зеркало из https://github.com/microsoft/clang-1.git
1840 строки
69 KiB
C++
1840 строки
69 KiB
C++
//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements type-related semantic analysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Sema.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/AST/TypeLocVisitor.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Parse/DeclSpec.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
using namespace clang;
|
|
|
|
/// \brief Perform adjustment on the parameter type of a function.
|
|
///
|
|
/// This routine adjusts the given parameter type @p T to the actual
|
|
/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
|
|
/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
|
|
QualType Sema::adjustParameterType(QualType T) {
|
|
// C99 6.7.5.3p7:
|
|
// A declaration of a parameter as "array of type" shall be
|
|
// adjusted to "qualified pointer to type", where the type
|
|
// qualifiers (if any) are those specified within the [ and ] of
|
|
// the array type derivation.
|
|
if (T->isArrayType())
|
|
return Context.getArrayDecayedType(T);
|
|
|
|
// C99 6.7.5.3p8:
|
|
// A declaration of a parameter as "function returning type"
|
|
// shall be adjusted to "pointer to function returning type", as
|
|
// in 6.3.2.1.
|
|
if (T->isFunctionType())
|
|
return Context.getPointerType(T);
|
|
|
|
return T;
|
|
}
|
|
|
|
|
|
|
|
/// isOmittedBlockReturnType - Return true if this declarator is missing a
|
|
/// return type because this is a omitted return type on a block literal.
|
|
static bool isOmittedBlockReturnType(const Declarator &D) {
|
|
if (D.getContext() != Declarator::BlockLiteralContext ||
|
|
D.getDeclSpec().hasTypeSpecifier())
|
|
return false;
|
|
|
|
if (D.getNumTypeObjects() == 0)
|
|
return true; // ^{ ... }
|
|
|
|
if (D.getNumTypeObjects() == 1 &&
|
|
D.getTypeObject(0).Kind == DeclaratorChunk::Function)
|
|
return true; // ^(int X, float Y) { ... }
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Convert the specified declspec to the appropriate type
|
|
/// object.
|
|
/// \param D the declarator containing the declaration specifier.
|
|
/// \returns The type described by the declaration specifiers. This function
|
|
/// never returns null.
|
|
static QualType ConvertDeclSpecToType(Declarator &TheDeclarator, Sema &TheSema){
|
|
// FIXME: Should move the logic from DeclSpec::Finish to here for validity
|
|
// checking.
|
|
const DeclSpec &DS = TheDeclarator.getDeclSpec();
|
|
SourceLocation DeclLoc = TheDeclarator.getIdentifierLoc();
|
|
if (DeclLoc.isInvalid())
|
|
DeclLoc = DS.getSourceRange().getBegin();
|
|
|
|
ASTContext &Context = TheSema.Context;
|
|
|
|
QualType Result;
|
|
switch (DS.getTypeSpecType()) {
|
|
case DeclSpec::TST_void:
|
|
Result = Context.VoidTy;
|
|
break;
|
|
case DeclSpec::TST_char:
|
|
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
|
|
Result = Context.CharTy;
|
|
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
|
|
Result = Context.SignedCharTy;
|
|
else {
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
|
|
"Unknown TSS value");
|
|
Result = Context.UnsignedCharTy;
|
|
}
|
|
break;
|
|
case DeclSpec::TST_wchar:
|
|
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
|
|
Result = Context.WCharTy;
|
|
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
|
|
TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
|
|
<< DS.getSpecifierName(DS.getTypeSpecType());
|
|
Result = Context.getSignedWCharType();
|
|
} else {
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
|
|
"Unknown TSS value");
|
|
TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
|
|
<< DS.getSpecifierName(DS.getTypeSpecType());
|
|
Result = Context.getUnsignedWCharType();
|
|
}
|
|
break;
|
|
case DeclSpec::TST_char16:
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
|
|
"Unknown TSS value");
|
|
Result = Context.Char16Ty;
|
|
break;
|
|
case DeclSpec::TST_char32:
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
|
|
"Unknown TSS value");
|
|
Result = Context.Char32Ty;
|
|
break;
|
|
case DeclSpec::TST_unspecified:
|
|
// "<proto1,proto2>" is an objc qualified ID with a missing id.
