
|
|
// Check whether we can reference this property.
|
|
if (DiagnoseUseOfDecl(PD, MemberLoc))
|
|
return ExprError();
|
|
QualType ResTy = PD->getType();
|
|
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
|
|
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
|
|
if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
|
|
ResTy = Getter->getResultType();
|
|
return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
|
|
MemberLoc, BaseExpr));
|
|
}
|
|
// Check protocols on qualified interfaces.
|
|
for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
|
|
E = OPT->qual_end(); I != E; ++I)
|
|
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
|
|
// Check whether we can reference this property.
|
|
if (DiagnoseUseOfDecl(PD, MemberLoc))
|
|
return ExprError();
|
|
|
|
return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
|
|
MemberLoc, BaseExpr));
|
|
}
|
|
// If that failed, look for an "implicit" property by seeing if the nullary
|
|
// selector is implemented.
|
|
|
|
// FIXME: The logic for looking up nullary and unary selectors should be
|
|
// shared with the code in ActOnInstanceMessage.
|
|
|
|
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
|
|
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
|
|
|
|
// If this reference is in an @implementation, check for 'private' methods.
|
|
if (!Getter)
|
|
Getter = IFace->lookupPrivateInstanceMethod(Sel);
|
|
|
|
// Look through local category implementations associated with the class.
|
|
if (!Getter)
|
|
Getter = IFace->getCategoryInstanceMethod(Sel);
|
|
if (Getter) {
|
|
// Check if we can reference this property.
|
|
if (DiagnoseUseOfDecl(Getter, MemberLoc))
|
|
return ExprError();
|
|
}
|
|
// If we found a getter then this may be a valid dot-reference, we
|
|
// will look for the matching setter, in case it is needed.
|
|
Selector SetterSel =
|
|
SelectorTable::constructSetterName(PP.getIdentifierTable(),
|
|
PP.getSelectorTable(), Member);
|
|
ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
|
|
if (!Setter) {
|
|
// If this reference is in an @implementation, also check for 'private'
|
|
// methods.
|
|
Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
|
|
}
|
|
// Look through local category implementations associated with the class.
|
|
if (!Setter)
|
|
Setter = IFace->getCategoryInstanceMethod(SetterSel);
|
|
|
|
if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
|
|
return ExprError();
|
|
|
|
if (Getter || Setter) {
|
|
QualType PType;
|
|
|
|
if (Getter)
|
|
PType = Getter->getResultType();
|
|
else
|
|
// Get the expression type from Setter's incoming parameter.
|
|
PType = (*(Setter->param_end() -1))->getType();
|
|
// FIXME: we must check that the setter has property type.
|
|
return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
|
|
Setter, MemberLoc, BaseExpr));
|
|
}
|
|
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
|
|
<< MemberName << BaseType);
|
|
}
|
|
|
|
// Handle the following exceptional case (*Obj).isa.
|
|
if (!IsArrow &&
|
|
BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
|
|
MemberName.getAsIdentifierInfo()->isStr("isa"))
|
|
return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
|
|
Context.getObjCClassType()));
|
|
|
|
// Handle 'field access' to vectors, such as 'V.xx'.
|
|
if (BaseType->isExtVectorType()) {
|
|
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
|
|
QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
|
|
if (ret.isNull())
|
|
return ExprError();
|
|
return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
|
|
MemberLoc));
|
|
}
|
|
|
|
Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
|
|
<< BaseType << BaseExpr->getSourceRange();
|
|
|
|
return ExprError();
|
|
}
|
|
|
|
static Sema::OwningExprResult DiagnoseDtorReference(Sema &SemaRef,
|
|
SourceLocation NameLoc,
|
|
Sema::ExprArg MemExpr) {
|
|
Expr *E = (Expr *) MemExpr.get();
|
|
SourceLocation ExpectedLParenLoc = SemaRef.PP.getLocForEndOfToken(NameLoc);
|
|
SemaRef.Diag(E->getLocStart(), diag::err_dtor_expr_without_call)
|
|
<< isa<CXXPseudoDestructorExpr>(E)
|
|
<< CodeModificationHint::CreateInsertion(ExpectedLParenLoc, "()");
|
|
|
|
return SemaRef.ActOnCallExpr(/*Scope*/ 0,
|
|
move(MemExpr),
|
|
/*LPLoc*/ ExpectedLParenLoc,
|
|
Sema::MultiExprArg(SemaRef, 0, 0),
|
|
/*CommaLocs*/ 0,
|
|
/*RPLoc*/ ExpectedLParenLoc);
|
|
}
|
|
|
|
/// The main callback when the parser finds something like
|
|
/// expression . [nested-name-specifier] identifier
|
|
/// expression -> [nested-name-specifier] identifier
|
|
/// where 'identifier' encompasses a fairly broad spectrum of
|
|
/// possibilities, including destructor and operator references.
|
|
///
|
|
/// \param OpKind either tok::arrow or tok::period
|
|
/// \param HasTrailingLParen whether the next token is '(', which
|
|
/// is used to diagnose mis-uses of special members that can
|
|
/// only be called
|
|
/// \param ObjCImpDecl the current ObjC @implementation decl;
|
|
/// this is an ugly hack around the fact that ObjC @implementations
|
|
/// aren't properly put in the context chain
|
|
Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg,
|
|
SourceLocation OpLoc,
|
|
tok::TokenKind OpKind,
|
|
const CXXScopeSpec &SS,
|
|
UnqualifiedId &Id,
|
|
DeclPtrTy ObjCImpDecl,
|
|
bool HasTrailingLParen) {
|
|
if (SS.isSet() && SS.isInvalid())
|
|
return ExprError();
|
|
|
|
TemplateArgumentListInfo TemplateArgsBuffer;
|
|
|
|
// Decompose the name into its component parts.
|
|
DeclarationName Name;
|
|
SourceLocation NameLoc;
|
|
const TemplateArgumentListInfo *TemplateArgs;
|
|
DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
|
|
Name, NameLoc, TemplateArgs);
|
|
|
|
bool IsArrow = (OpKind == tok::arrow);
|
|
|
|
NamedDecl *FirstQualifierInScope
|
|
= (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
|
|
static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
|
|
|
|
// This is a postfix expression, so get rid of ParenListExprs.
|
|
BaseArg = MaybeConvertParenListExprToParenExpr(S, move(BaseArg));
|
|
|
|
Expr *Base = BaseArg.takeAs<Expr>();
|
|
OwningExprResult Result(*this);
|
|
if (Base->getType()->isDependentType()) {
|
|
Result = ActOnDependentMemberExpr(ExprArg(*this, Base), Base->getType(),
|
|
IsArrow, OpLoc,
|
|
SS, FirstQualifierInScope,
|
|
Name, NameLoc,
|
|
TemplateArgs);
|
|
} else {
|
|
LookupResult R(*this, Name, NameLoc, LookupMemberName);
|
|
if (TemplateArgs) {
|
|
// Re-use the lookup done for the template name.
|
|
DecomposeTemplateName(R, Id);
|
|
} else {
|
|
Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
|
|
SS, FirstQualifierInScope,
|
|
ObjCImpDecl);
|
|
|
|
if (Result.isInvalid()) {
|
|
Owned(Base);
|
|
return ExprError();
|
|
}
|
|
|
|
if (Result.get()) {
|
|
// The only way a reference to a destructor can be used is to
|
|
// immediately call it, which falls into this case. If the
|
|
// next token is not a '(', produce a diagnostic and build the
|
|
// call now.
|
|
if (!HasTrailingLParen &&
|
|
Id.getKind() == UnqualifiedId::IK_DestructorName)
|
|
return DiagnoseDtorReference(*this, NameLoc, move(Result));
|
|
|
|
return move(Result);
|
|
}
|
|
}
|
|
|
|
Result = BuildMemberReferenceExpr(ExprArg(*this, Base), Base->getType(),
|
|
OpLoc, IsArrow, SS, R, TemplateArgs);
|
|
}
|
|
|
|
return move(Result);
|
|
}
|
|
|
|
Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
|
|
FunctionDecl *FD,
|
|
ParmVarDecl *Param) {
|
|
if (Param->hasUnparsedDefaultArg()) {
|
|
Diag (CallLoc,
|
|
diag::err_use_of_default_argument_to_function_declared_later) <<
|
|
FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
|
|
Diag(UnparsedDefaultArgLocs[Param],
|
|
diag::note_default_argument_declared_here);
|
|
} else {
|
|
if (Param->hasUninstantiatedDefaultArg()) {
|
|
Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
|
|
|
|
// Instantiate the expression.
|
|
MultiLevelTemplateArgumentList ArgList = getTemplateInstantiationArgs(FD);
|
|
|
|
InstantiatingTemplate Inst(*this, CallLoc, Param,
|
|
ArgList.getInnermost().getFlatArgumentList(),
|
|
ArgList.getInnermost().flat_size());
|
|
|
|
OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
|
|
if (SetParamDefaultArgument(Param, move(Result),
|
|
/*FIXME:EqualLoc*/
|
|
UninstExpr->getSourceRange().getBegin()))
|
|
return ExprError();
|
|
}
|
|
|
|
Expr *DefaultExpr = Param->getDefaultArg();
|
|
|
|
// If the default expression creates temporaries, we need to
|
|
// push them to the current stack of expression temporaries so they'll
|
|
// be properly destroyed.
|
|
if (CXXExprWithTemporaries *E
|
|
= dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
|
|
assert(!E->shouldDestroyTemporaries() &&
|
|
"Can't destroy temporaries in a default argument expr!");
|
|
for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
|
|
ExprTemporaries.push_back(E->getTemporary(I));
|
|
}
|
|
}
|
|
|
|
// We already type-checked the argument, so we know it works.
|
|
return Owned(CXXDefaultArgExpr::Create(Context, Param));
|
|
}
|
|
|
|
/// ConvertArgumentsForCall - Converts the arguments specified in
|
|
/// Args/NumArgs to the parameter types of the function FDecl with
|
|
/// function prototype Proto. Call is the call expression itself, and
|
|
/// Fn is the function expression. For a C++ member function, this
|
|
/// routine does not attempt to convert the object argument. Returns
|
|
/// true if the call is ill-formed.
|
|
bool
|
|
Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
|
|
FunctionDecl *FDecl,
|
|
const FunctionProtoType *Proto,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation RParenLoc) {
|
|
// C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
|
|
// assignment, to the types of the corresponding parameter, ...
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
bool Invalid = false;
|
|
|
|
// If too few arguments are available (and we don't have default
|
|
// arguments for the remaining parameters), don't make the call.
|
|
if (NumArgs < NumArgsInProto) {
|
|
if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
|
|
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
|
|
<< Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
|
|
Call->setNumArgs(Context, NumArgsInProto);
|
|
}
|
|
|
|
// If too many are passed and not variadic, error on the extras and drop
|
|
// them.
|
|
if (NumArgs > NumArgsInProto) {
|
|
if (!Proto->isVariadic()) {
|
|
Diag(Args[NumArgsInProto]->getLocStart(),
|
|
diag::err_typecheck_call_too_many_args)
|
|
<< Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
|
|
<< SourceRange(Args[NumArgsInProto]->getLocStart(),
|
|
Args[NumArgs-1]->getLocEnd());
|
|
// This deletes the extra arguments.
|
|
Call->setNumArgs(Context, NumArgsInProto);
|
|
return true;
|
|
}
|
|
}
|
|
llvm::SmallVector<Expr *, 8> AllArgs;
|
|
VariadicCallType CallType =
|
|
Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
|
|
if (Fn->getType()->isBlockPointerType())
|
|
CallType = VariadicBlock; // Block
|
|
else if (isa<MemberExpr>(Fn))
|
|
CallType = VariadicMethod;
|
|
Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
|
|
Proto, 0, Args, NumArgs, AllArgs, CallType);
|
|
if (Invalid)
|
|
return true;
|
|
unsigned TotalNumArgs = AllArgs.size();
|
|
for (unsigned i = 0; i < TotalNumArgs; ++i)
|
|
Call->setArg(i, AllArgs[i]);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
|
|
FunctionDecl *FDecl,
|
|
const FunctionProtoType *Proto,
|
|
unsigned FirstProtoArg,
|
|
Expr **Args, unsigned NumArgs,
|
|
llvm::SmallVector<Expr *, 8> &AllArgs,
|
|
VariadicCallType CallType) {
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
unsigned NumArgsToCheck = NumArgs;
|
|
bool Invalid = false;
|
|
if (NumArgs != NumArgsInProto)
|
|
// Use default arguments for missing arguments
|
|
NumArgsToCheck = NumArgsInProto;
|
|
unsigned ArgIx = 0;
|
|
// Continue to check argument types (even if we have too few/many args).
|
|
for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
|
|
QualType ProtoArgType = Proto->getArgType(i);
|
|
|
|
Expr *Arg;
|
|
if (ArgIx < NumArgs) {
|
|
Arg = Args[ArgIx++];
|
|
|
|
if (RequireCompleteType(Arg->getSourceRange().getBegin(),
|
|
ProtoArgType,
|
|
PDiag(diag::err_call_incomplete_argument)
|
|
<< Arg->getSourceRange()))
|
|
return true;
|
|
|
|
// Pass the argument.
|
|
if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
|
|
return true;
|
|
|
|
if (!ProtoArgType->isReferenceType())
|
|
Arg = MaybeBindToTemporary(Arg).takeAs<Expr>();
|
|
} else {
|
|
ParmVarDecl *Param = FDecl->getParamDecl(i);
|
|
|
|
OwningExprResult ArgExpr =
|
|
BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
|
|
if (ArgExpr.isInvalid())
|
|
return true;
|
|
|
|
Arg = ArgExpr.takeAs<Expr>();
|
|
}
|
|
AllArgs.push_back(Arg);
|
|
}
|
|
|
|
// If this is a variadic call, handle args passed through "...".
|
|
if (CallType != VariadicDoesNotApply) {
|
|
// Promote the arguments (C99 6.5.2.2p7).
|
|
for (unsigned i = ArgIx; i < NumArgs; i++) {
|
|
Expr *Arg = Args[i];
|
|
Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
|
|
AllArgs.push_back(Arg);
|
|
}
|
|
}
|
|
return Invalid;
|
|
}
|
|
|
|
/// \brief "Deconstruct" the function argument of a call expression to find
|
|
/// the underlying declaration (if any), the name of the called function,
|
|
/// whether argument-dependent lookup is available, whether it has explicit
|
|
/// template arguments, etc.
|
|
void Sema::DeconstructCallFunction(Expr *FnExpr,
|
|
llvm::SmallVectorImpl<NamedDecl*> &Fns,
|
|
DeclarationName &Name,
|
|
NestedNameSpecifier *&Qualifier,
|
|
SourceRange &QualifierRange,
|
|
bool &ArgumentDependentLookup,
|
|
bool &Overloaded,
|
|
bool &HasExplicitTemplateArguments,
|
|
TemplateArgumentListInfo &ExplicitTemplateArgs) {
|
|
// Set defaults for all of the output parameters.
|
|
Name = DeclarationName();
|
|
Qualifier = 0;
|
|
QualifierRange = SourceRange();
|
|
ArgumentDependentLookup = false;
|
|
Overloaded = false;
|
|
HasExplicitTemplateArguments = false;
|
|
|
|
// If we're directly calling a function, get the appropriate declaration.
|
|
// Also, in C++, keep track of whether we should perform argument-dependent
|
|
// lookup and whether there were any explicitly-specified template arguments.
|
|
while (true) {
|
|
if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
|
|
FnExpr = IcExpr->getSubExpr();
|
|
else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
|
|
FnExpr = PExpr->getSubExpr();
|
|
} else if (isa<UnaryOperator>(FnExpr) &&
|
|
cast<UnaryOperator>(FnExpr)->getOpcode()
|
|
== UnaryOperator::AddrOf) {
|
|
FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
|
|
} else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) {
|
|
Fns.push_back(cast<NamedDecl>(DRExpr->getDecl()));
|
|
ArgumentDependentLookup = false;
|
|
if ((Qualifier = DRExpr->getQualifier()))
|
|
QualifierRange = DRExpr->getQualifierRange();
|
|
break;
|
|
} else if (UnresolvedLookupExpr *UnresLookup
|
|
= dyn_cast<UnresolvedLookupExpr>(FnExpr)) {
|
|
Name = UnresLookup->getName();
|
|
Fns.append(UnresLookup->decls_begin(), UnresLookup->decls_end());
|
|
ArgumentDependentLookup = UnresLookup->requiresADL();
|
|
Overloaded = UnresLookup->isOverloaded();
|
|
if ((Qualifier = UnresLookup->getQualifier()))
|
|
QualifierRange = UnresLookup->getQualifierRange();
|
|
if (UnresLookup->hasExplicitTemplateArgs()) {
|
|
HasExplicitTemplateArguments = true;
|
|
UnresLookup->copyTemplateArgumentsInto(ExplicitTemplateArgs);
|
|
}
|
|
break;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
|
|
/// This provides the location of the left/right parens and a list of comma
|
|
/// locations.
|
|
Action::OwningExprResult
|
|
Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
|
|
MultiExprArg args,
|
|
SourceLocation *CommaLocs, SourceLocation RParenLoc) {
|
|
unsigned NumArgs = args.size();
|
|
|
|
// Since this might be a postfix expression, get rid of ParenListExprs.
|
|
fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
|
|
|
|
Expr *Fn = fn.takeAs<Expr>();
|
|
Expr **Args = reinterpret_cast<Expr**>(args.release());
|
|
assert(Fn && "no function call expression");
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
// If this is a pseudo-destructor expression, build the call immediately.
|
|
if (isa<CXXPseudoDestructorExpr>(Fn)) {
|
|
if (NumArgs > 0) {
|
|
// Pseudo-destructor calls should not have any arguments.
|
|
Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
|
|
<< CodeModificationHint::CreateRemoval(
|
|
SourceRange(Args[0]->getLocStart(),
|
|
Args[NumArgs-1]->getLocEnd()));
|
|
|
|
for (unsigned I = 0; I != NumArgs; ++I)
|
|
Args[I]->Destroy(Context);
|
|
|
|
NumArgs = 0;
|
|
}
|
|
|
|
return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
|
|
RParenLoc));
|
|
}
|
|
|
|
// Determine whether this is a dependent call inside a C++ template,
|
|
// in which case we won't do any semantic analysis now.
|
|
// FIXME: Will need to cache the results of name lookup (including ADL) in
|
|
// Fn.
|
|
bool Dependent = false;
|
|
if (Fn->isTypeDependent())
|
|
Dependent = true;
|
|
else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
|
|
Dependent = true;
|
|
|
|
if (Dependent)
|
|
return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
|
|
Context.DependentTy, RParenLoc));
|
|
|
|
// Determine whether this is a call to an object (C++ [over.call.object]).
|
|
if (Fn->getType()->isRecordType())
|
|
return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
|
|
CommaLocs, RParenLoc));
|
|
|
|
Expr *NakedFn = Fn->IgnoreParens();
|
|
|
|
// Determine whether this is a call to an unresolved member function.
|
|
if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
|
|
// If lookup was unresolved but not dependent (i.e. didn't find
|
|
// an unresolved using declaration), it has to be an overloaded
|
|
// function set, which means it must contain either multiple
|
|
// declarations (all methods or method templates) or a single
|
|
// method template.
|
|
assert((MemE->getNumDecls() > 1) ||
|
|
isa<FunctionTemplateDecl>(*MemE->decls_begin()));
|
|
(void)MemE;
|
|
|
|
return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
|
|
CommaLocs, RParenLoc);
|
|
}
|
|
|
|
// Determine whether this is a call to a member function.
|
|
if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
|
|
NamedDecl *MemDecl = MemExpr->getMemberDecl();
|
|
if (isa<CXXMethodDecl>(MemDecl))
|
|
return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
|
|
CommaLocs, RParenLoc);
|
|
}
|
|
|
|
// Determine whether this is a call to a pointer-to-member function.