|
|
if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
|
|
Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
|
|
(ObjCProtocolDecl**)PQ,
|
|
DS.getNumProtocolQualifiers());
|
|
break;
|
|
}
|
|
|
|
// If this is a missing declspec in a block literal return context, then it
|
|
// is inferred from the return statements inside the block.
|
|
if (isOmittedBlockReturnType(TheDeclarator)) {
|
|
Result = Context.DependentTy;
|
|
break;
|
|
}
|
|
|
|
// Unspecified typespec defaults to int in C90. However, the C90 grammar
|
|
// [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
|
|
// type-qualifier, or storage-class-specifier. If not, emit an extwarn.
|
|
// Note that the one exception to this is function definitions, which are
|
|
// allowed to be completely missing a declspec. This is handled in the
|
|
// parser already though by it pretending to have seen an 'int' in this
|
|
// case.
|
|
if (TheSema.getLangOptions().ImplicitInt) {
|
|
// In C89 mode, we only warn if there is a completely missing declspec
|
|
// when one is not allowed.
|
|
if (DS.isEmpty()) {
|
|
TheSema.Diag(DeclLoc, diag::ext_missing_declspec)
|
|
<< DS.getSourceRange()
|
|
<< CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
|
|
"int");
|
|
}
|
|
} else if (!DS.hasTypeSpecifier()) {
|
|
// C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
|
|
// "At least one type specifier shall be given in the declaration
|
|
// specifiers in each declaration, and in the specifier-qualifier list in
|
|
// each struct declaration and type name."
|
|
// FIXME: Does Microsoft really have the implicit int extension in C++?
|
|
if (TheSema.getLangOptions().CPlusPlus &&
|
|
!TheSema.getLangOptions().Microsoft) {
|
|
TheSema.Diag(DeclLoc, diag::err_missing_type_specifier)
|
|
<< DS.getSourceRange();
|
|
|
|
// When this occurs in C++ code, often something is very broken with the
|
|
// value being declared, poison it as invalid so we don't get chains of
|
|
// errors.
|
|
TheDeclarator.setInvalidType(true);
|
|
} else {
|
|
TheSema.Diag(DeclLoc, diag::ext_missing_type_specifier)
|
|
<< DS.getSourceRange();
|
|
}
|
|
}
|
|
|
|
// FALL THROUGH.
|
|
case DeclSpec::TST_int: {
|
|
if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
|
|
switch (DS.getTypeSpecWidth()) {
|
|
case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
|
|
case DeclSpec::TSW_short: Result = Context.ShortTy; break;
|
|
case DeclSpec::TSW_long: Result = Context.LongTy; break;
|
|
case DeclSpec::TSW_longlong:
|
|
Result = Context.LongLongTy;
|
|
|
|
// long long is a C99 feature.
|
|
if (!TheSema.getLangOptions().C99 &&
|
|
!TheSema.getLangOptions().CPlusPlus0x)
|
|
TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (DS.getTypeSpecWidth()) {
|
|
case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
|
|
case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
|
|
case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
|
|
case DeclSpec::TSW_longlong:
|
|
Result = Context.UnsignedLongLongTy;
|
|
|
|
// long long is a C99 feature.
|
|
if (!TheSema.getLangOptions().C99 &&
|
|
!TheSema.getLangOptions().CPlusPlus0x)
|
|
TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case DeclSpec::TST_float: Result = Context.FloatTy; break;
|
|
case DeclSpec::TST_double:
|
|
if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
|
|
Result = Context.LongDoubleTy;
|
|
else
|
|
Result = Context.DoubleTy;
|
|
break;
|
|
case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
|
|
case DeclSpec::TST_decimal32: // _Decimal32
|
|
case DeclSpec::TST_decimal64: // _Decimal64
|
|
case DeclSpec::TST_decimal128: // _Decimal128
|
|
TheSema.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
|
|
Result = Context.IntTy;
|
|
TheDeclarator.setInvalidType(true);
|
|
break;
|
|
case DeclSpec::TST_class:
|
|
case DeclSpec::TST_enum:
|
|
case DeclSpec::TST_union:
|
|
case DeclSpec::TST_struct: {
|
|
TypeDecl *D
|
|
= dyn_cast_or_null<TypeDecl>(static_cast<Decl *>(DS.getTypeRep()));
|
|
if (!D) {
|
|
// This can happen in C++ with ambiguous lookups.
|
|
Result = Context.IntTy;
|
|
TheDeclarator.setInvalidType(true);
|
|
break;
|
|
}
|
|
|
|
// If the type is deprecated or unavailable, diagnose it.
|
|
TheSema.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeLoc());
|
|
|
|
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
|
|
DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
|
|
|
|
// TypeQuals handled by caller.
|
|
Result = Context.getTypeDeclType(D);
|
|
|
|
// In C++, make an ElaboratedType.
|
|
if (TheSema.getLangOptions().CPlusPlus) {
|
|
TagDecl::TagKind Tag
|
|
= TagDecl::getTagKindForTypeSpec(DS.getTypeSpecType());
|
|
Result = Context.getElaboratedType(Result, Tag);
|
|
}
|
|
|
|
if (D->isInvalidDecl())
|
|
TheDeclarator.setInvalidType(true);
|
|
break;
|
|
}
|
|
case DeclSpec::TST_typename: {
|
|
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
|
|
DS.getTypeSpecSign() == 0 &&
|
|
"Can't handle qualifiers on typedef names yet!");
|
|
Result = TheSema.GetTypeFromParser(DS.getTypeRep());
|
|
|
|
if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
|
|
if (const ObjCInterfaceType *
|
|
Interface = Result->getAs<ObjCInterfaceType>()) {
|
|
// It would be nice if protocol qualifiers were only stored with the
|
|
// ObjCObjectPointerType. Unfortunately, this isn't possible due
|
|
// to the following typedef idiom (which is uncommon, but allowed):
|
|
//
|
|
// typedef Foo<P> T;
|
|
// static void func() {
|
|
// Foo<P> *yy;
|
|
// T *zz;
|
|
// }
|
|
Result = Context.getObjCInterfaceType(Interface->getDecl(),
|
|
(ObjCProtocolDecl**)PQ,
|
|
DS.getNumProtocolQualifiers());
|
|
} else if (Result->isObjCIdType())
|
|
// id<protocol-list>
|
|
Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
|
|
(ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
|
|
else if (Result->isObjCClassType()) {
|
|
// Class<protocol-list>
|
|
Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy,
|
|
(ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
|
|
} else {
|
|
TheSema.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
|
|
<< DS.getSourceRange();
|
|
TheDeclarator.setInvalidType(true);
|
|
}
|
|
}
|
|
|
|
// TypeQuals handled by caller.
|
|
break;
|
|
}
|
|
case DeclSpec::TST_typeofType:
|
|
// FIXME: Preserve type source info.
|
|
Result = TheSema.GetTypeFromParser(DS.getTypeRep());
|
|
assert(!Result.isNull() && "Didn't get a type for typeof?");
|
|
// TypeQuals handled by caller.
|
|
Result = Context.getTypeOfType(Result);
|
|
break;
|
|
case DeclSpec::TST_typeofExpr: {
|
|
Expr *E = static_cast<Expr *>(DS.getTypeRep());
|
|
assert(E && "Didn't get an expression for typeof?");
|
|
// TypeQuals handled by caller.
|
|
Result = Context.getTypeOfExprType(E);
|
|
break;
|
|
}
|
|
case DeclSpec::TST_decltype: {
|
|
Expr *E = static_cast<Expr *>(DS.getTypeRep());
|
|
assert(E && "Didn't get an expression for decltype?");
|
|
// TypeQuals handled by caller.
|
|
Result = TheSema.BuildDecltypeType(E);
|
|
if (Result.isNull()) {
|
|
Result = Context.IntTy;
|
|
TheDeclarator.setInvalidType(true);
|
|
}
|
|
break;
|
|
}
|
|
case DeclSpec::TST_auto: {
|
|
// TypeQuals handled by caller.
|
|
Result = Context.UndeducedAutoTy;
|
|
break;
|
|
}
|
|
|
|
case DeclSpec::TST_error:
|
|
Result = Context.IntTy;
|
|
TheDeclarator.setInvalidType(true);
|
|
break;
|
|
}
|
|
|
|
// Handle complex types.
|
|
if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
|
|
if (TheSema.getLangOptions().Freestanding)
|
|
TheSema.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
|
|
Result = Context.getComplexType(Result);
|
|
}
|
|
|
|
assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
|
|
"FIXME: imaginary types not supported yet!");
|
|
|
|
// See if there are any attributes on the declspec that apply to the type (as
|
|
// opposed to the decl).