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
|
|
if (BO->getOpcode() == BinaryOperator::PtrMemD ||
|
|
BO->getOpcode() == BinaryOperator::PtrMemI) {
|
|
if (const FunctionProtoType *FPT =
|
|
dyn_cast<FunctionProtoType>(BO->getType())) {
|
|
QualType ResultTy = FPT->getResultType().getNonReferenceType();
|
|
|
|
ExprOwningPtr<CXXMemberCallExpr>
|
|
TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
|
|
NumArgs, ResultTy,
|
|
RParenLoc));
|
|
|
|
if (CheckCallReturnType(FPT->getResultType(),
|
|
BO->getRHS()->getSourceRange().getBegin(),
|
|
TheCall.get(), 0))
|
|
return ExprError();
|
|
|
|
if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
|
|
RParenLoc))
|
|
return ExprError();
|
|
|
|
return Owned(MaybeBindToTemporary(TheCall.release()).release());
|
|
}
|
|
return ExprError(Diag(Fn->getLocStart(),
|
|
diag::err_typecheck_call_not_function)
|
|
<< Fn->getType() << Fn->getSourceRange());
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we're directly calling a function, get the appropriate declaration.
|
|
// Also, in C++, keep track of whether we should perform argument-dependent
|
|
// lookup and whether there were any explicitly-specified template arguments.
|
|
llvm::SmallVector<NamedDecl*,8> Fns;
|
|
DeclarationName UnqualifiedName;
|
|
bool Overloaded;
|
|
bool ADL;
|
|
bool HasExplicitTemplateArgs = 0;
|
|
TemplateArgumentListInfo ExplicitTemplateArgs;
|
|
NestedNameSpecifier *Qualifier = 0;
|
|
SourceRange QualifierRange;
|
|
DeconstructCallFunction(Fn, Fns, UnqualifiedName, Qualifier, QualifierRange,
|
|
ADL, Overloaded, HasExplicitTemplateArgs,
|
|
ExplicitTemplateArgs);
|
|
|
|
NamedDecl *NDecl; // the specific declaration we're calling, if applicable
|
|
FunctionDecl *FDecl; // same, if it's known to be a function
|
|
|
|
if (Overloaded || ADL) {
|
|
#ifndef NDEBUG
|
|
if (ADL) {
|
|
// To do ADL, we must have found an unqualified name.
|
|
assert(UnqualifiedName && "found no unqualified name for ADL");
|
|
|
|
// We don't perform ADL for implicit declarations of builtins.
|
|
// Verify that this was correctly set up.
|
|
if (Fns.size() == 1 && (FDecl = dyn_cast<FunctionDecl>(Fns[0])) &&
|
|
FDecl->getBuiltinID() && FDecl->isImplicit())
|
|
assert(0 && "performing ADL for builtin");
|
|
|
|
// We don't perform ADL in C.
|
|
assert(getLangOptions().CPlusPlus && "ADL enabled in C");
|
|
}
|
|
|
|
if (Overloaded) {
|
|
// To be overloaded, we must either have multiple functions or
|
|
// at least one function template (which is effectively an
|
|
// infinite set of functions).
|
|
assert((Fns.size() > 1 ||
|
|
(Fns.size() == 1 &&
|
|
isa<FunctionTemplateDecl>(Fns[0]->getUnderlyingDecl())))
|
|
&& "unrecognized overload situation");
|
|
}
|
|
#endif
|
|
|
|
FDecl = ResolveOverloadedCallFn(Fn, Fns, UnqualifiedName,
|
|
(HasExplicitTemplateArgs ? &ExplicitTemplateArgs : 0),
|
|
LParenLoc, Args, NumArgs, CommaLocs,
|
|
RParenLoc, ADL);
|
|
if (!FDecl)
|
|
return ExprError();
|
|
|
|
Fn = FixOverloadedFunctionReference(Fn, FDecl);
|
|
|
|
NDecl = FDecl;
|
|
} else {
|
|
assert(Fns.size() <= 1 && "overloaded without Overloaded flag");
|
|
if (Fns.empty())
|
|
NDecl = 0;
|
|
else {
|
|
NDecl = Fns[0];
|
|
}
|
|
}
|
|
|
|
return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
|
|
}
|
|
|
|
/// BuildCallExpr - Build a call to a resolved expression, i.e. an
|
|
/// expression not of \p OverloadTy. The expression should
|
|
/// unary-convert to an expression of function-pointer or
|
|
/// block-pointer type.
|
|
///
|
|
/// \param NDecl the declaration being called, if available
|
|
Sema::OwningExprResult
|
|
Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
|
|
SourceLocation LParenLoc,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation RParenLoc) {
|
|
FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
|
|
|
|
// Promote the function operand.
|
|
UsualUnaryConversions(Fn);
|
|
|
|
// Make the call expr early, before semantic checks. This guarantees cleanup
|
|
// of arguments and function on error.
|
|
ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
|
|
Args, NumArgs,
|
|
Context.BoolTy,
|
|
RParenLoc));
|
|
|
|
const FunctionType *FuncT;
|
|
if (!Fn->getType()->isBlockPointerType()) {
|
|
// C99 6.5.2.2p1 - "The expression that denotes the called function shall
|
|
// have type pointer to function".
|
|
const PointerType *PT = Fn->getType()->getAs<PointerType>();
|
|
if (PT == 0)
|
|
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
|
|
<< Fn->getType() << Fn->getSourceRange());
|
|
FuncT = PT->getPointeeType()->getAs<FunctionType>();
|
|
} else { // This is a block call.
|
|
FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
|
|
getAs<FunctionType>();
|
|
}
|
|
if (FuncT == 0)
|
|
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
|
|
<< Fn->getType() << Fn->getSourceRange());
|
|
|
|
// Check for a valid return type
|
|
if (CheckCallReturnType(FuncT->getResultType(),
|
|
Fn->getSourceRange().getBegin(), TheCall.get(),
|
|
FDecl))
|
|
return ExprError();
|
|
|
|
// We know the result type of the call, set it.
|
|
TheCall->setType(FuncT->getResultType().getNonReferenceType());
|
|
|
|
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
|
|
if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
|
|
RParenLoc))
|
|
return ExprError();
|
|
} else {
|
|
assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
|
|
|
|
if (FDecl) {
|
|
// Check if we have too few/too many template arguments, based
|
|
// on our knowledge of the function definition.
|
|
const FunctionDecl *Def = 0;
|
|
if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
|
|
const FunctionProtoType *Proto =
|
|
Def->getType()->getAs<FunctionProtoType>();
|
|
if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
|
|
Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
|
|
<< (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Promote the arguments (C99 6.5.2.2p6).
|
|
for (unsigned i = 0; i != NumArgs; i++) {
|
|
Expr *Arg = Args[i];
|
|
DefaultArgumentPromotion(Arg);
|
|
if (RequireCompleteType(Arg->getSourceRange().getBegin(),
|
|
Arg->getType(),
|
|
PDiag(diag::err_call_incomplete_argument)
|
|
<< Arg->getSourceRange()))
|
|
return ExprError();
|
|
TheCall->setArg(i, Arg);
|
|
}
|
|
}
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
|
|
if (!Method->isStatic())
|
|
return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
|
|
<< Fn->getSourceRange());
|
|
|
|
// Check for sentinels
|
|
if (NDecl)
|
|
DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
|
|
|
|
// Do special checking on direct calls to functions.
|
|
if (FDecl) {
|
|
if (CheckFunctionCall(FDecl, TheCall.get()))
|
|
return ExprError();
|
|
|
|
if (unsigned BuiltinID = FDecl->getBuiltinID())
|
|
return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
|
|
} else if (NDecl) {
|
|
if (CheckBlockCall(NDecl, TheCall.get()))
|
|
return ExprError();
|
|
}
|
|
|
|
return MaybeBindToTemporary(TheCall.take());
|
|
}
|
|
|
|
Action::OwningExprResult
|
|
Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
|
|
SourceLocation RParenLoc, ExprArg InitExpr) {
|
|
assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
|
|
//FIXME: Preserve type source info.
|
|
QualType literalType = GetTypeFromParser(Ty);
|
|
// FIXME: put back this assert when initializers are worked out.
|
|
//assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
|
|
Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
|
|
|
|
if (literalType->isArrayType()) {
|
|
if (literalType->isVariableArrayType())
|
|
return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
|
|
<< SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
|
|
} else if (!literalType->isDependentType() &&
|
|
RequireCompleteType(LParenLoc, literalType,
|
|
PDiag(diag::err_typecheck_decl_incomplete_type)
|
|
<< SourceRange(LParenLoc,
|
|
literalExpr->getSourceRange().getEnd())))
|
|
return ExprError();
|
|
|
|
if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
|
|
DeclarationName(), /*FIXME:DirectInit=*/false))
|
|
return ExprError();
|
|
|
|
bool isFileScope = getCurFunctionOrMethodDecl() == 0;
|
|
if (isFileScope) { // 6.5.2.5p3
|
|
if (CheckForConstantInitializer(literalExpr, literalType))
|
|
return ExprError();
|
|
}
|
|
InitExpr.release();
|
|
return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
|
|
literalExpr, isFileScope));
|
|
}
|
|
|
|
Action::OwningExprResult
|
|
Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
|
|
SourceLocation RBraceLoc) {
|
|
unsigned NumInit = initlist.size();
|
|
Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
|
|
|
|
// Semantic analysis for initializers is done by ActOnDeclarator() and
|
|
// CheckInitializer() - it requires knowledge of the object being intialized.
|
|
|
|
InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
|
|
RBraceLoc);
|
|
E->setType(Context.VoidTy); // FIXME: just a place holder for now.
|
|
return Owned(E);
|
|
}
|
|
|
|
static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
|
|
QualType SrcTy, QualType DestTy) {
|
|
if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
|
|
return CastExpr::CK_NoOp;
|
|
|
|
if (SrcTy->hasPointerRepresentation()) {
|
|
if (DestTy->hasPointerRepresentation())
|
|
return CastExpr::CK_BitCast;
|
|
if (DestTy->isIntegerType())
|
|
return CastExpr::CK_PointerToIntegral;
|
|
}
|
|
|
|
if (SrcTy->isIntegerType()) {
|
|
if (DestTy->isIntegerType())
|
|
return CastExpr::CK_IntegralCast;
|
|
if (DestTy->hasPointerRepresentation())
|
|
return CastExpr::CK_IntegralToPointer;
|
|
if (DestTy->isRealFloatingType())
|
|
return CastExpr::CK_IntegralToFloating;
|
|
}
|
|
|
|
if (SrcTy->isRealFloatingType()) {
|
|
if (DestTy->isRealFloatingType())
|
|
return CastExpr::CK_FloatingCast;
|
|
if (DestTy->isIntegerType())
|
|
return CastExpr::CK_FloatingToIntegral;
|
|
}
|
|
|
|
// FIXME: Assert here.
|
|
// assert(false && "Unhandled cast combination!");
|
|
return CastExpr::CK_Unknown;
|
|
}
|
|
|
|
/// CheckCastTypes - Check type constraints for casting between types.
|
|
bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
|
|
CastExpr::CastKind& Kind,
|
|
CXXMethodDecl *& ConversionDecl,
|
|
bool FunctionalStyle) {
|
|
if (getLangOptions().CPlusPlus)
|
|
return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, FunctionalStyle,
|
|
ConversionDecl);
|
|
|
|
DefaultFunctionArrayConversion(castExpr);
|
|
|
|
// C99 6.5.4p2: the cast type needs to be void or scalar and the expression
|
|
// type needs to be scalar.
|
|
if (castType->isVoidType()) {
|
|
// Cast to void allows any expr type.
|
|
Kind = CastExpr::CK_ToVoid;
|
|
return false;
|
|
}
|
|
|
|
if (!castType->isScalarType() && !castType->isVectorType()) {
|
|
if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
|
|
(castType->isStructureType() || castType->isUnionType())) {
|
|
// GCC struct/union extension: allow cast to self.
|
|
// FIXME: Check that the cast destination type is complete.
|
|
Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
|
|
<< castType << castExpr->getSourceRange();
|
|
Kind = CastExpr::CK_NoOp;
|
|
return false;
|
|
}
|
|
|
|
if (castType->isUnionType()) {
|
|
// GCC cast to union extension
|
|
RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
|
|
RecordDecl::field_iterator Field, FieldEnd;
|
|
for (Field = RD->field_begin(), FieldEnd = RD->field_end();
|
|
Field != FieldEnd; ++Field) {
|
|
if (Context.hasSameUnqualifiedType(Field->getType(),
|
|
castExpr->getType())) {
|
|
Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
|
|
<< castExpr->getSourceRange();
|
|
break;
|
|
}
|
|
}
|
|
if (Field == FieldEnd)
|
|
return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
|
|
<< castExpr->getType() << castExpr->getSourceRange();
|
|
Kind = CastExpr::CK_ToUnion;
|
|
return false;
|
|
}
|
|
|
|
// Reject any other conversions to non-scalar types.
|
|
return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
|
|
<< castType << castExpr->getSourceRange();
|
|
}
|
|
|
|
if (!castExpr->getType()->isScalarType() &&
|
|
!castExpr->getType()->isVectorType()) {
|
|
return Diag(castExpr->getLocStart(),
|
|
diag::err_typecheck_expect_scalar_operand)
|
|
<< castExpr->getType() << castExpr->getSourceRange();
|
|
}
|
|
|
|
if (castType->isExtVectorType())
|
|
return CheckExtVectorCast(TyR, castType, castExpr, Kind);
|
|
|
|
if (castType->isVectorType())
|
|
return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
|
|
if (castExpr->getType()->isVectorType())
|
|
return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
|
|
|
|
if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr))
|
|
return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
|
|
|
|
if (isa<ObjCSelectorExpr>(castExpr))
|
|
return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
|
|
|
|
if (!castType->isArithmeticType()) {
|
|
QualType castExprType = castExpr->getType();
|
|
if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
|
|
return Diag(castExpr->getLocStart(),
|
|
diag::err_cast_pointer_from_non_pointer_int)
|
|
<< castExprType << castExpr->getSourceRange();
|
|
} else if (!castExpr->getType()->isArithmeticType()) {
|
|
if (!castType->isIntegralType() && castType->isArithmeticType())
|
|
return Diag(castExpr->getLocStart(),
|
|
diag::err_cast_pointer_to_non_pointer_int)
|
|
<< castType << castExpr->getSourceRange();
|
|
}
|
|
|
|
Kind = getScalarCastKind(Context, castExpr->getType(), castType);
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
|
|
CastExpr::CastKind &Kind) {
|
|
assert(VectorTy->isVectorType() && "Not a vector type!");
|
|
|
|
if (Ty->isVectorType() || Ty->isIntegerType()) {
|
|
if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
|
|
return Diag(R.getBegin(),
|
|
Ty->isVectorType() ?
|
|
diag::err_invalid_conversion_between_vectors :
|
|
diag::err_invalid_conversion_between_vector_and_integer)
|
|
<< VectorTy << Ty << R;
|
|
} else
|
|
return Diag(R.getBegin(),
|
|
diag::err_invalid_conversion_between_vector_and_scalar)
|
|
<< VectorTy << Ty << R;
|
|
|
|
Kind = CastExpr::CK_BitCast;
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
|
|
CastExpr::CastKind &Kind) {
|
|
assert(DestTy->isExtVectorType() && "Not an extended vector type!");
|
|
|
|
QualType SrcTy = CastExpr->getType();
|
|
|
|
// If SrcTy is a VectorType, the total size must match to explicitly cast to
|
|
// an ExtVectorType.
|
|
if (SrcTy->isVectorType()) {
|
|
if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
|
|
return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
|
|
<< DestTy << SrcTy << R;
|
|
Kind = CastExpr::CK_BitCast;
|
|
return false;
|
|
}
|
|
|
|
// All non-pointer scalars can be cast to ExtVector type. The appropriate
|
|
// conversion will take place first from scalar to elt type, and then
|
|
// splat from elt type to vector.
|
|
if (SrcTy->isPointerType())
|
|
return Diag(R.getBegin(),
|
|
diag::err_invalid_conversion_between_vector_and_scalar)
|
|
<< DestTy << SrcTy << R;
|
|
|
|
QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
|
|
ImpCastExprToType(CastExpr, DestElemTy,
|
|
getScalarCastKind(Context, SrcTy, DestElemTy));
|
|
|
|
Kind = CastExpr::CK_VectorSplat;
|
|
return false;
|
|
}
|
|
|
|
Action::OwningExprResult
|
|
Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
|
|
SourceLocation RParenLoc, ExprArg Op) {
|
|
CastExpr::CastKind Kind = CastExpr::CK_Unknown;
|
|
|
|
assert((Ty != 0) && (Op.get() != 0) &&
|
|
"ActOnCastExpr(): missing type or expr");
|
|
|
|
Expr *castExpr = (Expr *)Op.get();
|
|
//FIXME: Preserve type source info.
|
|
QualType castType = GetTypeFromParser(Ty);
|
|
|
|
// If the Expr being casted is a ParenListExpr, handle it specially.
|
|
if (isa<ParenListExpr>(castExpr))
|
|
return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),castType);
|
|
CXXMethodDecl *Method = 0;
|
|
if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr,
|
|
Kind, Method))
|
|
return ExprError();
|
|
|
|
if (Method) {
|
|
OwningExprResult CastArg = BuildCXXCastArgument(LParenLoc, castType, Kind,
|
|
Method, move(Op));
|
|
|
|
if (CastArg.isInvalid())
|
|
return ExprError();
|
|
|
|
castExpr = CastArg.takeAs<Expr>();
|
|
} else {
|
|
Op.release();
|
|
}
|
|
|
|
return Owned(new (Context) CStyleCastExpr(castType.getNonReferenceType(),
|
|
Kind, castExpr, castType,
|
|
LParenLoc, RParenLoc));
|
|
}
|
|
|
|
/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
|
|
/// of comma binary operators.
|
|
Action::OwningExprResult
|
|
Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
|
|
Expr *expr = EA.takeAs<Expr>();
|
|
ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
|
|
if (!E)
|
|
return Owned(expr);
|
|
|
|
OwningExprResult Result(*this, E->getExpr(0));
|
|
|
|
for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
|
|
Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
|
|
Owned(E->getExpr(i)));
|
|
|
|
return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
|
|
}
|
|
|
|
Action::OwningExprResult
|
|
Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
|
|
SourceLocation RParenLoc, ExprArg Op,
|
|
QualType Ty) {
|
|
ParenListExpr *PE = (ParenListExpr *)Op.get();
|
|
|
|
// If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
|
|
// then handle it as such.
|
|
if (getLangOptions().AltiVec && Ty->isVectorType()) {
|
|
if (PE->getNumExprs() == 0) {
|
|
Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
|
|
return ExprError();
|
|
}
|
|
|
|
llvm::SmallVector<Expr *, 8> initExprs;
|
|
for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
|
|
initExprs.push_back(PE->getExpr(i));
|
|
|
|
// FIXME: This means that pretty-printing the final AST will produce curly
|
|
// braces instead of the original commas.
|
|
Op.release();
|
|
InitListExpr *E = new (Context) InitListExpr(LParenLoc, &initExprs[0],
|
|
initExprs.size(), RParenLoc);
|
|
E->setType(Ty);
|
|
return ActOnCompoundLiteral(LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,
|
|
Owned(E));
|
|
} else {
|
|
// This is not an AltiVec-style cast, so turn the ParenListExpr into a
|
|
// sequence of BinOp comma operators.
|
|
Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
|
|
return ActOnCastExpr(S, LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,move(Op));
|
|
}
|
|
}
|
|
|
|
Action::OwningExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
|
|
SourceLocation R,
|
|
MultiExprArg Val,
|
|
TypeTy *TypeOfCast) {
|
|
unsigned nexprs = Val.size();
|
|
Expr **exprs = reinterpret_cast<Expr**>(Val.release());
|
|
assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
|
|
Expr *expr;
|
|
if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
|
|
expr = new (Context) ParenExpr(L, R, exprs[0]);
|
|
else
|
|
expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
|
|
return Owned(expr);
|
|
}
|
|
|
|
/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
|
|
/// In that case, lhs = cond.
|
|
/// C99 6.5.15
|
|
QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
|
|
SourceLocation QuestionLoc) {
|
|
// C++ is sufficiently different to merit its own checker.
|
|
if (getLangOptions().CPlusPlus)
|
|
return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
|
|
|
|
CheckSignCompare(LHS, RHS, QuestionLoc, diag::warn_mixed_sign_conditional);
|
|
|
|
UsualUnaryConversions(Cond);
|
|
UsualUnaryConversions(LHS);
|
|
UsualUnaryConversions(RHS);
|
|
QualType CondTy = Cond->getType();
|
|
QualType LHSTy = LHS->getType();
|
|
QualType RHSTy = RHS->getType();
|
|
|
|
// first, check the condition.
|
|
if (!CondTy->isScalarType()) { // C99 6.5.15p2
|
|
Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
|
|
<< CondTy;
|
|
return QualType();
|
|
}
|
|
|
|
// Now check the two expressions.
|
|
if (LHSTy->isVectorType() || RHSTy->isVectorType())
|
|
return CheckVectorOperands(QuestionLoc, LHS, RHS);
|
|
|
|
// If both operands have arithmetic type, do the usual arithmetic conversions
|
|
// to find a common type: C99 6.5.15p3,5.
|
|
if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
|
|
UsualArithmeticConversions(LHS, RHS);
|
|
return LHS->getType();
|
|
}
|
|
|
|
// If both operands are the same structure or union type, the result is that
|
|
// type.
|
|
if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
|
|
if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
|
|
if (LHSRT->getDecl() == RHSRT->getDecl())
|
|
// "If both the operands have structure or union type, the result has
|
|
// that type." This implies that CV qualifiers are dropped.
|
|
return LHSTy.getUnqualifiedType();
|
|
// FIXME: Type of conditional expression must be complete in C mode.
|
|
}
|
|
|
|
// C99 6.5.15p5: "If both operands have void type, the result has void type."
|
|
// The following || allows only one side to be void (a GCC-ism).
|
|
if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
|
|
if (!LHSTy->isVoidType())
|
|
Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
|
|
<< RHS->getSourceRange();
|
|
if (!RHSTy->isVoidType())
|
|
Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
|
|
<< LHS->getSourceRange();
|
|
ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
|
|
ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
|
|
return Context.VoidTy;
|
|
}
|
|
// C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
|
|
// the type of the other operand."
|
|
if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
|
|
RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
|
|
// promote the null to a pointer.
|
|
ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
|
|
return LHSTy;
|
|
}
|
|
if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
|
|
LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
|
|
ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
|
|
return RHSTy;
|
|
}
|
|
|
|
// All objective-c pointer type analysis is done here.
|
|
QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
|
|
QuestionLoc);
|
|
if (!compositeType.isNull())
|
|
return compositeType;
|
|
|
|
|
|
// Handle block pointer types.
|
|
if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
|
|
if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
|
|
if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
|
|
QualType destType = Context.getPointerType(Context.VoidTy);
|
|
ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
|
|
ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
|
|
return destType;
|
|
}
|
|
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
return QualType();
|
|
}
|
|
// We have 2 block pointer types.
|
|
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
|
|
// Two identical block pointer types are always compatible.
|
|
return LHSTy;
|
|
}
|
|
// The block pointer types aren't identical, continue checking.
|
|
QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
|
|
QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
|
|
|
|
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
|
|
rhptee.getUnqualifiedType())) {
|
|
Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
// In this situation, we assume void* type. No especially good
|
|
// reason, but this is what gcc does, and we do have to pick
|
|
// to get a consistent AST.
|
|
QualType incompatTy = Context.getPointerType(Context.VoidTy);
|
|
ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
|
|
ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
|
|
return incompatTy;
|
|
}
|
|
// The block pointer types are compatible.
|
|
ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
|
|
ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
|
|
return LHSTy;
|
|
}
|
|
|
|
// Check constraints for C object pointers types (C99 6.5.15p3,6).
|
|
if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
|
|
// get the "pointed to" types
|
|
QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
|
|
QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
|
|
|
|
// ignore qualifiers on void (C99 6.5.15p3, clause 6)
|
|
if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
|
|
// Figure out necessary qualifiers (C99 6.5.15p6)
|
|
QualType destPointee
|
|
= Context.getQualifiedType(lhptee, rhptee.getQualifiers());
|
|
QualType destType = Context.getPointerType(destPointee);
|
|
// Add qualifiers if necessary.
|
|
ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
|
|
// Promote to void*.
|
|
ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
|
|
return destType;
|
|
}
|
|
if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
|
|
QualType destPointee
|
|
= Context.getQualifiedType(rhptee, lhptee.getQualifiers());
|
|
QualType destType = Context.getPointerType(destPointee);
|
|
// Add qualifiers if necessary.
|
|
ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
|
|
// Promote to void*.
|
|
ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
|
|
return destType;
|
|
}
|
|
|
|
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
|
|
// Two identical pointer types are always compatible.
|
|
return LHSTy;
|
|
}
|
|
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
|
|
rhptee.getUnqualifiedType())) {
|
|
Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
// In this situation, we assume void* type. No especially good
|
|
// reason, but this is what gcc does, and we do have to pick
|
|
// to get a consistent AST.
|
|
QualType incompatTy = Context.getPointerType(Context.VoidTy);
|
|
ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
|
|
ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
|
|
return incompatTy;
|
|
}
|
|
// The pointer types are compatible.
|
|
// C99 6.5.15p6: If both operands are pointers to compatible types *or* to
|
|
// differently qualified versions of compatible types, the result type is
|
|
// a pointer to an appropriately qualified version of the *composite*
|
|
// type.
|
|
// FIXME: Need to calculate the composite type.
|
|
// FIXME: Need to add qualifiers
|
|
ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
|
|
ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
|
|
return LHSTy;
|
|
}
|
|
|
|
// GCC compatibility: soften pointer/integer mismatch.
|
|
if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
|
|
Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
|
|
return RHSTy;
|
|
}
|
|
if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
|
|
Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
|
|
return LHSTy;
|
|
}
|
|
|
|
// Otherwise, the operands are not compatible.
|
|
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
/// FindCompositeObjCPointerType - Helper method to find composite type of
|
|
/// two objective-c pointer types of the two input expressions.
|
|
QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
|
|
SourceLocation QuestionLoc) {
|
|
QualType LHSTy = LHS->getType();
|
|
QualType RHSTy = RHS->getType();
|
|
|
|
// Handle things like Class and struct objc_class*. Here we case the result
|
|
// to the pseudo-builtin, because that will be implicitly cast back to the
|
|
// redefinition type if an attempt is made to access its fields.
|
|
if (LHSTy->isObjCClassType() &&
|
|
(RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
|
|
ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
|
|
return LHSTy;
|
|
}
|
|
if (RHSTy->isObjCClassType() &&
|
|
(LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
|
|
ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
|
|
return RHSTy;
|
|
}
|
|
// And the same for struct objc_object* / id
|
|
if (LHSTy->isObjCIdType() &&
|
|
(RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
|
|
ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
|
|
return LHSTy;
|
|
}
|
|
if (RHSTy->isObjCIdType() &&
|
|
(LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
|
|
ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
|
|
return RHSTy;
|
|
}
|
|
// And the same for struct objc_selector* / SEL
|
|
if (Context.isObjCSelType(LHSTy) &&
|
|
(RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
|
|
ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
|
|
return LHSTy;
|
|
}
|
|
if (Context.isObjCSelType(RHSTy) &&
|
|
(LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
|
|
ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
|
|
return RHSTy;
|
|
}
|
|
// Check constraints for Objective-C object pointers types.
|
|
if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
|
|
|
|
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
|
|
// Two identical object pointer types are always compatible.
|
|
return LHSTy;
|
|
}
|
|
const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
|
|
const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
|
|
QualType compositeType = LHSTy;
|
|
|
|
// If both operands are interfaces and either operand can be
|
|
// assigned to the other, use that type as the composite
|
|
// type. This allows
|
|
// xxx ? (A*) a : (B*) b
|
|
// where B is a subclass of A.
|
|
//
|
|
// Additionally, as for assignment, if either type is 'id'
|
|
// allow silent coercion. Finally, if the types are
|
|
// incompatible then make sure to use 'id' as the composite
|
|
// type so the result is acceptable for sending messages to.
|
|
|
|
// FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
|
|
// It could return the composite type.
|
|
if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
|
|
compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
|
|
} else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
|
|
compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
|
|
} else if ((LHSTy->isObjCQualifiedIdType() ||
|
|
RHSTy->isObjCQualifiedIdType()) &&
|
|
Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
|
|
// Need to handle "id<xx>" explicitly.
|
|
// GCC allows qualified id and any Objective-C type to devolve to
|
|
// id. Currently localizing to here until clear this should be
|
|
// part of ObjCQualifiedIdTypesAreCompatible.
|
|
compositeType = Context.getObjCIdType();
|
|
} else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
|
|
compositeType = Context.getObjCIdType();
|
|
} else if (!(compositeType =
|
|
Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
|
|
;
|
|
else {
|
|
Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
|
|
<< LHSTy << RHSTy
|
|
<< LHS->getSourceRange() << RHS->getSourceRange();
|
|
QualType incompatTy = Context.getObjCIdType();
|
|
ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
|
|
ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
|
|
return incompatTy;
|
|
}
|
|
// The object pointer types are compatible.
|
|
ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
|
|
ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
|
|
return compositeType;
|
|
}
|
|
// Check Objective-C object pointer types and 'void *'
|
|
if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
|
|
QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
|
|
QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
QualType destPointee
|
|
= Context.getQualifiedType(lhptee, rhptee.getQualifiers());
|
|
QualType destType = Context.getPointerType(destPointee);
|
|
// Add qualifiers if necessary.
|
|
ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
|
|
// Promote to void*.
|
|
ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
|
|
return destType;
|
|
}
|
|
if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
|
|
QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
|
|
QualType destPointee
|
|
= Context.getQualifiedType(rhptee, lhptee.getQualifiers());
|
|
QualType destType = Context.getPointerType(destPointee);
|
|
// Add qualifiers if necessary.
|
|
ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
|
|
// Promote to void*.
|
|
ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
|
|
return destType;
|
|
}
|
|
return QualType();
|
|
}
|
|
|
|
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
|
|
/// in the case of a the GNU conditional expr extension.
|
|
Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
|
|
SourceLocation ColonLoc,
|
|
ExprArg Cond, ExprArg LHS,
|
|
ExprArg RHS) {
|
|
Expr *CondExpr = (Expr *) Cond.get();
|
|
Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
|
|
|
|
// If this is the gnu "x ?: y" extension, analyze the types as though the LHS
|
|
// was the condition.
|
|
bool isLHSNull = LHSExpr == 0;
|
|
if (isLHSNull)
|
|
LHSExpr = CondExpr;
|
|
|
|
QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
|
|
RHSExpr, QuestionLoc);
|
|
if (result.isNull())
|
|
return ExprError();
|
|
|
|
Cond.release();
|
|
LHS.release();
|
|
RHS.release();
|
|
return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
|
|
isLHSNull ? 0 : LHSExpr,
|
|
ColonLoc, RHSExpr, result));
|
|
}
|
|
|
|
// CheckPointerTypesForAssignment - This is a very tricky routine (despite
|
|
// being closely modeled after the C99 spec:-). The odd characteristic of this
|
|
// routine is it effectively iqnores the qualifiers on the top level pointee.
|
|
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
|
|
// FIXME: add a couple examples in this comment.
|
|
Sema::AssignConvertType
|
|
Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
|
|
QualType lhptee, rhptee;
|
|
|
|
if ((lhsType->isObjCClassType() &&
|
|
(rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
|
|
(rhsType->isObjCClassType() &&
|
|
(lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
|
|
return Compatible;
|
|
}
|
|
|
|
// get the "pointed to" type (ignoring qualifiers at the top level)
|
|
lhptee = lhsType->getAs<PointerType>()->getPointeeType();
|
|
rhptee = rhsType->getAs<PointerType>()->getPointeeType();
|
|
|
|
// make sure we operate on the canonical type
|
|
lhptee = Context.getCanonicalType(lhptee);
|
|
rhptee = Context.getCanonicalType(rhptee);
|
|
|
|
AssignConvertType ConvTy = Compatible;
|
|
|
|
// C99 6.5.16.1p1: This following citation is common to constraints
|
|
// 3 & 4 (below). ...and the type *pointed to* by the left has all the
|
|
// qualifiers of the type *pointed to* by the right;
|
|
// FIXME: Handle ExtQualType
|
|
if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
|
|
ConvTy = CompatiblePointerDiscardsQualifiers;
|
|
|
|
// C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
|
|
// incomplete type and the other is a pointer to a qualified or unqualified
|
|
// version of void...
|
|
if (lhptee->isVoidType()) {
|
|
if (rhptee->isIncompleteOrObjectType())
|
|
return ConvTy;
|
|
|
|
// As an extension, we allow cast to/from void* to function pointer.
|
|
assert(rhptee->isFunctionType());
|
|
return FunctionVoidPointer;
|
|
}
|
|
|
|
if (rhptee->isVoidType()) {
|
|
if (lhptee->isIncompleteOrObjectType())
|
|
return ConvTy;
|
|
|
|
// As an extension, we allow cast to/from void* to function pointer.
|
|
assert(lhptee->isFunctionType());
|
|
return FunctionVoidPointer;
|
|
}
|
|
// C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
|
|
// unqualified versions of compatible types, ...
|
|
lhptee = lhptee.getUnqualifiedType();
|
|
rhptee = rhptee.getUnqualifiedType();
|
|
if (!Context.typesAreCompatible(lhptee, rhptee)) {
|
|
// Check if the pointee types are compatible ignoring the sign.
|
|
// We explicitly check for char so that we catch "char" vs
|
|
// "unsigned char" on systems where "char" is unsigned.
|
|
if (lhptee->isCharType())
|
|
lhptee = Context.UnsignedCharTy;
|
|
else if (lhptee->isSignedIntegerType())
|
|
lhptee = Context.getCorrespondingUnsignedType(lhptee);
|
|
|
|
if (rhptee->isCharType())
|
|
rhptee = Context.UnsignedCharTy;
|
|
else if (rhptee->isSignedIntegerType())
|
|
rhptee = Context.getCorrespondingUnsignedType(rhptee);
|
|
|
|
if (lhptee == rhptee) {
|
|
// Types are compatible ignoring the sign. Qualifier incompatibility
|
|
// takes priority over sign incompatibility because the sign
|
|
// warning can be disabled.
|
|
if (ConvTy != Compatible)
|
|
return ConvTy;
|
|
return IncompatiblePointerSign;
|
|
}
|
|
|
|
// If we are a multi-level pointer, it's possible that our issue is simply
|
|
// one of qualification - e.g. char ** -> const char ** is not allowed. If
|
|
// the eventual target type is the same and the pointers have the same
|
|
// level of indirection, this must be the issue.
|
|
if (lhptee->isPointerType() && rhptee->isPointerType()) {
|
|
do {
|
|
lhptee = lhptee->getAs<PointerType>()->getPointeeType();
|
|
rhptee = rhptee->getAs<PointerType>()->getPointeeType();
|
|
|
|
lhptee = Context.getCanonicalType(lhptee);
|
|
rhptee = Context.getCanonicalType(rhptee);
|
|
} while (lhptee->isPointerType() && rhptee->isPointerType());
|
|
|
|
if (Context.hasSameUnqualifiedType(lhptee, rhptee))
|
|
return IncompatibleNestedPointerQualifiers;
|
|
}
|
|
|
|
// General pointer incompatibility takes priority over qualifiers.
|
|
return IncompatiblePointer;
|
|
}
|
|
return ConvTy;
|
|
}
|
|
|
|
/// CheckBlockPointerTypesForAssignment - This routine determines whether two
|
|
/// block pointer types are compatible or whether a block and normal pointer
|
|
/// are compatible. It is more restrict than comparing two function pointer
|
|
// types.
|
|
Sema::AssignConvertType
|
|
Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
|
|
QualType rhsType) {
|
|
QualType lhptee, rhptee;
|
|
|
|
// get the "pointed to" type (ignoring qualifiers at the top level)
|
|
lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
|
|
rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
|
|
|
|
// make sure we operate on the canonical type
|
|
lhptee = Context.getCanonicalType(lhptee);
|
|
rhptee = Context.getCanonicalType(rhptee);
|
|
|
|
AssignConvertType ConvTy = Compatible;
|
|
|
|
// For blocks we enforce that qualifiers are identical.
|
|
if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
|
|
ConvTy = CompatiblePointerDiscardsQualifiers;
|
|
|
|
if (!Context.typesAreCompatible(lhptee, rhptee))
|
|
return IncompatibleBlockPointer;
|
|
return ConvTy;
|
|
}
|
|
|
|
/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
|
|
/// for assignment compatibility.
|
|
Sema::AssignConvertType
|
|
Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
|
|
if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
|
|
return Compatible;
|
|
QualType lhptee =
|
|
lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
QualType rhptee =
|
|
rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
// make sure we operate on the canonical type
|
|
lhptee = Context.getCanonicalType(lhptee);
|
|
rhptee = Context.getCanonicalType(rhptee);
|
|
if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
|
|
return CompatiblePointerDiscardsQualifiers;
|
|
|
|
if (Context.typesAreCompatible(lhsType, rhsType))
|
|
return Compatible;
|
|
if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
|
|
return IncompatibleObjCQualifiedId;
|
|
return IncompatiblePointer;
|
|
}
|
|
|
|
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
|
|
/// has code to accommodate several GCC extensions when type checking
|
|
/// pointers. Here are some objectionable examples that GCC considers warnings:
|
|
///
|
|
/// int a, *pint;
|
|
/// short *pshort;
|
|
/// struct foo *pfoo;
|
|
///
|
|
/// pint = pshort; // warning: assignment from incompatible pointer type
|
|
/// a = pint; // warning: assignment makes integer from pointer without a cast
|
|
/// pint = a; // warning: assignment makes pointer from integer without a cast
|
|
/// pint = pfoo; // warning: assignment from incompatible pointer type
|
|
///
|
|
/// As a result, the code for dealing with pointers is more complex than the
|
|
/// C99 spec dictates.
|
|
///
|
|
Sema::AssignConvertType
|
|
Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
|
|
// Get canonical types. We're not formatting these types, just comparing
|
|
// them.