|
|
if (const AttributeList *AL = DS.getAttributes())
|
|
TheSema.ProcessTypeAttributeList(Result, AL);
|
|
|
|
// Apply const/volatile/restrict qualifiers to T.
|
|
if (unsigned TypeQuals = DS.getTypeQualifiers()) {
|
|
|
|
// Enforce C99 6.7.3p2: "Types other than pointer types derived from object
|
|
// or incomplete types shall not be restrict-qualified." C++ also allows
|
|
// restrict-qualified references.
|
|
if (TypeQuals & DeclSpec::TQ_restrict) {
|
|
if (Result->isAnyPointerType() || Result->isReferenceType()) {
|
|
QualType EltTy;
|
|
if (Result->isObjCObjectPointerType())
|
|
EltTy = Result;
|
|
else
|
|
EltTy = Result->isPointerType() ?
|
|
Result->getAs<PointerType>()->getPointeeType() :
|
|
Result->getAs<ReferenceType>()->getPointeeType();
|
|
|
|
// If we have a pointer or reference, the pointee must have an object
|
|
// incomplete type.
|
|
if (!EltTy->isIncompleteOrObjectType()) {
|
|
TheSema.Diag(DS.getRestrictSpecLoc(),
|
|
diag::err_typecheck_invalid_restrict_invalid_pointee)
|
|
<< EltTy << DS.getSourceRange();
|
|
TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
|
|
}
|
|
} else {
|
|
TheSema.Diag(DS.getRestrictSpecLoc(),
|
|
diag::err_typecheck_invalid_restrict_not_pointer)
|
|
<< Result << DS.getSourceRange();
|
|
TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
|
|
}
|
|
}
|
|
|
|
// Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
|
|
// of a function type includes any type qualifiers, the behavior is
|
|
// undefined."
|
|
if (Result->isFunctionType() && TypeQuals) {
|
|
// Get some location to point at, either the C or V location.
|
|
SourceLocation Loc;
|
|
if (TypeQuals & DeclSpec::TQ_const)
|
|
Loc = DS.getConstSpecLoc();
|
|
else if (TypeQuals & DeclSpec::TQ_volatile)
|
|
Loc = DS.getVolatileSpecLoc();
|
|
else {
|
|
assert((TypeQuals & DeclSpec::TQ_restrict) &&
|
|
"Has CVR quals but not C, V, or R?");
|
|
Loc = DS.getRestrictSpecLoc();
|
|
}
|
|
TheSema.Diag(Loc, diag::warn_typecheck_function_qualifiers)
|
|
<< Result << DS.getSourceRange();
|
|
}
|
|
|
|
// C++ [dcl.ref]p1:
|
|
// Cv-qualified references are ill-formed except when the
|
|
// cv-qualifiers are introduced through the use of a typedef
|
|
// (7.1.3) or of a template type argument (14.3), in which
|
|
// case the cv-qualifiers are ignored.
|
|
// FIXME: Shouldn't we be checking SCS_typedef here?
|
|
if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
|
|
TypeQuals && Result->isReferenceType()) {
|
|
TypeQuals &= ~DeclSpec::TQ_const;
|
|
TypeQuals &= ~DeclSpec::TQ_volatile;
|
|
}
|
|
|
|
Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
|
|
Result = Context.getQualifiedType(Result, Quals);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
static std::string getPrintableNameForEntity(DeclarationName Entity) {
|
|
if (Entity)
|
|
return Entity.getAsString();
|
|
|
|
return "type name";
|
|
}
|
|
|
|
/// \brief Build a pointer type.
|
|
///
|
|
/// \param T The type to which we'll be building a pointer.
|
|
///
|
|
/// \param Quals The cvr-qualifiers to be applied to the pointer type.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// pointer type or, if there is no such entity, the location of the
|
|
/// type that will have pointer type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the pointer
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable pointer type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType Sema::BuildPointerType(QualType T, unsigned Quals,
|
|
SourceLocation Loc, DeclarationName Entity) {
|
|
if (T->isReferenceType()) {
|
|
// C++ 8.3.2p4: There shall be no ... pointers to references ...