|
|
lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
|
|
rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
|
|
|
|
if (lhsType == rhsType)
|
|
return Compatible; // Common case: fast path an exact match.
|
|
|
|
if ((lhsType->isObjCClassType() &&
|
|
(rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
|
|
(rhsType->isObjCClassType() &&
|
|
(lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
|
|
return Compatible;
|
|
}
|
|
|
|
// If the left-hand side is a reference type, then we are in a
|
|
// (rare!) case where we've allowed the use of references in C,
|
|
// e.g., as a parameter type in a built-in function. In this case,
|
|
// just make sure that the type referenced is compatible with the
|
|
// right-hand side type. The caller is responsible for adjusting
|
|
// lhsType so that the resulting expression does not have reference
|
|
// type.
|
|
if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
|
|
if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
|
|
return Compatible;
|
|
return Incompatible;
|
|
}
|
|
// Allow scalar to ExtVector assignments, and assignments of an ExtVector type
|
|
// to the same ExtVector type.
|
|
if (lhsType->isExtVectorType()) {
|
|
if (rhsType->isExtVectorType())
|
|
return lhsType == rhsType ? Compatible : Incompatible;
|
|
if (!rhsType->isVectorType() && rhsType->isArithmeticType())
|
|
return Compatible;
|
|
}
|
|
|
|
if (lhsType->isVectorType() || rhsType->isVectorType()) {
|
|
// If we are allowing lax vector conversions, and LHS and RHS are both
|
|
// vectors, the total size only needs to be the same. This is a bitcast;
|
|
// no bits are changed but the result type is different.
|
|
if (getLangOptions().LaxVectorConversions &&
|
|
lhsType->isVectorType() && rhsType->isVectorType()) {
|
|
if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
|
|
return IncompatibleVectors;
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
|
|
return Compatible;
|
|
|
|
if (isa<PointerType>(lhsType)) {
|
|
if (rhsType->isIntegerType())
|
|
return IntToPointer;
|
|
|
|
if (isa<PointerType>(rhsType))
|
|
return CheckPointerTypesForAssignment(lhsType, rhsType);
|
|
|
|
// In general, C pointers are not compatible with ObjC object pointers.
|
|
if (isa<ObjCObjectPointerType>(rhsType)) {
|
|
if (lhsType->isVoidPointerType()) // an exception to the rule.
|
|
return Compatible;
|
|
return IncompatiblePointer;
|
|
}
|
|
if (rhsType->getAs<BlockPointerType>()) {
|
|
if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
|
|
return Compatible;
|
|
|
|
// Treat block pointers as objects.
|
|
if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
|
|
return Compatible;
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
if (isa<BlockPointerType>(lhsType)) {
|
|
if (rhsType->isIntegerType())
|
|
return IntToBlockPointer;
|
|
|
|
// Treat block pointers as objects.
|
|
if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
|
|
return Compatible;
|
|
|
|
if (rhsType->isBlockPointerType())
|
|
return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
|
|
|
|
if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
|
|
if (RHSPT->getPointeeType()->isVoidType())
|
|
return Compatible;
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
if (isa<ObjCObjectPointerType>(lhsType)) {
|
|
if (rhsType->isIntegerType())
|
|
return IntToPointer;
|
|
|
|
// In general, C pointers are not compatible with ObjC object pointers.
|
|
if (isa<PointerType>(rhsType)) {
|
|
if (rhsType->isVoidPointerType()) // an exception to the rule.
|
|
return Compatible;
|
|
return IncompatiblePointer;
|
|
}
|
|
if (rhsType->isObjCObjectPointerType()) {
|
|
return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
|
|
}
|
|
if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
|
|
if (RHSPT->getPointeeType()->isVoidType())
|
|
return Compatible;
|
|
}
|
|
// Treat block pointers as objects.
|
|
if (rhsType->isBlockPointerType())
|
|
return Compatible;
|
|
return Incompatible;
|
|
}
|
|
if (isa<PointerType>(rhsType)) {
|
|
// C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
|
|
if (lhsType == Context.BoolTy)
|
|
return Compatible;
|
|
|
|
if (lhsType->isIntegerType())
|
|
return PointerToInt;
|
|
|
|
if (isa<PointerType>(lhsType))
|
|
return CheckPointerTypesForAssignment(lhsType, rhsType);
|
|
|
|
if (isa<BlockPointerType>(lhsType) &&
|
|
rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
|
|
return Compatible;
|
|
return Incompatible;
|
|
}
|
|
if (isa<ObjCObjectPointerType>(rhsType)) {
|
|
// C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
|
|
if (lhsType == Context.BoolTy)
|
|
return Compatible;
|
|
|
|
if (lhsType->isIntegerType())
|
|
return PointerToInt;
|
|
|
|
// In general, C pointers are not compatible with ObjC object pointers.
|
|
if (isa<PointerType>(lhsType)) {
|
|
if (lhsType->isVoidPointerType()) // an exception to the rule.
|
|
return Compatible;
|
|
return IncompatiblePointer;
|
|
}
|
|
if (isa<BlockPointerType>(lhsType) &&
|
|
rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
|
|
return Compatible;
|
|
return Incompatible;
|
|
}
|
|
|
|
if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
|
|
if (Context.typesAreCompatible(lhsType, rhsType))
|
|
return Compatible;
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
/// \brief Constructs a transparent union from an expression that is
|
|
/// used to initialize the transparent union.
|
|
static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
|
|
QualType UnionType, FieldDecl *Field) {
|
|
// Build an initializer list that designates the appropriate member
|
|
// of the transparent union.
|
|
InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
|
|
&E, 1,
|
|
SourceLocation());
|
|
Initializer->setType(UnionType);
|
|
Initializer->setInitializedFieldInUnion(Field);
|
|
|
|
// Build a compound literal constructing a value of the transparent
|
|
// union type from this initializer list.
|
|
E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
|
|
false);
|
|
}
|
|
|
|
Sema::AssignConvertType
|
|
Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
|
|
QualType FromType = rExpr->getType();
|
|
|
|
// If the ArgType is a Union type, we want to handle a potential
|
|
// transparent_union GCC extension.
|
|
const RecordType *UT = ArgType->getAsUnionType();
|
|
if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
|
|
return Incompatible;
|
|
|
|
// The field to initialize within the transparent union.
|
|
RecordDecl *UD = UT->getDecl();
|
|
FieldDecl *InitField = 0;
|
|
// It's compatible if the expression matches any of the fields.
|
|
for (RecordDecl::field_iterator it = UD->field_begin(),
|
|
itend = UD->field_end();
|
|
it != itend; ++it) {
|
|
if (it->getType()->isPointerType()) {
|
|
// If the transparent union contains a pointer type, we allow:
|
|
// 1) void pointer
|
|
// 2) null pointer constant
|
|
if (FromType->isPointerType())
|
|
if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
|
|
ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
|
|
InitField = *it;
|
|
break;
|
|
}
|
|
|
|
if (rExpr->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull)) {
|
|
ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
|
|
InitField = *it;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
|
|
== Compatible) {
|
|
InitField = *it;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!InitField)
|
|
return Incompatible;
|
|
|
|
ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
|
|
return Compatible;
|
|
}
|
|
|
|
Sema::AssignConvertType
|
|
Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
if (!lhsType->isRecordType()) {
|
|
// C++ 5.17p3: If the left operand is not of class type, the
|
|
// expression is implicitly converted (C++ 4) to the
|
|
// cv-unqualified type of the left operand.
|
|
if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
|
|
"assigning"))
|
|
return Incompatible;
|
|
return Compatible;
|
|
}
|
|
|
|
// FIXME: Currently, we fall through and treat C++ classes like C
|
|
// structures.
|
|
}
|
|
|
|
// C99 6.5.16.1p1: the left operand is a pointer and the right is
|
|
// a null pointer constant.
|
|
if ((lhsType->isPointerType() ||
|
|
lhsType->isObjCObjectPointerType() ||
|
|
lhsType->isBlockPointerType())
|
|
&& rExpr->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull)) {
|
|
ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
|
|
return Compatible;
|
|
}
|
|
|
|
// This check seems unnatural, however it is necessary to ensure the proper
|
|
// conversion of functions/arrays. If the conversion were done for all
|
|
// DeclExpr's (created by ActOnIdExpression), it would mess up the unary
|
|
// expressions that surpress this implicit conversion (&, sizeof).
|
|
//
|
|
// Suppress this for references: C++ 8.5.3p5.
|
|
if (!lhsType->isReferenceType())
|
|
DefaultFunctionArrayConversion(rExpr);
|
|
|
|
Sema::AssignConvertType result =
|
|
CheckAssignmentConstraints(lhsType, rExpr->getType());
|
|
|
|
// C99 6.5.16.1p2: The value of the right operand is converted to the
|
|
// type of the assignment expression.
|
|
// CheckAssignmentConstraints allows the left-hand side to be a reference,
|
|
// so that we can use references in built-in functions even in C.
|
|
// The getNonReferenceType() call makes sure that the resulting expression
|
|
// does not have reference type.
|
|
if (result != Incompatible && rExpr->getType() != lhsType)
|
|
ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
|
|
CastExpr::CK_Unknown);
|
|
return result;
|
|
}
|
|
|
|
QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
|
|
Diag(Loc, diag::err_typecheck_invalid_operands)
|
|
<< lex->getType() << rex->getType()
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
|
|
Expr *&rex) {
|
|
// For conversion purposes, we ignore any qualifiers.
|
|
// For example, "const float" and "float" are equivalent.
|
|
QualType lhsType =
|
|
Context.getCanonicalType(lex->getType()).getUnqualifiedType();
|
|
QualType rhsType =
|
|
Context.getCanonicalType(rex->getType()).getUnqualifiedType();
|
|
|
|
// If the vector types are identical, return.
|
|
if (lhsType == rhsType)
|
|
return lhsType;
|
|
|
|
// Handle the case of a vector & extvector type of the same size and element
|
|
// type. It would be nice if we only had one vector type someday.
|
|
if (getLangOptions().LaxVectorConversions) {
|
|
// FIXME: Should we warn here?
|
|
if (const VectorType *LV = lhsType->getAs<VectorType>()) {
|
|
if (const VectorType *RV = rhsType->getAs<VectorType>())
|
|
if (LV->getElementType() == RV->getElementType() &&
|
|
LV->getNumElements() == RV->getNumElements()) {
|
|
return lhsType->isExtVectorType() ? lhsType : rhsType;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Canonicalize the ExtVector to the LHS, remember if we swapped so we can
|
|
// swap back (so that we don't reverse the inputs to a subtract, for instance.
|
|
bool swapped = false;
|
|
if (rhsType->isExtVectorType()) {
|
|
swapped = true;
|
|
std::swap(rex, lex);
|
|
std::swap(rhsType, lhsType);
|
|
}
|
|
|
|
// Handle the case of an ext vector and scalar.
|
|
if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
|
|
QualType EltTy = LV->getElementType();
|
|
if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
|
|
if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
|
|
ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
|
|
if (swapped) std::swap(rex, lex);
|
|
return lhsType;
|
|
}
|
|
}
|
|
if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
|
|
rhsType->isRealFloatingType()) {
|
|
if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
|
|
ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
|
|
if (swapped) std::swap(rex, lex);
|
|
return lhsType;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Vectors of different size or scalar and non-ext-vector are errors.
|
|
Diag(Loc, diag::err_typecheck_vector_not_convertable)
|
|
<< lex->getType() << rex->getType()
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
inline QualType Sema::CheckMultiplyDivideOperands(
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorOperands(Loc, lex, rex);
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
|
|
return compType;
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckRemainderOperands(
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
|
|
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
|
|
return CheckVectorOperands(Loc, lex, rex);
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
|
|
return compType;
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
|
|
QualType compType = CheckVectorOperands(Loc, lex, rex);
|
|
if (CompLHSTy) *CompLHSTy = compType;
|
|
return compType;
|
|
}
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
|
|
|
|
// handle the common case first (both operands are arithmetic).
|
|
if (lex->getType()->isArithmeticType() &&
|
|
rex->getType()->isArithmeticType()) {
|
|
if (CompLHSTy) *CompLHSTy = compType;
|
|
return compType;
|
|
}
|
|
|
|
// Put any potential pointer into PExp
|
|
Expr* PExp = lex, *IExp = rex;
|
|
if (IExp->getType()->isAnyPointerType())
|
|
std::swap(PExp, IExp);
|
|
|
|
if (PExp->getType()->isAnyPointerType()) {
|
|
|
|
if (IExp->getType()->isIntegerType()) {
|
|
QualType PointeeTy = PExp->getType()->getPointeeType();
|
|
|
|
// Check for arithmetic on pointers to incomplete types.
|
|
if (PointeeTy->isVoidType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// GNU extension: arithmetic on pointer to void
|
|
Diag(Loc, diag::ext_gnu_void_ptr)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
} else if (PointeeTy->isFunctionType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
|
|
<< lex->getType() << lex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// GNU extension: arithmetic on pointer to function
|
|
Diag(Loc, diag::ext_gnu_ptr_func_arith)
|
|
<< lex->getType() << lex->getSourceRange();
|
|
} else {
|
|
// Check if we require a complete type.
|
|
if (((PExp->getType()->isPointerType() &&
|
|
!PExp->getType()->isDependentType()) ||
|
|
PExp->getType()->isObjCObjectPointerType()) &&
|
|
RequireCompleteType(Loc, PointeeTy,
|
|
PDiag(diag::err_typecheck_arithmetic_incomplete_type)
|
|
<< PExp->getSourceRange()
|
|
<< PExp->getType()))
|
|
return QualType();
|
|
}
|
|
// Diagnose bad cases where we step over interface counts.
|
|
if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
|
|
Diag(Loc, diag::err_arithmetic_nonfragile_interface)
|
|
<< PointeeTy << PExp->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
if (CompLHSTy) {
|
|
QualType LHSTy = Context.isPromotableBitField(lex);
|
|
if (LHSTy.isNull()) {
|
|
LHSTy = lex->getType();
|
|
if (LHSTy->isPromotableIntegerType())
|
|
LHSTy = Context.getPromotedIntegerType(LHSTy);
|
|
}
|
|
*CompLHSTy = LHSTy;
|
|
}
|
|
return PExp->getType();
|
|
}
|
|
}
|
|
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
// C99 6.5.6
|
|
QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
|
|
SourceLocation Loc, QualType* CompLHSTy) {
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
|
|
QualType compType = CheckVectorOperands(Loc, lex, rex);
|
|
if (CompLHSTy) *CompLHSTy = compType;
|
|
return compType;
|
|
}
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
|
|
|
|
// Enforce type constraints: C99 6.5.6p3.
|
|
|
|
// Handle the common case first (both operands are arithmetic).
|
|
if (lex->getType()->isArithmeticType()
|
|
&& rex->getType()->isArithmeticType()) {
|
|
if (CompLHSTy) *CompLHSTy = compType;
|
|
return compType;
|
|
}
|
|
|
|
// Either ptr - int or ptr - ptr.
|
|
if (lex->getType()->isAnyPointerType()) {
|
|
QualType lpointee = lex->getType()->getPointeeType();
|
|
|
|
// The LHS must be an completely-defined object type.
|
|
|
|
bool ComplainAboutVoid = false;
|
|
Expr *ComplainAboutFunc = 0;
|
|
if (lpointee->isVoidType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// GNU C extension: arithmetic on pointer to void
|
|
ComplainAboutVoid = true;
|
|
} else if (lpointee->isFunctionType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
|
|
<< lex->getType() << lex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// GNU C extension: arithmetic on pointer to function
|
|
ComplainAboutFunc = lex;
|
|
} else if (!lpointee->isDependentType() &&
|
|
RequireCompleteType(Loc, lpointee,
|
|
PDiag(diag::err_typecheck_sub_ptr_object)
|
|
<< lex->getSourceRange()
|
|
<< lex->getType()))
|
|
return QualType();
|
|
|
|
// Diagnose bad cases where we step over interface counts.
|
|
if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
|
|
Diag(Loc, diag::err_arithmetic_nonfragile_interface)
|
|
<< lpointee << lex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// The result type of a pointer-int computation is the pointer type.
|
|
if (rex->getType()->isIntegerType()) {
|
|
if (ComplainAboutVoid)
|
|
Diag(Loc, diag::ext_gnu_void_ptr)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
if (ComplainAboutFunc)
|
|
Diag(Loc, diag::ext_gnu_ptr_func_arith)
|
|
<< ComplainAboutFunc->getType()
|
|
<< ComplainAboutFunc->getSourceRange();
|
|
|
|
if (CompLHSTy) *CompLHSTy = lex->getType();
|
|
return lex->getType();
|
|
}
|
|
|
|
// Handle pointer-pointer subtractions.
|
|
if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
|
|
QualType rpointee = RHSPTy->getPointeeType();
|
|
|
|
// RHS must be a completely-type object type.
|
|
// Handle the GNU void* extension.
|
|
if (rpointee->isVoidType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
ComplainAboutVoid = true;
|
|
} else if (rpointee->isFunctionType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
|
|
<< rex->getType() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// GNU extension: arithmetic on pointer to function
|
|
if (!ComplainAboutFunc)
|
|
ComplainAboutFunc = rex;
|
|
} else if (!rpointee->isDependentType() &&
|
|
RequireCompleteType(Loc, rpointee,
|
|
PDiag(diag::err_typecheck_sub_ptr_object)
|
|
<< rex->getSourceRange()
|
|
<< rex->getType()))
|
|
return QualType();
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
// Pointee types must be the same: C++ [expr.add]
|
|
if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
|
|
Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
|
|
<< lex->getType() << rex->getType()
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
} else {
|
|
// Pointee types must be compatible C99 6.5.6p3
|
|
if (!Context.typesAreCompatible(
|
|
Context.getCanonicalType(lpointee).getUnqualifiedType(),
|
|
Context.getCanonicalType(rpointee).getUnqualifiedType())) {
|
|
Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
|
|
<< lex->getType() << rex->getType()
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
if (ComplainAboutVoid)
|
|
Diag(Loc, diag::ext_gnu_void_ptr)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
if (ComplainAboutFunc)
|
|
Diag(Loc, diag::ext_gnu_ptr_func_arith)
|
|
<< ComplainAboutFunc->getType()
|
|
<< ComplainAboutFunc->getSourceRange();
|
|
|
|
if (CompLHSTy) *CompLHSTy = lex->getType();
|
|
return Context.getPointerDiffType();
|
|
}
|
|
}
|
|
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
// C99 6.5.7
|
|
QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
|
|
bool isCompAssign) {
|
|
// C99 6.5.7p2: Each of the operands shall have integer type.
|
|
if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
|
|
return InvalidOperands(Loc, lex, rex);
|
|
|
|
// Vector shifts promote their scalar inputs to vector type.
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorOperands(Loc, lex, rex);
|
|
|
|
// Shifts don't perform usual arithmetic conversions, they just do integer
|
|
// promotions on each operand. C99 6.5.7p3
|
|
QualType LHSTy = Context.isPromotableBitField(lex);
|
|
if (LHSTy.isNull()) {
|
|
LHSTy = lex->getType();
|
|
if (LHSTy->isPromotableIntegerType())
|
|
LHSTy = Context.getPromotedIntegerType(LHSTy);
|
|
}
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
|
|
|
|
UsualUnaryConversions(rex);
|
|
|
|
// Sanity-check shift operands
|
|
llvm::APSInt Right;
|
|
// Check right/shifter operand
|
|
if (!rex->isValueDependent() &&
|
|
rex->isIntegerConstantExpr(Right, Context)) {
|
|
if (Right.isNegative())
|
|
Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
|
|
else {
|
|
llvm::APInt LeftBits(Right.getBitWidth(),
|
|
Context.getTypeSize(lex->getType()));
|
|
if (Right.uge(LeftBits))
|
|
Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
|
|
}
|
|
}
|
|
|
|
// "The type of the result is that of the promoted left operand."
|
|
return LHSTy;
|
|
}
|
|
|
|
/// \brief Implements -Wsign-compare.
|
|
///
|
|
/// \param lex the left-hand expression
|
|
/// \param rex the right-hand expression
|
|
/// \param OpLoc the location of the joining operator
|
|
/// \param Equality whether this is an "equality-like" join, which
|
|
/// suppresses the warning in some cases
|
|
void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc,
|
|
const PartialDiagnostic &PD, bool Equality) {
|
|
// Don't warn if we're in an unevaluated context.
|
|
if (ExprEvalContexts.back().Context == Unevaluated)
|
|
return;
|
|
|
|
QualType lt = lex->getType(), rt = rex->getType();
|
|
|
|
// Only warn if both operands are integral.
|
|
if (!lt->isIntegerType() || !rt->isIntegerType())
|
|
return;
|
|
|
|
// If either expression is value-dependent, don't warn. We'll get another
|
|
// chance at instantiation time.
|
|
if (lex->isValueDependent() || rex->isValueDependent())
|
|
return;
|
|
|
|
// The rule is that the signed operand becomes unsigned, so isolate the
|
|
// signed operand.
|
|
Expr *signedOperand, *unsignedOperand;
|
|
if (lt->isSignedIntegerType()) {
|
|
if (rt->isSignedIntegerType()) return;
|
|
signedOperand = lex;
|
|
unsignedOperand = rex;
|
|
} else {
|
|
if (!rt->isSignedIntegerType()) return;
|
|
signedOperand = rex;
|
|
unsignedOperand = lex;
|
|
}
|
|
|
|
// If the unsigned type is strictly smaller than the signed type,
|
|
// then (1) the result type will be signed and (2) the unsigned
|
|
// value will fit fully within the signed type, and thus the result
|
|
// of the comparison will be exact.
|
|
if (Context.getIntWidth(signedOperand->getType()) >
|
|
Context.getIntWidth(unsignedOperand->getType()))
|
|
return;
|
|
|
|
// If the value is a non-negative integer constant, then the
|
|
// signed->unsigned conversion won't change it.
|
|
llvm::APSInt value;
|
|
if (signedOperand->isIntegerConstantExpr(value, Context)) {
|
|
assert(value.isSigned() && "result of signed expression not signed");
|
|
|
|
if (value.isNonNegative())
|
|
return;
|
|
}
|
|
|
|
if (Equality) {
|
|
// For (in)equality comparisons, if the unsigned operand is a
|
|
// constant which cannot collide with a overflowed signed operand,
|
|
// then reinterpreting the signed operand as unsigned will not
|
|
// change the result of the comparison.
|
|
if (unsignedOperand->isIntegerConstantExpr(value, Context)) {
|
|
assert(!value.isSigned() && "result of unsigned expression is signed");
|
|
|
|
// 2's complement: test the top bit.
|
|
if (value.isNonNegative())
|
|
return;
|
|
}
|
|
}
|
|
|
|
Diag(OpLoc, PD)
|
|
<< lex->getType() << rex->getType()
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
|
|
// C99 6.5.8, C++ [expr.rel]
|
|
QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
|
|
unsigned OpaqueOpc, bool isRelational) {
|
|
BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
|
|
|
|
// Handle vector comparisons separately.
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
|
|
|
|
CheckSignCompare(lex, rex, Loc, diag::warn_mixed_sign_comparison,
|
|
(Opc == BinaryOperator::EQ || Opc == BinaryOperator::NE));
|
|
|
|
// C99 6.5.8p3 / C99 6.5.9p4
|
|
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
|
|
UsualArithmeticConversions(lex, rex);
|
|
else {
|
|
UsualUnaryConversions(lex);
|
|
UsualUnaryConversions(rex);
|
|
}
|
|
QualType lType = lex->getType();
|
|
QualType rType = rex->getType();
|
|
|
|
if (!lType->isFloatingType()
|
|
&& !(lType->isBlockPointerType() && isRelational)) {
|
|
// For non-floating point types, check for self-comparisons of the form
|
|
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
|
|
// often indicate logic errors in the program.
|
|
// NOTE: Don't warn about comparisons of enum constants. These can arise
|
|
// from macro expansions, and are usually quite deliberate.
|
|
Expr *LHSStripped = lex->IgnoreParens();
|
|
Expr *RHSStripped = rex->IgnoreParens();
|
|
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
|
|
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
|
|
if (DRL->getDecl() == DRR->getDecl() &&
|
|
!isa<EnumConstantDecl>(DRL->getDecl()))
|
|
Diag(Loc, diag::warn_selfcomparison);
|
|
|
|
if (isa<CastExpr>(LHSStripped))
|
|
LHSStripped = LHSStripped->IgnoreParenCasts();
|
|
if (isa<CastExpr>(RHSStripped))
|
|
RHSStripped = RHSStripped->IgnoreParenCasts();
|
|
|
|
// Warn about comparisons against a string constant (unless the other
|
|
// operand is null), the user probably wants strcmp.
|
|
Expr *literalString = 0;
|
|
Expr *literalStringStripped = 0;
|
|
if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
|
|
!RHSStripped->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull)) {
|
|
literalString = lex;
|
|
literalStringStripped = LHSStripped;
|
|
} else if ((isa<StringLiteral>(RHSStripped) ||
|
|
isa<ObjCEncodeExpr>(RHSStripped)) &&
|
|
!LHSStripped->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull)) {
|
|
literalString = rex;
|
|
literalStringStripped = RHSStripped;
|
|
}
|
|
|
|
if (literalString) {
|
|
std::string resultComparison;
|
|
switch (Opc) {
|
|
case BinaryOperator::LT: resultComparison = ") < 0"; break;
|
|
case BinaryOperator::GT: resultComparison = ") > 0"; break;
|
|
case BinaryOperator::LE: resultComparison = ") <= 0"; break;
|
|
case BinaryOperator::GE: resultComparison = ") >= 0"; break;
|
|
case BinaryOperator::EQ: resultComparison = ") == 0"; break;
|
|
case BinaryOperator::NE: resultComparison = ") != 0"; break;
|
|
default: assert(false && "Invalid comparison operator");
|
|
}
|
|
Diag(Loc, diag::warn_stringcompare)
|
|
<< isa<ObjCEncodeExpr>(literalStringStripped)
|
|
<< literalString->getSourceRange()
|
|
<< CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
|
|
<< CodeModificationHint::CreateInsertion(lex->getLocStart(),
|
|
"strcmp(")
|
|
<< CodeModificationHint::CreateInsertion(
|
|
PP.getLocForEndOfToken(rex->getLocEnd()),
|
|
resultComparison);
|
|
}
|
|
}
|
|
|
|
// The result of comparisons is 'bool' in C++, 'int' in C.
|
|
QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
|
|
|
|
if (isRelational) {
|
|
if (lType->isRealType() && rType->isRealType())
|
|
return ResultTy;
|
|
} else {
|
|
// Check for comparisons of floating point operands using != and ==.
|
|
if (lType->isFloatingType() && rType->isFloatingType())
|
|
CheckFloatComparison(Loc,lex,rex);
|
|
|
|
if (lType->isArithmeticType() && rType->isArithmeticType())
|
|
return ResultTy;
|
|
}
|
|
|
|
bool LHSIsNull = lex->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull);
|
|
bool RHSIsNull = rex->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull);
|
|
|
|
// All of the following pointer related warnings are GCC extensions, except
|
|
// when handling null pointer constants. One day, we can consider making them
|
|
// errors (when -pedantic-errors is enabled).
|
|
if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
|
|
QualType LCanPointeeTy =
|
|
Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
|
|
QualType RCanPointeeTy =
|
|
Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
if (LCanPointeeTy == RCanPointeeTy)
|
|
return ResultTy;
|
|
|
|
// C++ [expr.rel]p2:
|
|
// [...] Pointer conversions (4.10) and qualification
|
|
// conversions (4.4) are performed on pointer operands (or on
|
|
// a pointer operand and a null pointer constant) to bring
|
|
// them to their composite pointer type. [...]
|
|
//
|
|
// C++ [expr.eq]p1 uses the same notion for (in)equality
|
|
// comparisons of pointers.
|
|
QualType T = FindCompositePointerType(lex, rex);
|
|
if (T.isNull()) {
|
|
Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
|
|
ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
|
|
return ResultTy;
|
|
}
|
|
// C99 6.5.9p2 and C99 6.5.8p2
|
|
if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
|
|
RCanPointeeTy.getUnqualifiedType())) {
|
|
// Valid unless a relational comparison of function pointers
|
|
if (isRelational && LCanPointeeTy->isFunctionType()) {
|
|
Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
} else if (!isRelational &&
|
|
(LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
|
|
// Valid unless comparison between non-null pointer and function pointer
|
|
if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
|
|
&& !LHSIsNull && !RHSIsNull) {
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
} else {
|
|
// Invalid
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
if (LCanPointeeTy != RCanPointeeTy)
|
|
ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
|
|
return ResultTy;
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
// Comparison of pointers with null pointer constants and equality
|
|
// comparisons of member pointers to null pointer constants.
|
|
if (RHSIsNull &&
|
|
(lType->isPointerType() ||
|
|
(!isRelational && lType->isMemberPointerType()))) {
|
|
ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
|
|
return ResultTy;
|
|
}
|
|
if (LHSIsNull &&
|
|
(rType->isPointerType() ||
|
|
(!isRelational && rType->isMemberPointerType()))) {
|
|
ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
|
|
return ResultTy;
|
|
}
|
|
|
|
// Comparison of member pointers.
|
|
if (!isRelational &&
|
|
lType->isMemberPointerType() && rType->isMemberPointerType()) {
|
|
// C++ [expr.eq]p2:
|
|
// In addition, pointers to members can be compared, or a pointer to
|
|
// member and a null pointer constant. Pointer to member conversions
|
|
// (4.11) and qualification conversions (4.4) are performed to bring
|
|
// them to a common type. If one operand is a null pointer constant,
|
|
// the common type is the type of the other operand. Otherwise, the
|
|
// common type is a pointer to member type similar (4.4) to the type
|
|
// of one of the operands, with a cv-qualification signature (4.4)
|
|
// that is the union of the cv-qualification signatures of the operand
|
|
// types.
|
|
QualType T = FindCompositePointerType(lex, rex);
|
|
if (T.isNull()) {
|
|
Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
|
|
ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
|
|
return ResultTy;
|
|
}
|
|
|
|
// Comparison of nullptr_t with itself.
|
|
if (lType->isNullPtrType() && rType->isNullPtrType())
|
|
return ResultTy;
|
|
}
|
|
|
|
// Handle block pointer types.
|
|
if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
|
|
QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
|
|
QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
|
|
|
|
if (!LHSIsNull && !RHSIsNull &&
|
|
!Context.typesAreCompatible(lpointee, rpointee)) {
|
|
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
|
|
return ResultTy;
|
|
}
|
|
// Allow block pointers to be compared with null pointer constants.
|
|
if (!isRelational
|
|
&& ((lType->isBlockPointerType() && rType->isPointerType())
|
|
|| (lType->isPointerType() && rType->isBlockPointerType()))) {
|
|
if (!LHSIsNull && !RHSIsNull) {
|
|
if (!((rType->isPointerType() && rType->getAs<PointerType>()
|
|
->getPointeeType()->isVoidType())
|
|
|| (lType->isPointerType() && lType->getAs<PointerType>()
|
|
->getPointeeType()->isVoidType())))
|
|
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
|
|
return ResultTy;
|
|
}
|
|
|
|
if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
|
|
if (lType->isPointerType() || rType->isPointerType()) {
|
|
const PointerType *LPT = lType->getAs<PointerType>();
|
|
const PointerType *RPT = rType->getAs<PointerType>();
|
|
bool LPtrToVoid = LPT ?
|
|
Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
|
|
bool RPtrToVoid = RPT ?
|
|
Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
|
|
|
|
if (!LPtrToVoid && !RPtrToVoid &&
|
|
!Context.typesAreCompatible(lType, rType)) {
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
|
|
return ResultTy;
|
|
}
|
|
if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
|
|
if (!Context.areComparableObjCPointerTypes(lType, rType))
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
|
|
return ResultTy;
|
|
}
|
|
}
|
|
if (lType->isAnyPointerType() && rType->isIntegerType()) {
|
|
unsigned DiagID = 0;
|
|
if (RHSIsNull) {
|
|
if (isRelational)
|
|
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
|
|
} else if (isRelational)
|
|
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
|
|
else
|
|
DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
|
|
|
|
if (DiagID) {
|
|
Diag(Loc, DiagID)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
|
|
return ResultTy;
|
|
}
|
|
if (lType->isIntegerType() && rType->isAnyPointerType()) {
|
|
unsigned DiagID = 0;
|
|
if (LHSIsNull) {
|
|
if (isRelational)
|
|
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
|
|
} else if (isRelational)
|
|
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
|
|
else
|
|
DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
|
|
|
|
if (DiagID) {
|
|
Diag(Loc, DiagID)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
|
|
return ResultTy;
|
|
}
|
|
// Handle block pointers.
|
|
if (!isRelational && RHSIsNull
|
|
&& lType->isBlockPointerType() && rType->isIntegerType()) {
|
|
ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
|
|
return ResultTy;
|
|
}
|
|
if (!isRelational && LHSIsNull
|
|
&& lType->isIntegerType() && rType->isBlockPointerType()) {
|
|
ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
|
|
return ResultTy;
|
|
}
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
/// CheckVectorCompareOperands - vector comparisons are a clang extension that
|
|
/// operates on extended vector types. Instead of producing an IntTy result,
|
|
/// like a scalar comparison, a vector comparison produces a vector of integer
|
|
/// types.
|
|
QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
|
|
SourceLocation Loc,
|
|
bool isRelational) {
|
|
// Check to make sure we're operating on vectors of the same type and width,
|
|
// Allowing one side to be a scalar of element type.
|
|
QualType vType = CheckVectorOperands(Loc, lex, rex);
|
|
if (vType.isNull())
|
|
return vType;
|
|
|
|
QualType lType = lex->getType();
|
|
QualType rType = rex->getType();
|
|
|
|
// For non-floating point types, check for self-comparisons of the form
|
|
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
|
|
// often indicate logic errors in the program.
|
|
if (!lType->isFloatingType()) {
|
|
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
|
|
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
|
|
if (DRL->getDecl() == DRR->getDecl())
|
|
Diag(Loc, diag::warn_selfcomparison);
|
|
}
|
|
|
|
// Check for comparisons of floating point operands using != and ==.
|
|
if (!isRelational && lType->isFloatingType()) {
|
|
assert (rType->isFloatingType());
|
|
CheckFloatComparison(Loc,lex,rex);
|
|
}
|
|
|
|
// Return the type for the comparison, which is the same as vector type for
|
|
// integer vectors, or an integer type of identical size and number of
|
|
// elements for floating point vectors.
|
|
if (lType->isIntegerType())
|
|
return lType;
|
|
|
|
const VectorType *VTy = lType->getAs<VectorType>();
|
|
unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
|
|
if (TypeSize == Context.getTypeSize(Context.IntTy))
|
|
return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
|
|
if (TypeSize == Context.getTypeSize(Context.LongTy))
|
|
return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
|
|
|
|
assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
|
|
"Unhandled vector element size in vector compare");
|
|
return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
|
|
}
|
|
|
|
inline QualType Sema::CheckBitwiseOperands(
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorOperands(Loc, lex, rex);
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
|
|
return compType;
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc) {
|
|
if (!Context.getLangOptions().CPlusPlus) {
|
|
UsualUnaryConversions(lex);
|
|
UsualUnaryConversions(rex);
|
|
|
|
if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
|
|
return InvalidOperands(Loc, lex, rex);
|
|
|
|
return Context.IntTy;
|
|
}
|
|
|
|
// C++ [expr.log.and]p1
|
|
// C++ [expr.log.or]p1
|
|
// The operands are both implicitly converted to type bool (clause 4).
|
|
StandardConversionSequence LHS;
|
|
if (!IsStandardConversion(lex, Context.BoolTy,
|
|
/*InOverloadResolution=*/false, LHS))
|
|
return InvalidOperands(Loc, lex, rex);
|
|
|
|
if (PerformImplicitConversion(lex, Context.BoolTy, LHS,
|
|
"passing", /*IgnoreBaseAccess=*/false))
|
|
return InvalidOperands(Loc, lex, rex);
|
|
|
|
StandardConversionSequence RHS;
|
|
if (!IsStandardConversion(rex, Context.BoolTy,
|
|
/*InOverloadResolution=*/false, RHS))
|
|
return InvalidOperands(Loc, lex, rex);
|
|
|
|
if (PerformImplicitConversion(rex, Context.BoolTy, RHS,
|
|
"passing", /*IgnoreBaseAccess=*/false))
|
|
return InvalidOperands(Loc, lex, rex);
|
|
|
|
// C++ [expr.log.and]p2
|
|
// C++ [expr.log.or]p2
|
|
// The result is a bool.
|
|
return Context.BoolTy;
|
|
}
|
|
|
|
/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
|
|
/// is a read-only property; return true if so. A readonly property expression
|
|
/// depends on various declarations and thus must be treated specially.
|
|
///
|
|
static bool IsReadonlyProperty(Expr *E, Sema &S) {
|
|
if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
|
|
const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
|
|
if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
|
|
QualType BaseType = PropExpr->getBase()->getType();
|
|
if (const ObjCObjectPointerType *OPT =
|
|
BaseType->getAsObjCInterfacePointerType())
|
|
if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
|
|
if (S.isPropertyReadonly(PDecl, IFace))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
|
|
/// emit an error and return true. If so, return false.
|
|
static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
|
|
SourceLocation OrigLoc = Loc;
|
|
Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
|
|
&Loc);
|
|
if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
|
|
IsLV = Expr::MLV_ReadonlyProperty;
|
|
if (IsLV == Expr::MLV_Valid)
|
|
return false;
|
|
|
|
unsigned Diag = 0;
|
|
bool NeedType = false;
|
|
switch (IsLV) { // C99 6.5.16p2
|
|
default: assert(0 && "Unknown result from isModifiableLvalue!");
|
|
case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
|
|
case Expr::MLV_ArrayType:
|
|
Diag = diag::err_typecheck_array_not_modifiable_lvalue;
|
|
NeedType = true;
|
|
break;
|
|
case Expr::MLV_NotObjectType:
|
|
Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
|
|
NeedType = true;
|
|
break;
|
|
case Expr::MLV_LValueCast:
|
|
Diag = diag::err_typecheck_lvalue_casts_not_supported;
|
|
break;
|
|
case Expr::MLV_InvalidExpression:
|
|
Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
|
|
break;
|
|
case Expr::MLV_IncompleteType:
|
|
case Expr::MLV_IncompleteVoidType:
|
|
return S.RequireCompleteType(Loc, E->getType(),
|
|
PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
|
|
<< E->getSourceRange());
|
|
case Expr::MLV_DuplicateVectorComponents:
|
|
Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
|
|
break;
|
|
case Expr::MLV_NotBlockQualified:
|
|
Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
|
|
break;
|
|
case Expr::MLV_ReadonlyProperty:
|
|
Diag = diag::error_readonly_property_assignment;
|
|
break;
|
|
case Expr::MLV_NoSetterProperty:
|
|
Diag = diag::error_nosetter_property_assignment;
|
|
break;
|
|
}
|
|
|
|
SourceRange Assign;
|
|
if (Loc != OrigLoc)
|
|
Assign = SourceRange(OrigLoc, OrigLoc);
|
|
if (NeedType)
|
|
S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
|
|
else
|
|
S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
// C99 6.5.16.1
|
|
QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
|
|
SourceLocation Loc,
|
|
QualType CompoundType) {
|
|
// Verify that LHS is a modifiable lvalue, and emit error if not.