|
|
Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
|
|
<< getPrintableNameForEntity(Entity) << T;
|
|
return QualType();
|
|
}
|
|
|
|
Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
|
|
|
|
// Enforce C99 6.7.3p2: "Types other than pointer types derived from
|
|
// object or incomplete types shall not be restrict-qualified."
|
|
if (Qs.hasRestrict() && !T->isIncompleteOrObjectType()) {
|
|
Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
|
|
<< T;
|
|
Qs.removeRestrict();
|
|
}
|
|
|
|
// Build the pointer type.
|
|
return Context.getQualifiedType(Context.getPointerType(T), Qs);
|
|
}
|
|
|
|
/// \brief Build a reference type.
|
|
///
|
|
/// \param T The type to which we'll be building a reference.
|
|
///
|
|
/// \param CVR The cvr-qualifiers to be applied to the reference type.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// reference type or, if there is no such entity, the location of the
|
|
/// type that will have reference type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the reference
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable reference type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
|
|
unsigned CVR, SourceLocation Loc,
|
|
DeclarationName Entity) {
|
|
Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
|
|
|
|
bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
|
|
|
|
// C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
|
|
// reference to a type T, and attempt to create the type "lvalue
|
|
// reference to cv TD" creates the type "lvalue reference to T".
|
|
// We use the qualifiers (restrict or none) of the original reference,
|
|
// not the new ones. This is consistent with GCC.
|
|
|
|
// C++ [dcl.ref]p4: There shall be no references to references.
|
|
//
|
|
// According to C++ DR 106, references to references are only
|
|
// diagnosed when they are written directly (e.g., "int & &"),
|
|
// but not when they happen via a typedef:
|
|
//
|
|
// typedef int& intref;
|
|
// typedef intref& intref2;
|
|
//
|
|
// Parser::ParseDeclaratorInternal diagnoses the case where
|
|
// references are written directly; here, we handle the
|
|
// collapsing of references-to-references as described in C++
|
|
// DR 106 and amended by C++ DR 540.
|
|
|
|
// C++ [dcl.ref]p1:
|
|
// A declarator that specifies the type "reference to cv void"
|
|
// is ill-formed.
|
|
if (T->isVoidType()) {
|
|
Diag(Loc, diag::err_reference_to_void);
|
|
return QualType();
|
|
}
|
|
|
|
// Enforce C99 6.7.3p2: "Types other than pointer types derived from
|
|
// object or incomplete types shall not be restrict-qualified."
|
|
if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
|
|
Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
|
|
<< T;
|
|
Quals.removeRestrict();
|
|
}
|
|
|
|
// C++ [dcl.ref]p1:
|
|
// [...] Cv-qualified references are ill-formed except when the
|
|
// cv-qualifiers are introduced through the use of a typedef
|
|
// (7.1.3) or of a template type argument (14.3), in which case
|
|
// the cv-qualifiers are ignored.
|
|
//
|
|
// We diagnose extraneous cv-qualifiers for the non-typedef,
|
|
// non-template type argument case within the parser. Here, we just
|
|
// ignore any extraneous cv-qualifiers.
|
|
Quals.removeConst();
|
|
Quals.removeVolatile();
|
|
|
|
// Handle restrict on references.
|
|
if (LValueRef)
|
|
return Context.getQualifiedType(
|
|
Context.getLValueReferenceType(T, SpelledAsLValue), Quals);
|
|
return Context.getQualifiedType(Context.getRValueReferenceType(T), Quals);
|
|
}
|
|
|
|
/// \brief Build an array type.
|
|
///
|
|
/// \param T The type of each element in the array.
|
|
///
|
|
/// \param ASM C99 array size modifier (e.g., '*', 'static').
|
|
///
|
|
/// \param ArraySize Expression describing the size of the array.
|
|
///
|
|
/// \param Quals The cvr-qualifiers to be applied to the array's
|
|
/// element type.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// array type or, if there is no such entity, the location of the
|
|
/// type that will have array type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the array
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable array type, if there are no errors. Otherwise,
|
|
/// returns a NULL type.
|
|
QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
|
|
Expr *ArraySize, unsigned Quals,
|
|
SourceRange Brackets, DeclarationName Entity) {
|
|
|
|
SourceLocation Loc = Brackets.getBegin();
|
|
// C99 6.7.5.2p1: If the element type is an incomplete or function type,
|
|
// reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
|
|
// Not in C++, though. There we only dislike void.
|
|
if (getLangOptions().CPlusPlus) {
|
|
if (T->isVoidType()) {
|
|
Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
|
|
return QualType();
|
|
}
|
|
} else {
|
|
if (RequireCompleteType(Loc, T,
|
|
diag::err_illegal_decl_array_incomplete_type))
|
|
return QualType();
|
|
}
|
|
|
|
if (T->isFunctionType()) {
|
|
Diag(Loc, diag::err_illegal_decl_array_of_functions)
|
|
<< getPrintableNameForEntity(Entity) << T;
|
|
return QualType();
|
|
}
|
|
|
|
// C++ 8.3.2p4: There shall be no ... arrays of references ...
|
|
if (T->isReferenceType()) {
|
|
Diag(Loc, diag::err_illegal_decl_array_of_references)
|
|
<< getPrintableNameForEntity(Entity) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
|
|
Diag(Loc, diag::err_illegal_decl_array_of_auto)
|
|
<< getPrintableNameForEntity(Entity);
|
|
return QualType();
|
|
}
|
|
|
|
if (const RecordType *EltTy = T->getAs<RecordType>()) {
|
|
// If the element type is a struct or union that contains a variadic
|
|
// array, accept it as a GNU extension: C99 6.7.2.1p2.
|
|
if (EltTy->getDecl()->hasFlexibleArrayMember())
|
|
Diag(Loc, diag::ext_flexible_array_in_array) << T;
|
|
} else if (T->isObjCInterfaceType()) {
|
|
Diag(Loc, diag::err_objc_array_of_interfaces) << T;
|
|
return QualType();
|
|
}
|
|
|
|
// C99 6.7.5.2p1: The size expression shall have integer type.
|
|
if (ArraySize && !ArraySize->isTypeDependent() &&
|
|
!ArraySize->getType()->isIntegerType()) {
|
|
Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
|
|
<< ArraySize->getType() << ArraySize->getSourceRange();
|
|
ArraySize->Destroy(Context);
|
|
return QualType();
|
|
}
|
|
llvm::APSInt ConstVal(32);
|
|
if (!ArraySize) {
|
|
if (ASM == ArrayType::Star)
|
|
T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
|
|
else
|
|
T = Context.getIncompleteArrayType(T, ASM, Quals);
|
|
} else if (ArraySize->isValueDependent()) {
|
|
T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
|
|
} else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
|
|
(!T->isDependentType() && !T->isIncompleteType() &&
|
|
!T->isConstantSizeType())) {
|
|
// Per C99, a variable array is an array with either a non-constant
|
|
// size or an element type that has a non-constant-size
|
|
T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
|
|
} else {
|
|
// C99 6.7.5.2p1: If the expression is a constant expression, it shall
|
|
// have a value greater than zero.
|
|
if (ConstVal.isSigned() && ConstVal.isNegative()) {
|
|
Diag(ArraySize->getLocStart(),
|
|
diag::err_typecheck_negative_array_size)
|
|
<< ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
if (ConstVal == 0) {
|
|
// GCC accepts zero sized static arrays.
|
|
Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
|
|
<< ArraySize->getSourceRange();
|
|
}
|
|
T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
|
|
}
|
|
// If this is not C99, extwarn about VLA's and C99 array size modifiers.
|
|
if (!getLangOptions().C99) {
|
|
if (ArraySize && !ArraySize->isTypeDependent() &&
|
|
!ArraySize->isValueDependent() &&
|
|
!ArraySize->isIntegerConstantExpr(Context))
|
|
Diag(Loc, getLangOptions().CPlusPlus? diag::err_vla_cxx : diag::ext_vla);
|
|
else if (ASM != ArrayType::Normal || Quals != 0)
|
|
Diag(Loc,
|
|
getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
|
|
: diag::ext_c99_array_usage);
|
|
}
|
|
|
|
return T;
|
|
}
|
|
|
|
/// \brief Build an ext-vector type.
|
|
///
|
|
/// Run the required checks for the extended vector type.
|
|
QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
|
|
SourceLocation AttrLoc) {
|
|
|
|
Expr *Arg = (Expr *)ArraySize.get();
|
|
|
|
// unlike gcc's vector_size attribute, we do not allow vectors to be defined
|
|
// in conjunction with complex types (pointers, arrays, functions, etc.).