|
|
if (CheckForModifiableLvalue(LHS, Loc, *this))
|
|
return QualType();
|
|
|
|
QualType LHSType = LHS->getType();
|
|
QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
|
|
|
|
AssignConvertType ConvTy;
|
|
if (CompoundType.isNull()) {
|
|
// Simple assignment "x = y".
|
|
ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
|
|
// Special case of NSObject attributes on c-style pointer types.
|
|
if (ConvTy == IncompatiblePointer &&
|
|
((Context.isObjCNSObjectType(LHSType) &&
|
|
RHSType->isObjCObjectPointerType()) ||
|
|
(Context.isObjCNSObjectType(RHSType) &&
|
|
LHSType->isObjCObjectPointerType())))
|
|
ConvTy = Compatible;
|
|
|
|
// If the RHS is a unary plus or minus, check to see if they = and + are
|
|
// right next to each other. If so, the user may have typo'd "x =+ 4"
|
|
// instead of "x += 4".
|
|
Expr *RHSCheck = RHS;
|
|
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
|
|
RHSCheck = ICE->getSubExpr();
|
|
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
|
|
if ((UO->getOpcode() == UnaryOperator::Plus ||
|
|
UO->getOpcode() == UnaryOperator::Minus) &&
|
|
Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
|
|
// Only if the two operators are exactly adjacent.
|
|
Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
|
|
// And there is a space or other character before the subexpr of the
|
|
// unary +/-. We don't want to warn on "x=-1".
|
|
Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
|
|
UO->getSubExpr()->getLocStart().isFileID()) {
|
|
Diag(Loc, diag::warn_not_compound_assign)
|
|
<< (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
|
|
<< SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
|
|
}
|
|
}
|
|
} else {
|
|
// Compound assignment "x += y"
|
|
ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
|
|
}
|
|
|
|
if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
|
|
RHS, "assigning"))
|
|
return QualType();
|
|
|
|
// C99 6.5.16p3: The type of an assignment expression is the type of the
|
|
// left operand unless the left operand has qualified type, in which case
|
|
// it is the unqualified version of the type of the left operand.
|
|
// C99 6.5.16.1p2: In simple assignment, the value of the right operand
|
|
// is converted to the type of the assignment expression (above).
|
|
// C++ 5.17p1: the type of the assignment expression is that of its left
|
|
// operand.
|
|
return LHSType.getUnqualifiedType();
|
|
}
|
|
|
|
// C99 6.5.17
|
|
QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
|
|
// Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
|
|
DefaultFunctionArrayConversion(RHS);
|
|
|
|
// FIXME: Check that RHS type is complete in C mode (it's legal for it to be
|
|
// incomplete in C++).
|
|
|
|
return RHS->getType();
|
|
}
|
|
|
|
/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
|
|
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
|
|
QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
|
|
bool isInc) {
|
|
if (Op->isTypeDependent())
|
|
return Context.DependentTy;
|
|
|
|
QualType ResType = Op->getType();
|
|
assert(!ResType.isNull() && "no type for increment/decrement expression");
|
|
|
|
if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
|
|
// Decrement of bool is not allowed.
|
|
if (!isInc) {
|
|
Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
// Increment of bool sets it to true, but is deprecated.
|
|
Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
|
|
} else if (ResType->isRealType()) {
|
|
// OK!
|
|
} else if (ResType->isAnyPointerType()) {
|
|
QualType PointeeTy = ResType->getPointeeType();
|
|
|
|
// C99 6.5.2.4p2, 6.5.6p2
|
|
if (PointeeTy->isVoidType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
|
|
<< Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// Pointer to void is a GNU extension in C.
|
|
Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
|
|
} else if (PointeeTy->isFunctionType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
|
|
<< Op->getType() << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
|
|
<< ResType << Op->getSourceRange();
|
|
} else if (RequireCompleteType(OpLoc, PointeeTy,
|
|
PDiag(diag::err_typecheck_arithmetic_incomplete_type)
|
|
<< Op->getSourceRange()
|
|
<< ResType))
|
|
return QualType();
|
|
// Diagnose bad cases where we step over interface counts.
|
|
else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
|
|
Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
|
|
<< PointeeTy << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
} else if (ResType->isComplexType()) {
|
|
// C99 does not support ++/-- on complex types, we allow as an extension.
|
|
Diag(OpLoc, diag::ext_integer_increment_complex)
|
|
<< ResType << Op->getSourceRange();
|
|
} else {
|
|
Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
|
|
<< ResType << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
// At this point, we know we have a real, complex or pointer type.
|
|
// Now make sure the operand is a modifiable lvalue.
|
|
if (CheckForModifiableLvalue(Op, OpLoc, *this))
|
|
return QualType();
|
|
return ResType;
|
|
}
|
|
|
|
/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
|
|
/// This routine allows us to typecheck complex/recursive expressions
|
|
/// where the declaration is needed for type checking. We only need to
|
|
/// handle cases when the expression references a function designator
|
|
/// or is an lvalue. Here are some examples:
|
|
/// - &(x) => x
|
|
/// - &*****f => f for f a function designator.
|
|
/// - &s.xx => s
|
|
/// - &s.zz[1].yy -> s, if zz is an array
|
|
/// - *(x + 1) -> x, if x is an array
|
|
/// - &"123"[2] -> 0
|
|
/// - & __real__ x -> x
|
|
static NamedDecl *getPrimaryDecl(Expr *E) {
|
|
switch (E->getStmtClass()) {
|
|
case Stmt::DeclRefExprClass:
|
|
return cast<DeclRefExpr>(E)->getDecl();
|
|
case Stmt::MemberExprClass:
|
|
// If this is an arrow operator, the address is an offset from
|
|
// the base's value, so the object the base refers to is
|
|
// irrelevant.
|
|
if (cast<MemberExpr>(E)->isArrow())
|
|
return 0;
|
|
// Otherwise, the expression refers to a part of the base
|
|
return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
|
|
case Stmt::ArraySubscriptExprClass: {
|
|
// FIXME: This code shouldn't be necessary! We should catch the implicit
|
|
// promotion of register arrays earlier.
|
|
Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
|
|
if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
|
|
if (ICE->getSubExpr()->getType()->isArrayType())
|
|
return getPrimaryDecl(ICE->getSubExpr());
|
|
}
|
|
return 0;
|
|
}
|
|
case Stmt::UnaryOperatorClass: {
|
|
UnaryOperator *UO = cast<UnaryOperator>(E);
|
|
|
|
switch(UO->getOpcode()) {
|
|
case UnaryOperator::Real:
|
|
case UnaryOperator::Imag:
|
|
case UnaryOperator::Extension:
|
|
return getPrimaryDecl(UO->getSubExpr());
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
case Stmt::ParenExprClass:
|
|
return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
|
|
case Stmt::ImplicitCastExprClass:
|
|
// If the result of an implicit cast is an l-value, we care about
|
|
// the sub-expression; otherwise, the result here doesn't matter.
|
|
return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/// CheckAddressOfOperand - The operand of & must be either a function
|
|
/// designator or an lvalue designating an object. If it is an lvalue, the
|
|
/// object cannot be declared with storage class register or be a bit field.
|
|
/// Note: The usual conversions are *not* applied to the operand of the &
|
|
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
|
|
/// In C++, the operand might be an overloaded function name, in which case
|
|
/// we allow the '&' but retain the overloaded-function type.
|
|
QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
|
|
// Make sure to ignore parentheses in subsequent checks
|
|
op = op->IgnoreParens();
|
|
|
|
if (op->isTypeDependent())
|
|
return Context.DependentTy;
|
|
|
|
if (getLangOptions().C99) {
|
|
// Implement C99-only parts of addressof rules.
|
|
if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
|
|
if (uOp->getOpcode() == UnaryOperator::Deref)
|
|
// Per C99 6.5.3.2, the address of a deref always returns a valid result
|
|
// (assuming the deref expression is valid).
|
|
return uOp->getSubExpr()->getType();
|
|
}
|
|
// Technically, there should be a check for array subscript
|
|
// expressions here, but the result of one is always an lvalue anyway.
|
|
}
|
|
NamedDecl *dcl = getPrimaryDecl(op);
|
|
Expr::isLvalueResult lval = op->isLvalue(Context);
|
|
|
|
if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
|
|
// C99 6.5.3.2p1
|
|
// The operand must be either an l-value or a function designator
|
|
if (!op->getType()->isFunctionType()) {
|
|
// FIXME: emit more specific diag...
|
|
Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
|
|
<< op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
} else if (op->getBitField()) { // C99 6.5.3.2p1
|
|
// The operand cannot be a bit-field
|
|
Diag(OpLoc, diag::err_typecheck_address_of)
|
|
<< "bit-field" << op->getSourceRange();
|
|
return QualType();
|
|
} else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
|
|
cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
|
|
// The operand cannot be an element of a vector
|
|
Diag(OpLoc, diag::err_typecheck_address_of)
|
|
<< "vector element" << op->getSourceRange();
|
|
return QualType();
|
|
} else if (isa<ObjCPropertyRefExpr>(op)) {
|
|
// cannot take address of a property expression.
|
|
Diag(OpLoc, diag::err_typecheck_address_of)
|
|
<< "property expression" << op->getSourceRange();
|
|
return QualType();
|
|
} else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
|
|
// FIXME: Can LHS ever be null here?
|
|
if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
|
|
return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
|
|
} else if (isa<UnresolvedLookupExpr>(op)) {
|
|
return Context.OverloadTy;
|
|
} else if (dcl) { // C99 6.5.3.2p1
|
|
// We have an lvalue with a decl. Make sure the decl is not declared
|
|
// with the register storage-class specifier.
|
|
if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
|
|
if (vd->getStorageClass() == VarDecl::Register) {
|
|
Diag(OpLoc, diag::err_typecheck_address_of)
|
|
<< "register variable" << op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
} else if (isa<FunctionTemplateDecl>(dcl)) {
|
|
return Context.OverloadTy;
|
|
} else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
|
|
// Okay: we can take the address of a field.
|
|
// Could be a pointer to member, though, if there is an explicit
|
|
// scope qualifier for the class.
|
|
if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
|
|
DeclContext *Ctx = dcl->getDeclContext();
|
|
if (Ctx && Ctx->isRecord()) {
|
|
if (FD->getType()->isReferenceType()) {
|
|
Diag(OpLoc,
|
|
diag::err_cannot_form_pointer_to_member_of_reference_type)
|
|
<< FD->getDeclName() << FD->getType();
|
|
return QualType();
|
|
}
|
|
|
|
return Context.getMemberPointerType(op->getType(),
|
|
Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
|
|
}
|
|
}
|
|
} else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
|
|
// Okay: we can take the address of a function.
|
|
// As above.
|
|
if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
|
|
MD->isInstance())
|
|
return Context.getMemberPointerType(op->getType(),
|
|
Context.getTypeDeclType(MD->getParent()).getTypePtr());
|
|
} else if (!isa<FunctionDecl>(dcl))
|
|
assert(0 && "Unknown/unexpected decl type");
|
|
}
|
|
|
|
if (lval == Expr::LV_IncompleteVoidType) {
|
|
// Taking the address of a void variable is technically illegal, but we
|
|
// allow it in cases which are otherwise valid.
|
|
// Example: "extern void x; void* y = &x;".
|
|
Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
|
|
}
|
|
|
|
// If the operand has type "type", the result has type "pointer to type".
|
|
return Context.getPointerType(op->getType());
|
|
}
|
|
|
|
QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
|
|
if (Op->isTypeDependent())
|
|
return Context.DependentTy;
|
|
|
|
UsualUnaryConversions(Op);
|
|
QualType Ty = Op->getType();
|
|
|
|
// Note that per both C89 and C99, this is always legal, even if ptype is an
|
|
// incomplete type or void. It would be possible to warn about dereferencing
|
|
// a void pointer, but it's completely well-defined, and such a warning is
|
|
// unlikely to catch any mistakes.
|
|
if (const PointerType *PT = Ty->getAs<PointerType>())
|
|
return PT->getPointeeType();
|
|
|
|
if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
|
|
return OPT->getPointeeType();
|
|
|
|
Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
|
|
<< Ty << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
|
|
tok::TokenKind Kind) {
|
|
BinaryOperator::Opcode Opc;
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown binop!");
|
|
case tok::periodstar: Opc = BinaryOperator::PtrMemD; break;
|
|
case tok::arrowstar: Opc = BinaryOperator::PtrMemI; break;
|
|
case tok::star: Opc = BinaryOperator::Mul; break;
|
|
case tok::slash: Opc = BinaryOperator::Div; break;
|
|
case tok::percent: Opc = BinaryOperator::Rem; break;
|
|
case tok::plus: Opc = BinaryOperator::Add; break;
|
|
case tok::minus: Opc = BinaryOperator::Sub; break;
|
|
case tok::lessless: Opc = BinaryOperator::Shl; break;
|
|
case tok::greatergreater: Opc = BinaryOperator::Shr; break;
|
|
case tok::lessequal: Opc = BinaryOperator::LE; break;
|
|
case tok::less: Opc = BinaryOperator::LT; break;
|
|
case tok::greaterequal: Opc = BinaryOperator::GE; break;
|
|
case tok::greater: Opc = BinaryOperator::GT; break;
|
|
case tok::exclaimequal: Opc = BinaryOperator::NE; break;
|
|
case tok::equalequal: Opc = BinaryOperator::EQ; break;
|
|
case tok::amp: Opc = BinaryOperator::And; break;
|
|
case tok::caret: Opc = BinaryOperator::Xor; break;
|
|
case tok::pipe: Opc = BinaryOperator::Or; break;
|
|
case tok::ampamp: Opc = BinaryOperator::LAnd; break;
|
|
case tok::pipepipe: Opc = BinaryOperator::LOr; break;
|
|
case tok::equal: Opc = BinaryOperator::Assign; break;
|
|
case tok::starequal: Opc = BinaryOperator::MulAssign; break;
|
|
case tok::slashequal: Opc = BinaryOperator::DivAssign; break;
|
|
case tok::percentequal: Opc = BinaryOperator::RemAssign; break;
|
|
case tok::plusequal: Opc = BinaryOperator::AddAssign; break;
|
|
case tok::minusequal: Opc = BinaryOperator::SubAssign; break;
|
|
case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break;
|
|
case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break;
|
|
case tok::ampequal: Opc = BinaryOperator::AndAssign; break;
|
|
case tok::caretequal: Opc = BinaryOperator::XorAssign; break;
|
|
case tok::pipeequal: Opc = BinaryOperator::OrAssign; break;
|
|
case tok::comma: Opc = BinaryOperator::Comma; break;
|
|
}
|
|
return Opc;
|
|
}
|
|
|
|
static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
|
|
tok::TokenKind Kind) {
|
|
UnaryOperator::Opcode Opc;
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown unary op!");
|
|
case tok::plusplus: Opc = UnaryOperator::PreInc; break;
|
|
case tok::minusminus: Opc = UnaryOperator::PreDec; break;
|
|
case tok::amp: Opc = UnaryOperator::AddrOf; break;
|
|
case tok::star: Opc = UnaryOperator::Deref; break;
|
|
case tok::plus: Opc = UnaryOperator::Plus; break;
|
|
case tok::minus: Opc = UnaryOperator::Minus; break;
|
|
case tok::tilde: Opc = UnaryOperator::Not; break;
|
|
case tok::exclaim: Opc = UnaryOperator::LNot; break;
|
|
case tok::kw___real: Opc = UnaryOperator::Real; break;
|
|
case tok::kw___imag: Opc = UnaryOperator::Imag; break;
|
|
case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
|
|
}
|
|
return Opc;
|
|
}
|
|
|
|
/// CreateBuiltinBinOp - Creates a new built-in binary operation with
|
|
/// operator @p Opc at location @c TokLoc. This routine only supports
|
|
/// built-in operations; ActOnBinOp handles overloaded operators.
|
|
Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
|
|
unsigned Op,
|
|
Expr *lhs, Expr *rhs) {
|
|
QualType ResultTy; // Result type of the binary operator.
|
|
BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
|
|
// The following two variables are used for compound assignment operators
|
|
QualType CompLHSTy; // Type of LHS after promotions for computation
|
|
QualType CompResultTy; // Type of computation result
|
|
|
|
switch (Opc) {
|
|
case BinaryOperator::Assign:
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
|
|
break;
|
|
case BinaryOperator::PtrMemD:
|
|
case BinaryOperator::PtrMemI:
|
|
ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
|
|
Opc == BinaryOperator::PtrMemI);
|
|
break;
|
|
case BinaryOperator::Mul:
|
|
case BinaryOperator::Div:
|
|
ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::Rem:
|
|
ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::Add:
|
|
ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::Sub:
|
|
ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::Shl:
|
|
case BinaryOperator::Shr:
|
|
ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::LE:
|
|
case BinaryOperator::LT:
|
|
case BinaryOperator::GE:
|
|
case BinaryOperator::GT:
|
|
ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
|
|
break;
|
|
case BinaryOperator::EQ:
|
|
case BinaryOperator::NE:
|
|
ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
|
|
break;
|
|
case BinaryOperator::And:
|
|
case BinaryOperator::Xor:
|
|
case BinaryOperator::Or:
|
|
ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::LAnd:
|
|
case BinaryOperator::LOr:
|
|
ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::MulAssign:
|
|
case BinaryOperator::DivAssign:
|
|
CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
|
|
CompLHSTy = CompResultTy;
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BinaryOperator::RemAssign:
|
|
CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
|
|
CompLHSTy = CompResultTy;
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BinaryOperator::AddAssign:
|
|
CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BinaryOperator::SubAssign:
|
|
CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BinaryOperator::ShlAssign:
|
|
case BinaryOperator::ShrAssign:
|
|
CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
|
|
CompLHSTy = CompResultTy;
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BinaryOperator::AndAssign:
|
|
case BinaryOperator::XorAssign:
|
|
case BinaryOperator::OrAssign:
|
|
CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
|
|
CompLHSTy = CompResultTy;
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BinaryOperator::Comma:
|
|
ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
}
|
|
if (ResultTy.isNull())
|
|
return ExprError();
|
|
if (CompResultTy.isNull())
|
|
return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
|
|
else
|
|
return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
|
|
CompLHSTy, CompResultTy,
|
|
OpLoc));
|
|
}
|
|
|
|
/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
|
|
/// ParenRange in parentheses.
|
|
static void SuggestParentheses(Sema &Self, SourceLocation Loc,
|
|
const PartialDiagnostic &PD,
|
|
SourceRange ParenRange)
|
|
{
|
|
SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
|
|
if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
|
|
// We can't display the parentheses, so just dig the
|
|
// warning/error and return.
|
|
Self.Diag(Loc, PD);
|
|
return;
|
|
}
|
|
|
|
Self.Diag(Loc, PD)
|
|
<< CodeModificationHint::CreateInsertion(ParenRange.getBegin(), "(")
|
|
<< CodeModificationHint::CreateInsertion(EndLoc, ")");
|
|
}
|
|
|
|
/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
|
|
/// operators are mixed in a way that suggests that the programmer forgot that
|
|
/// comparison operators have higher precedence. The most typical example of
|
|
/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
|
|
static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
|
|
SourceLocation OpLoc,Expr *lhs,Expr *rhs){
|
|
typedef BinaryOperator BinOp;
|
|
BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
|
|
rhsopc = static_cast<BinOp::Opcode>(-1);
|
|
if (BinOp *BO = dyn_cast<BinOp>(lhs))
|
|
lhsopc = BO->getOpcode();
|
|
if (BinOp *BO = dyn_cast<BinOp>(rhs))
|
|
rhsopc = BO->getOpcode();
|
|
|
|
// Subs are not binary operators.
|
|
if (lhsopc == -1 && rhsopc == -1)
|
|
return;
|
|
|
|
// Bitwise operations are sometimes used as eager logical ops.
|
|
// Don't diagnose this.
|
|
if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
|
|
(BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
|
|
return;
|
|
|
|
if (BinOp::isComparisonOp(lhsopc))
|
|
SuggestParentheses(Self, OpLoc,
|
|
PDiag(diag::warn_precedence_bitwise_rel)
|
|
<< SourceRange(lhs->getLocStart(), OpLoc)
|
|
<< BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
|
|
SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
|
|
else if (BinOp::isComparisonOp(rhsopc))
|
|
SuggestParentheses(Self, OpLoc,
|
|
PDiag(diag::warn_precedence_bitwise_rel)
|
|
<< SourceRange(OpLoc, rhs->getLocEnd())
|
|
<< BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
|
|
SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()));
|
|
}
|
|
|
|
/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
|
|
/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
|
|
/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
|
|
static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
|
|
SourceLocation OpLoc, Expr *lhs, Expr *rhs){
|
|
if (BinaryOperator::isBitwiseOp(Opc))
|
|
DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
|
|
}
|
|
|
|
// Binary Operators. 'Tok' is the token for the operator.
|
|
Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
|
|
tok::TokenKind Kind,
|
|
ExprArg LHS, ExprArg RHS) {
|
|
BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
|
|
Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
|
|
|
|
assert((lhs != 0) && "ActOnBinOp(): missing left expression");
|
|
assert((rhs != 0) && "ActOnBinOp(): missing right expression");
|
|
|
|
// Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
|
|
DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
|
|
|
|
return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
|
|
}
|
|
|
|
Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
|
|
BinaryOperator::Opcode Opc,
|
|
Expr *lhs, Expr *rhs) {
|
|
if (getLangOptions().CPlusPlus &&
|
|
(lhs->getType()->isOverloadableType() ||
|
|
rhs->getType()->isOverloadableType())) {
|
|
// Find all of the overloaded operators visible from this
|
|
// point. We perform both an operator-name lookup from the local
|
|
// scope and an argument-dependent lookup based on the types of
|
|
// the arguments.
|
|
FunctionSet Functions;
|
|
OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
|
|
if (OverOp != OO_None) {
|
|
if (S)
|
|
LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
|
|
Functions);
|
|
Expr *Args[2] = { lhs, rhs };
|
|
DeclarationName OpName
|
|
= Context.DeclarationNames.getCXXOperatorName(OverOp);
|
|
ArgumentDependentLookup(OpName, /*Operator*/true, Args, 2, Functions);
|
|
}
|
|
|
|
// Build the (potentially-overloaded, potentially-dependent)
|
|
// binary operation.
|
|
return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
|
|
}
|
|
|
|
// Build a built-in binary operation.
|
|
return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
|
|
}
|
|
|
|
Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
|
|
unsigned OpcIn,
|
|
ExprArg InputArg) {
|
|
UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
|
|
|
|
// FIXME: Input is modified below, but InputArg is not updated appropriately.
|
|
Expr *Input = (Expr *)InputArg.get();
|
|
QualType resultType;
|
|
switch (Opc) {
|
|
case UnaryOperator::OffsetOf:
|
|
assert(false && "Invalid unary operator");
|
|
break;
|
|
|
|
case UnaryOperator::PreInc:
|
|
case UnaryOperator::PreDec:
|
|
case UnaryOperator::PostInc:
|
|
case UnaryOperator::PostDec:
|
|
resultType = CheckIncrementDecrementOperand(Input, OpLoc,
|
|
Opc == UnaryOperator::PreInc ||
|
|
Opc == UnaryOperator::PostInc);
|
|
break;
|
|
case UnaryOperator::AddrOf:
|
|
resultType = CheckAddressOfOperand(Input, OpLoc);
|
|
break;
|
|
case UnaryOperator::Deref:
|
|
DefaultFunctionArrayConversion(Input);
|
|
resultType = CheckIndirectionOperand(Input, OpLoc);
|
|
break;
|
|
case UnaryOperator::Plus:
|
|
case UnaryOperator::Minus:
|
|
UsualUnaryConversions(Input);
|
|
resultType = Input->getType();
|
|
if (resultType->isDependentType())
|
|
break;
|
|
if (resultType->isArithmeticType()) // C99 6.5.3.3p1
|
|
break;
|
|
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
|
|
resultType->isEnumeralType())
|
|
break;
|
|
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
|
|
Opc == UnaryOperator::Plus &&
|
|
resultType->isPointerType())
|
|
break;
|
|
|
|
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input->getSourceRange());
|
|
case UnaryOperator::Not: // bitwise complement
|
|
UsualUnaryConversions(Input);
|
|
resultType = Input->getType();
|
|
if (resultType->isDependentType())
|
|
break;
|
|
// C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
|
|
if (resultType->isComplexType() || resultType->isComplexIntegerType())
|
|
// C99 does not support '~' for complex conjugation.
|
|
Diag(OpLoc, diag::ext_integer_complement_complex)
|
|
<< resultType << Input->getSourceRange();
|
|
else if (!resultType->isIntegerType())
|
|
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input->getSourceRange());
|
|
break;
|
|
case UnaryOperator::LNot: // logical negation
|
|
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
|
|
DefaultFunctionArrayConversion(Input);
|
|
resultType = Input->getType();
|
|
if (resultType->isDependentType())
|
|
break;
|
|
if (!resultType->isScalarType()) // C99 6.5.3.3p1
|
|
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input->getSourceRange());
|
|
// LNot always has type int. C99 6.5.3.3p5.
|
|
// In C++, it's bool. C++ 5.3.1p8
|
|
resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
|
|
break;
|
|
case UnaryOperator::Real:
|
|
case UnaryOperator::Imag:
|
|
resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
|
|
break;
|
|
case UnaryOperator::Extension:
|
|
resultType = Input->getType();
|
|
break;
|
|
}
|
|
if (resultType.isNull())
|
|
return ExprError();
|
|
|
|
InputArg.release();
|
|
return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
|
|
}
|
|
|
|
Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
UnaryOperator::Opcode Opc,
|
|
ExprArg input) {
|
|
Expr *Input = (Expr*)input.get();
|
|
if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
|
|
Opc != UnaryOperator::Extension) {
|
|
// Find all of the overloaded operators visible from this
|
|
// point. We perform both an operator-name lookup from the local
|
|
// scope and an argument-dependent lookup based on the types of
|
|
// the arguments.
|
|
FunctionSet Functions;
|
|
OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
|
|
if (OverOp != OO_None) {
|
|
if (S)
|
|
LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
|
|
Functions);
|
|
DeclarationName OpName
|
|
= Context.DeclarationNames.getCXXOperatorName(OverOp);
|
|
ArgumentDependentLookup(OpName, /*Operator*/true, &Input, 1, Functions);
|
|
}
|
|
|
|
return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
|
|
}
|
|
|
|
return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
|
|
}
|
|
|
|
// Unary Operators. 'Tok' is the token for the operator.
|
|
Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
tok::TokenKind Op, ExprArg input) {
|
|
return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
|
|
}
|
|
|
|
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
|
|
Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
|
|
SourceLocation LabLoc,
|
|
IdentifierInfo *LabelII) {
|
|
// Look up the record for this label identifier.
|
|
LabelStmt *&LabelDecl = getLabelMap()[LabelII];
|
|
|
|
// If we haven't seen this label yet, create a forward reference. It
|
|
// will be validated and/or cleaned up in ActOnFinishFunctionBody.
|
|
if (LabelDecl == 0)
|
|
LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
|
|
|
|
// Create the AST node. The address of a label always has type 'void*'.
|
|
return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
|
|
Context.getPointerType(Context.VoidTy)));
|
|
}
|
|
|
|
Sema::OwningExprResult
|
|
Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
|
|
SourceLocation RPLoc) { // "({..})"
|
|
Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
|
|
assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
|
|
CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
|
|
|
|
bool isFileScope = getCurFunctionOrMethodDecl() == 0;
|
|
if (isFileScope)
|
|
return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
|
|
|
|
// FIXME: there are a variety of strange constraints to enforce here, for
|
|
// example, it is not possible to goto into a stmt expression apparently.
|
|
// More semantic analysis is needed.
|
|
|
|
// If there are sub stmts in the compound stmt, take the type of the last one
|
|
// as the type of the stmtexpr.
|
|
QualType Ty = Context.VoidTy;
|
|
|
|
if (!Compound->body_empty()) {
|
|
Stmt *LastStmt = Compound->body_back();
|
|
// If LastStmt is a label, skip down through into the body.
|
|
while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
|
|
LastStmt = Label->getSubStmt();
|
|
|
|
if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
|
|
Ty = LastExpr->getType();
|
|
}
|
|
|
|
// FIXME: Check that expression type is complete/non-abstract; statement
|
|
// expressions are not lvalues.
|
|
|
|
substmt.release();
|
|
return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
|
|
}
|
|
|
|
Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation TypeLoc,
|
|
TypeTy *argty,
|
|
OffsetOfComponent *CompPtr,
|
|
unsigned NumComponents,
|
|
SourceLocation RPLoc) {
|
|
// FIXME: This function leaks all expressions in the offset components on
|
|
// error.
|
|
// FIXME: Preserve type source info.
|
|
QualType ArgTy = GetTypeFromParser(argty);
|
|
assert(!ArgTy.isNull() && "Missing type argument!");
|
|
|
|
bool Dependent = ArgTy->isDependentType();
|
|
|
|
// We must have at least one component that refers to the type, and the first
|
|
// one is known to be a field designator. Verify that the ArgTy represents
|
|
// a struct/union/class.
|
|
if (!Dependent && !ArgTy->isRecordType())
|
|
return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
|
|
|
|
// FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
|
|
// with an incomplete type would be illegal.
|
|
|
|
// Otherwise, create a null pointer as the base, and iteratively process
|
|
// the offsetof designators.
|
|
QualType ArgTyPtr = Context.getPointerType(ArgTy);
|
|
Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
|
|
Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
|
|
ArgTy, SourceLocation());
|
|
|
|
// offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
|
|
// GCC extension, diagnose them.
|
|
// FIXME: This diagnostic isn't actually visible because the location is in
|
|
// a system header!
|
|
if (NumComponents != 1)
|
|
Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
|
|
<< SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
|
|
|
|
if (!Dependent) {
|
|
bool DidWarnAboutNonPOD = false;
|
|
|
|
if (RequireCompleteType(TypeLoc, Res->getType(),
|
|
diag::err_offsetof_incomplete_type))
|
|
return ExprError();
|
|
|
|
// FIXME: Dependent case loses a lot of information here. And probably
|
|
// leaks like a sieve.
|
|
for (unsigned i = 0; i != NumComponents; ++i) {
|
|
const OffsetOfComponent &OC = CompPtr[i];
|
|
if (OC.isBrackets) {
|
|
// Offset of an array sub-field. TODO: Should we allow vector elements?
|
|
const ArrayType *AT = Context.getAsArrayType(Res->getType());
|
|
if (!AT) {
|
|
Res->Destroy(Context);
|
|
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
|
|
<< Res->getType());
|
|
}
|
|
|
|
// FIXME: C++: Verify that operator[] isn't overloaded.
|
|
|
|
// Promote the array so it looks more like a normal array subscript
|
|
// expression.
|
|
DefaultFunctionArrayConversion(Res);
|
|
|
|
// C99 6.5.2.1p1
|
|
Expr *Idx = static_cast<Expr*>(OC.U.E);
|
|
// FIXME: Leaks Res
|
|
if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
|
|
return ExprError(Diag(Idx->getLocStart(),
|
|
diag::err_typecheck_subscript_not_integer)
|
|
<< Idx->getSourceRange());
|
|
|
|
Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
|
|
OC.LocEnd);
|
|
continue;
|
|
}
|
|
|
|
const RecordType *RC = Res->getType()->getAs<RecordType>();
|
|
if (!RC) {
|
|
Res->Destroy(Context);
|
|
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
|
|
<< Res->getType());
|
|
}
|
|
|
|
// Get the decl corresponding to this.
|
|
RecordDecl *RD = RC->getDecl();
|
|
if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
|
|
switch (ExprEvalContexts.back().Context ) {
|
|
case Unevaluated:
|
|
// The argument will never be evaluated, so don't complain.
|
|
break;
|
|
|
|
case PotentiallyEvaluated:
|
|
ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
|
|
<< SourceRange(CompPtr[0].LocStart, OC.LocEnd)
|
|
<< Res->getType());
|
|
DidWarnAboutNonPOD = true;
|
|
break;
|
|
|
|
case PotentiallyPotentiallyEvaluated:
|
|
ExprEvalContexts.back().addDiagnostic(BuiltinLoc,
|
|
PDiag(diag::warn_offsetof_non_pod_type)
|
|
<< SourceRange(CompPtr[0].LocStart, OC.LocEnd)
|
|
<< Res->getType());
|
|
DidWarnAboutNonPOD = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
|
|
LookupQualifiedName(R, RD);
|
|
|
|
FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
|
|
// FIXME: Leaks Res
|
|
if (!MemberDecl)
|
|
return ExprError(Diag(BuiltinLoc, diag::err_no_member)
|
|
<< OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
|
|
|
|
// FIXME: C++: Verify that MemberDecl isn't a static field.
|
|
// FIXME: Verify that MemberDecl isn't a bitfield.
|
|
if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
|
|
Res = BuildAnonymousStructUnionMemberReference(
|
|
OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
|
|
} else {
|
|
PerformObjectMemberConversion(Res, MemberDecl);
|
|
// MemberDecl->getType() doesn't get the right qualifiers, but it
|
|
// doesn't matter here.
|
|
Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
|
|
MemberDecl->getType().getNonReferenceType());
|
|
}
|
|
}
|
|
}
|
|
|
|
return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
|
|
Context.getSizeType(), BuiltinLoc));
|
|
}
|
|
|
|
|
|
Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
|
|
TypeTy *arg1,TypeTy *arg2,
|
|
SourceLocation RPLoc) {
|
|
// FIXME: Preserve type source info.
|
|
QualType argT1 = GetTypeFromParser(arg1);
|
|
QualType argT2 = GetTypeFromParser(arg2);
|
|
|
|
assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
|
|
<< SourceRange(BuiltinLoc, RPLoc);
|
|
return ExprError();
|
|
}
|
|
|
|
return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
|
|
argT1, argT2, RPLoc));
|
|
}
|
|
|
|
Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
|
|
ExprArg cond,
|
|
ExprArg expr1, ExprArg expr2,
|
|
SourceLocation RPLoc) {
|
|
Expr *CondExpr = static_cast<Expr*>(cond.get());
|
|
Expr *LHSExpr = static_cast<Expr*>(expr1.get());
|
|
Expr *RHSExpr = static_cast<Expr*>(expr2.get());
|
|
|
|
assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
|
|
|
|
QualType resType;
|
|
bool ValueDependent = false;
|
|
if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
|
|
resType = Context.DependentTy;
|
|
ValueDependent = true;
|
|
} else {
|
|
// The conditional expression is required to be a constant expression.
|
|
llvm::APSInt condEval(32);
|
|
SourceLocation ExpLoc;
|
|
if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
|
|
return ExprError(Diag(ExpLoc,
|
|
diag::err_typecheck_choose_expr_requires_constant)
|
|
<< CondExpr->getSourceRange());
|
|
|
|
// If the condition is > zero, then the AST type is the same as the LSHExpr.
|
|
resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
|
|
ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
|
|
: RHSExpr->isValueDependent();
|
|
}
|
|
|
|
cond.release(); expr1.release(); expr2.release();
|
|
return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
|
|
resType, RPLoc,
|
|
resType->isDependentType(),
|
|
ValueDependent));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Clang Extensions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ActOnBlockStart - This callback is invoked when a block literal is started.
|
|
void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
|
|
// Analyze block parameters.
|
|
BlockSemaInfo *BSI = new BlockSemaInfo();
|
|
|
|
// Add BSI to CurBlock.
|
|
BSI->PrevBlockInfo = CurBlock;
|
|
CurBlock = BSI;
|
|
|
|
BSI->ReturnType = QualType();
|
|
BSI->TheScope = BlockScope;
|
|
BSI->hasBlockDeclRefExprs = false;
|
|
BSI->hasPrototype = false;
|
|
BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
|
|
CurFunctionNeedsScopeChecking = false;
|
|
|
|
BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
|
|
CurContext->addDecl(BSI->TheDecl);
|
|
PushDeclContext(BlockScope, BSI->TheDecl);
|
|
}
|
|
|
|
void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
|
|
assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
|
|
|
|
if (ParamInfo.getNumTypeObjects() == 0
|
|
|| ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
|
|
ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
|
|
QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
|
|
|
|
if (T->isArrayType()) {
|
|
Diag(ParamInfo.getSourceRange().getBegin(),
|
|
diag::err_block_returns_array);
|
|
return;
|
|
}
|
|
|
|
// The parameter list is optional, if there was none, assume ().
|
|
if (!T->isFunctionType())
|
|
T = Context.getFunctionType(T, NULL, 0, 0, 0);
|
|
|
|
CurBlock->hasPrototype = true;
|
|
CurBlock->isVariadic = false;
|
|
// Check for a valid sentinel attribute on this block.
|
|
if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
|
|
Diag(ParamInfo.getAttributes()->getLoc(),
|
|
diag::warn_attribute_sentinel_not_variadic) << 1;
|
|
// FIXME: remove the attribute.
|
|
}
|
|
QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
|
|
|
|
// Do not allow returning a objc interface by-value.
|
|
if (RetTy->isObjCInterfaceType()) {
|
|
Diag(ParamInfo.getSourceRange().getBegin(),
|
|
diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
|
|
return;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Analyze arguments to block.
|
|
assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
|
|
"Not a function declarator!");
|
|
DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
|
|
|
|
CurBlock->hasPrototype = FTI.hasPrototype;
|
|
CurBlock->isVariadic = true;
|
|
|
|
// Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
|
|
// no arguments, not a function that takes a single void argument.
|
|
if (FTI.hasPrototype &&
|
|
FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
|
|
(!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
|
|
FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
|
|
// empty arg list, don't push any params.
|
|
CurBlock->isVariadic = false;
|
|
} else if (FTI.hasPrototype) {
|
|
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
|
|
CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
|
|
CurBlock->isVariadic = FTI.isVariadic;
|
|
}
|
|
CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
|
|
CurBlock->Params.size());
|
|
CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
|
|
ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
|
|
for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
|
|
E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
|
|
// If this has an identifier, add it to the scope stack.
|
|
if ((*AI)->getIdentifier())
|
|
PushOnScopeChains(*AI, CurBlock->TheScope);
|
|
|
|
// Check for a valid sentinel attribute on this block.
|
|
if (!CurBlock->isVariadic &&
|
|
CurBlock->TheDecl->getAttr<SentinelAttr>()) {
|
|
Diag(ParamInfo.getAttributes()->getLoc(),
|
|
diag::warn_attribute_sentinel_not_variadic) << 1;
|
|
// FIXME: remove the attribute.
|
|
}
|
|
|
|
// Analyze the return type.
|
|
QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
|
|
QualType RetTy = T->getAs<FunctionType>()->getResultType();
|
|
|
|
// Do not allow returning a objc interface by-value.
|
|
if (RetTy->isObjCInterfaceType()) {
|
|
Diag(ParamInfo.getSourceRange().getBegin(),
|
|
diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
|
|
} else if (!RetTy->isDependentType())
|
|
CurBlock->ReturnType = RetTy;
|
|
}
|
|
|
|
/// ActOnBlockError - If there is an error parsing a block, this callback
|
|
/// is invoked to pop the information about the block from the action impl.
|
|
void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
|
|
// Ensure that CurBlock is deleted.
|
|
llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
|
|
|
|
CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
|
|
|
|
// Pop off CurBlock, handle nested blocks.
|
|
PopDeclContext();
|
|
CurBlock = CurBlock->PrevBlockInfo;
|
|
// FIXME: Delete the ParmVarDecl objects as well???
|
|
}
|
|
|
|
/// ActOnBlockStmtExpr - This is called when the body of a block statement
|
|
/// literal was successfully completed. ^(int x){...}
|
|
Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
|
|
StmtArg body, Scope *CurScope) {
|
|
// If blocks are disabled, emit an error.
|
|
if (!LangOpts.Blocks)
|
|
Diag(CaretLoc, diag::err_blocks_disable);
|
|
|
|
// Ensure that CurBlock is deleted.
|
|
llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
|
|
|
|
PopDeclContext();
|
|
|
|
// Pop off CurBlock, handle nested blocks.
|
|
CurBlock = CurBlock->PrevBlockInfo;
|
|
|
|
QualType RetTy = Context.VoidTy;
|
|
if (!BSI->ReturnType.isNull())
|
|
RetTy = BSI->ReturnType;
|
|
|
|
llvm::SmallVector<QualType, 8> ArgTypes;
|
|
for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
|
|
ArgTypes.push_back(BSI->Params[i]->getType());
|
|
|
|
bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
|
|
QualType BlockTy;
|
|
if (!BSI->hasPrototype)
|
|
BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
|
|
NoReturn);
|
|
else
|
|
BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
|
|
BSI->isVariadic, 0, false, false, 0, 0,
|
|
NoReturn);
|
|
|
|
// FIXME: Check that return/parameter types are complete/non-abstract
|
|
DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
|
|
BlockTy = Context.getBlockPointerType(BlockTy);
|
|
|
|
// If needed, diagnose invalid gotos and switches in the block.
|
|
if (CurFunctionNeedsScopeChecking)
|
|
DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
|
|
CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
|
|
|
|
BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
|
|
CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody());
|
|
return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
|
|
BSI->hasBlockDeclRefExprs));
|
|
}
|
|
|
|
Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
|
|
ExprArg expr, TypeTy *type,
|
|
SourceLocation RPLoc) {
|
|
QualType T = GetTypeFromParser(type);
|
|
Expr *E = static_cast<Expr*>(expr.get());
|
|
Expr *OrigExpr = E;
|
|
|
|
InitBuiltinVaListType();
|
|
|
|
// Get the va_list type
|
|
QualType VaListType = Context.getBuiltinVaListType();
|
|
if (VaListType->isArrayType()) {
|
|
// Deal with implicit array decay; for example, on x86-64,
|
|
// va_list is an array, but it's supposed to decay to
|
|
// a pointer for va_arg.
|
|
VaListType = Context.getArrayDecayedType(VaListType);
|
|
// Make sure the input expression also decays appropriately.
|
|
UsualUnaryConversions(E);
|
|
} else {
|
|
// Otherwise, the va_list argument must be an l-value because
|
|
// it is modified by va_arg.
|
|
if (!E->isTypeDependent() &&
|
|
CheckForModifiableLvalue(E, BuiltinLoc, *this))
|
|
return ExprError();
|
|
}
|
|
|
|
if (!E->isTypeDependent() &&
|
|
!Context.hasSameType(VaListType, E->getType())) {
|
|
return ExprError(Diag(E->getLocStart(),
|
|
diag::err_first_argument_to_va_arg_not_of_type_va_list)
|
|
<< OrigExpr->getType() << E->getSourceRange());
|
|
}
|
|
|
|
// FIXME: Check that type is complete/non-abstract
|
|
// FIXME: Warn if a non-POD type is passed in.
|
|
|
|
expr.release();
|
|
return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
|
|
RPLoc));
|
|
}
|
|
|
|
Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
|
|
// The type of __null will be int or long, depending on the size of
|
|
// pointers on the target.
|
|
QualType Ty;
|
|
if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
|
|
Ty = Context.IntTy;
|
|
else
|
|
Ty = Context.LongTy;
|
|
|
|
return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
|
|
}
|
|
|
|
static void
|
|
MakeObjCStringLiteralCodeModificationHint(Sema& SemaRef,
|
|
QualType DstType,
|
|
Expr *SrcExpr,
|
|
CodeModificationHint &Hint) {
|
|
if (!SemaRef.getLangOptions().ObjC1)
|
|
return;
|
|
|
|
const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
|
|
if (!PT)
|
|
return;
|
|
|
|
// Check if the destination is of type 'id'.
|
|
if (!PT->isObjCIdType()) {
|
|
// Check if the destination is the 'NSString' interface.
|
|
const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
|
|
if (!ID || !ID->getIdentifier()->isStr("NSString"))
|
|
return;
|
|
}
|
|
|
|
// Strip off any parens and casts.
|
|
StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
|
|
if (!SL || SL->isWide())
|
|
return;
|
|
|
|
Hint = CodeModificationHint::CreateInsertion(SL->getLocStart(), "@");
|
|
}
|
|
|
|
bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
|
|
SourceLocation Loc,
|
|
QualType DstType, QualType SrcType,
|
|
Expr *SrcExpr, const char *Flavor) {
|
|
// Decode the result (notice that AST's are still created for extensions).
|
|
bool isInvalid = false;
|
|
unsigned DiagKind;
|
|
CodeModificationHint Hint;
|
|
|
|
switch (ConvTy) {
|
|
default: assert(0 && "Unknown conversion type");
|
|
case Compatible: return false;
|
|
case PointerToInt:
|
|
DiagKind = diag::ext_typecheck_convert_pointer_int;
|
|
break;
|
|
case IntToPointer:
|
|
DiagKind = diag::ext_typecheck_convert_int_pointer;
|
|
break;
|
|
case IncompatiblePointer:
|
|
MakeObjCStringLiteralCodeModificationHint(*this, DstType, SrcExpr, Hint);
|
|
DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
|
|
break;
|
|
case IncompatiblePointerSign:
|
|
DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
|
|
break;
|
|
case FunctionVoidPointer:
|
|
DiagKind = diag::ext_typecheck_convert_pointer_void_func;
|
|
break;
|
|
case CompatiblePointerDiscardsQualifiers:
|
|
// If the qualifiers lost were because we were applying the
|
|
// (deprecated) C++ conversion from a string literal to a char*
|
|
// (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
|
|
// Ideally, this check would be performed in
|
|
// CheckPointerTypesForAssignment. However, that would require a
|
|
// bit of refactoring (so that the second argument is an
|
|
// expression, rather than a type), which should be done as part
|
|
// of a larger effort to fix CheckPointerTypesForAssignment for
|
|
// C++ semantics.
|
|
if (getLangOptions().CPlusPlus &&
|
|
IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
|
|
return false;
|
|
DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
|
|
break;
|
|
case IncompatibleNestedPointerQualifiers:
|
|
DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
|
|
break;
|
|
case IntToBlockPointer:
|
|
DiagKind = diag::err_int_to_block_pointer;
|
|
break;
|
|
case IncompatibleBlockPointer:
|
|
DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
|
|
break;
|
|
case IncompatibleObjCQualifiedId:
|
|
// FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
|
|
// it can give a more specific diagnostic.
|
|
DiagKind = diag::warn_incompatible_qualified_id;
|
|
break;
|
|
case IncompatibleVectors:
|
|
DiagKind = diag::warn_incompatible_vectors;
|
|
break;
|
|
case Incompatible:
|
|
DiagKind = diag::err_typecheck_convert_incompatible;
|
|
isInvalid = true;
|
|
break;
|
|
}
|
|
|
|
Diag(Loc, DiagKind) << DstType << SrcType << Flavor
|
|
<< SrcExpr->getSourceRange() << Hint;
|
|
return isInvalid;
|
|
}
|
|
|
|
bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
|
|
llvm::APSInt ICEResult;
|
|
if (E->isIntegerConstantExpr(ICEResult, Context)) {
|
|
if (Result)
|
|
*Result = ICEResult;
|
|
return false;
|
|
}
|
|
|
|
Expr::EvalResult EvalResult;
|
|
|
|
if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
|
|
EvalResult.HasSideEffects) {
|
|
Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
|
|
|
|
if (EvalResult.Diag) {
|
|
// We only show the note if it's not the usual "invalid subexpression"
|
|
// or if it's actually in a subexpression.
|
|
if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
|
|
E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
|
|
Diag(EvalResult.DiagLoc, EvalResult.Diag);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
|
|
E->getSourceRange();
|
|
|
|
if (EvalResult.Diag &&
|
|
Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
|
|
Diag(EvalResult.DiagLoc, EvalResult.Diag);
|
|
|
|
if (Result)
|
|
*Result = EvalResult.Val.getInt();
|
|
return false;
|
|
}
|
|
|
|
void
|
|
Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
|
|
ExprEvalContexts.push_back(
|
|
ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
|
|
}
|
|
|
|
void
|
|
Sema::PopExpressionEvaluationContext() {
|
|
// Pop the current expression evaluation context off the stack.
|
|
ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
|
|
ExprEvalContexts.pop_back();
|
|
|
|
if (Rec.Context == PotentiallyPotentiallyEvaluated) {
|
|
if (Rec.PotentiallyReferenced) {
|
|
// Mark any remaining declarations in the current position of the stack
|
|
// as "referenced". If they were not meant to be referenced, semantic
|
|
// analysis would have eliminated them (e.g., in ActOnCXXTypeId).
|
|
for (PotentiallyReferencedDecls::iterator
|
|
I = Rec.PotentiallyReferenced->begin(),
|
|
IEnd = Rec.PotentiallyReferenced->end();
|
|
I != IEnd; ++I)
|
|
MarkDeclarationReferenced(I->first, I->second);
|
|
}
|
|
|
|
if (Rec.PotentiallyDiagnosed) {
|
|
// Emit any pending diagnostics.
|
|
for (PotentiallyEmittedDiagnostics::iterator
|
|
I = Rec.PotentiallyDiagnosed->begin(),
|
|
IEnd = Rec.PotentiallyDiagnosed->end();
|
|
I != IEnd; ++I)
|
|
Diag(I->first, I->second);
|
|
}
|
|
}
|
|
|
|
// When are coming out of an unevaluated context, clear out any
|
|
// temporaries that we may have created as part of the evaluation of
|
|
// the expression in that context: they aren't relevant because they
|
|
// will never be constructed.
|
|
if (Rec.Context == Unevaluated &&
|
|
ExprTemporaries.size() > Rec.NumTemporaries)
|
|
ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
|
|
ExprTemporaries.end());
|
|
|
|
// Destroy the popped expression evaluation record.
|
|
Rec.Destroy();
|
|
}
|
|
|
|
/// \brief Note that the given declaration was referenced in the source code.
|
|
///
|
|
/// This routine should be invoke whenever a given declaration is referenced
|
|
/// in the source code, and where that reference occurred. If this declaration
|
|
/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
|
|
/// C99 6.9p3), then the declaration will be marked as used.
|
|
///
|
|
/// \param Loc the location where the declaration was referenced.
|
|
///
|
|
/// \param D the declaration that has been referenced by the source code.
|
|
void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
|
|
assert(D && "No declaration?");
|
|
|
|
if (D->isUsed())
|
|
return;
|
|
|
|
// Mark a parameter or variable declaration "used", regardless of whether we're in a
|
|
// template or not. The reason for this is that unevaluated expressions
|
|
// (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
|
|
// -Wunused-parameters)
|
|
if (isa<ParmVarDecl>(D) ||
|
|
(isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod()))
|
|
D->setUsed(true);
|
|
|
|
// Do not mark anything as "used" within a dependent context; wait for
|
|
// an instantiation.
|
|
if (CurContext->isDependentContext())
|
|
return;
|
|
|
|
switch (ExprEvalContexts.back().Context) {
|
|
case Unevaluated:
|
|
// We are in an expression that is not potentially evaluated; do nothing.
|
|
return;
|
|
|
|
case PotentiallyEvaluated:
|
|
// We are in a potentially-evaluated expression, so this declaration is
|
|
// "used"; handle this below.
|
|
break;
|
|
|
|
case PotentiallyPotentiallyEvaluated:
|
|
// We are in an expression that may be potentially evaluated; queue this
|
|
// declaration reference until we know whether the expression is
|
|
// potentially evaluated.
|
|
ExprEvalContexts.back().addReferencedDecl(Loc, D);
|
|
return;
|
|
}
|
|
|
|
// Note that this declaration has been used.
|
|
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
|
|
unsigned TypeQuals;
|
|
if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
|
|
if (!Constructor->isUsed())
|
|
DefineImplicitDefaultConstructor(Loc, Constructor);
|
|
} else if (Constructor->isImplicit() &&
|
|
Constructor->isCopyConstructor(Context, TypeQuals)) {
|
|
if (!Constructor->isUsed())
|
|
DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
|
|
}
|
|
|
|
MaybeMarkVirtualMembersReferenced(Loc, Constructor);
|
|
} else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
|
|
if (Destructor->isImplicit() && !Destructor->isUsed())
|
|
DefineImplicitDestructor(Loc, Destructor);
|
|
|
|
} else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
|
|
if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
|
|
MethodDecl->getOverloadedOperator() == OO_Equal) {
|
|
if (!MethodDecl->isUsed())
|
|
DefineImplicitOverloadedAssign(Loc, MethodDecl);
|
|
}
|
|
}
|
|
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
|
|
// Implicit instantiation of function templates and member functions of
|
|
// class templates.
|
|
if (!Function->getBody() && Function->isImplicitlyInstantiable()) {
|
|
bool AlreadyInstantiated = false;
|
|
if (FunctionTemplateSpecializationInfo *SpecInfo
|
|
= Function->getTemplateSpecializationInfo()) {
|
|
if (SpecInfo->getPointOfInstantiation().isInvalid())
|
|
SpecInfo->setPointOfInstantiation(Loc);
|
|
else if (SpecInfo->getTemplateSpecializationKind()
|
|
== TSK_ImplicitInstantiation)
|
|
AlreadyInstantiated = true;
|
|
} else if (MemberSpecializationInfo *MSInfo
|
|
= Function->getMemberSpecializationInfo()) {
|
|
if (MSInfo->getPointOfInstantiation().isInvalid())
|
|
MSInfo->setPointOfInstantiation(Loc);
|
|
else if (MSInfo->getTemplateSpecializationKind()
|
|
== TSK_ImplicitInstantiation)
|
|
AlreadyInstantiated = true;
|
|
}
|
|
|
|
if (!AlreadyInstantiated)
|
|
PendingImplicitInstantiations.push_back(std::make_pair(Function, Loc));
|
|
}
|
|
|
|
// FIXME: keep track of references to static functions
|
|
Function->setUsed(true);
|
|
return;
|
|
}
|
|
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
|
|
// Implicit instantiation of static data members of class templates.
|
|
if (Var->isStaticDataMember() &&
|
|
Var->getInstantiatedFromStaticDataMember()) {
|
|
MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
|
|
assert(MSInfo && "Missing member specialization information?");
|
|
if (MSInfo->getPointOfInstantiation().isInvalid() &&
|
|
MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
|
|
MSInfo->setPointOfInstantiation(Loc);
|
|
PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
|
|
}
|
|
}
|
|
|
|
// FIXME: keep track of references to static data?
|
|
|
|
D->setUsed(true);
|
|
return;
|
|
}
|
|
}
|
|
|
|
bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
|
|
CallExpr *CE, FunctionDecl *FD) {
|
|
if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
|
|
return false;
|
|
|
|
PartialDiagnostic Note =
|
|
FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
|
|
<< FD->getDeclName() : PDiag();
|
|
SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
|
|
|
|
if (RequireCompleteType(Loc, ReturnType,
|
|
FD ?
|
|
PDiag(diag::err_call_function_incomplete_return)
|
|
<< CE->getSourceRange() << FD->getDeclName() :
|
|
PDiag(diag::err_call_incomplete_return)
|
|
<< CE->getSourceRange(),
|
|
std::make_pair(NoteLoc, Note)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Diagnose the common s/=/==/ typo. Note that adding parentheses
|
|
// will prevent this condition from triggering, which is what we want.
|
|
void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
|
|
SourceLocation Loc;
|
|
|
|
unsigned diagnostic = diag::warn_condition_is_assignment;
|
|
|
|
if (isa<BinaryOperator>(E)) {
|
|
BinaryOperator *Op = cast<BinaryOperator>(E);
|
|
if (Op->getOpcode() != BinaryOperator::Assign)
|
|
return;
|
|
|
|
// Greylist some idioms by putting them into a warning subcategory.
|
|
if (ObjCMessageExpr *ME
|
|
= dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
|
|
Selector Sel = ME->getSelector();
|
|
|
|
// self = [<foo> init...]
|
|
if (isSelfExpr(Op->getLHS())
|
|
&& Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
|
|
diagnostic = diag::warn_condition_is_idiomatic_assignment;
|
|
|
|
// <foo> = [<bar> nextObject]
|
|
else if (Sel.isUnarySelector() &&
|
|
Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
|
|
diagnostic = diag::warn_condition_is_idiomatic_assignment;
|
|
}
|
|
|
|
Loc = Op->getOperatorLoc();
|
|
} else if (isa<CXXOperatorCallExpr>(E)) {
|
|
CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
|
|
if (Op->getOperator() != OO_Equal)
|
|
return;
|
|
|
|
Loc = Op->getOperatorLoc();
|
|
} else {
|
|
// Not an assignment.
|
|
return;
|
|
}
|
|
|
|
SourceLocation Open = E->getSourceRange().getBegin();
|
|
SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
|
|
|
|
Diag(Loc, diagnostic)
|
|
<< E->getSourceRange()
|
|
<< CodeModificationHint::CreateInsertion(Open, "(")
|
|
<< CodeModificationHint::CreateInsertion(Close, ")");
|
|
}
|
|
|
|
bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
|
|
DiagnoseAssignmentAsCondition(E);
|
|
|
|
if (!E->isTypeDependent()) {
|
|
DefaultFunctionArrayConversion(E);
|
|
|
|
QualType T = E->getType();
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
|
|
return true;
|
|
} else if (!T->isScalarType()) { // C99 6.8.4.1p1
|
|
Diag(Loc, diag::err_typecheck_statement_requires_scalar)
|
|
<< T << E->getSourceRange();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|