|
|
if (!T->isDependentType() &&
|
|
!T->isIntegerType() && !T->isRealFloatingType()) {
|
|
Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
|
|
llvm::APSInt vecSize(32);
|
|
if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
|
|
Diag(AttrLoc, diag::err_attribute_argument_not_int)
|
|
<< "ext_vector_type" << Arg->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// unlike gcc's vector_size attribute, the size is specified as the
|
|
// number of elements, not the number of bytes.
|
|
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
|
|
|
|
if (vectorSize == 0) {
|
|
Diag(AttrLoc, diag::err_attribute_zero_size)
|
|
<< Arg->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
if (!T->isDependentType())
|
|
return Context.getExtVectorType(T, vectorSize);
|
|
}
|
|
|
|
return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
|
|
AttrLoc);
|
|
}
|
|
|
|
/// \brief Build a function type.
|
|
///
|
|
/// This routine checks the function type according to C++ rules and
|
|
/// under the assumption that the result type and parameter types have
|
|
/// just been instantiated from a template. It therefore duplicates
|
|
/// some of the behavior of GetTypeForDeclarator, but in a much
|
|
/// simpler form that is only suitable for this narrow use case.
|
|
///
|
|
/// \param T The return type of the function.
|
|
///
|
|
/// \param ParamTypes The parameter types of the function. This array
|
|
/// will be modified to account for adjustments to the types of the
|
|
/// function parameters.
|
|
///
|
|
/// \param NumParamTypes The number of parameter types in ParamTypes.
|
|
///
|
|
/// \param Variadic Whether this is a variadic function type.
|
|
///
|
|
/// \param Quals The cvr-qualifiers to be applied to the function type.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// function type or, if there is no such entity, the location of the
|
|
/// type that will have function type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the function
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable function type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType Sema::BuildFunctionType(QualType T,
|
|
QualType *ParamTypes,
|
|
unsigned NumParamTypes,
|
|
bool Variadic, unsigned Quals,
|
|
SourceLocation Loc, DeclarationName Entity) {
|
|
if (T->isArrayType() || T->isFunctionType()) {
|
|
Diag(Loc, diag::err_func_returning_array_function) << T;
|
|
return QualType();
|
|
}
|
|
|
|
bool Invalid = false;
|
|
for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
|
|
QualType ParamType = adjustParameterType(ParamTypes[Idx]);
|
|
if (ParamType->isVoidType()) {
|
|
Diag(Loc, diag::err_param_with_void_type);
|
|
Invalid = true;
|
|
}
|
|
|
|
ParamTypes[Idx] = ParamType;
|
|
}
|
|
|
|
if (Invalid)
|
|
return QualType();
|
|
|
|
return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
|
|
Quals);
|
|
}
|
|
|
|
/// \brief Build a member pointer type \c T Class::*.
|
|
///
|
|
/// \param T the type to which the member pointer refers.
|
|
/// \param Class the class type into which the member pointer points.
|
|
/// \param CVR Qualifiers applied to the member pointer type
|
|
/// \param Loc the location where this type begins
|
|
/// \param Entity the name of the entity that will have this member pointer type
|
|
///
|
|
/// \returns a member pointer type, if successful, or a NULL type if there was
|
|
/// an error.
|
|
QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
|
|
unsigned CVR, SourceLocation Loc,
|
|
DeclarationName Entity) {
|
|
Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
|
|
|
|
// Verify that we're not building a pointer to pointer to function with
|
|
// exception specification.
|
|
if (CheckDistantExceptionSpec(T)) {
|
|
Diag(Loc, diag::err_distant_exception_spec);
|
|
|
|
// FIXME: If we're doing this as part of template instantiation,
|
|
// we should return immediately.
|
|
|
|
// Build the type anyway, but use the canonical type so that the
|
|
// exception specifiers are stripped off.
|
|
T = Context.getCanonicalType(T);
|
|
}
|
|
|
|
// C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
|
|
// with reference type, or "cv void."
|
|
if (T->isReferenceType()) {
|
|
Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
|
|
<< (Entity? Entity.getAsString() : "type name") << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (T->isVoidType()) {
|
|
Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
|
|
<< (Entity? Entity.getAsString() : "type name");
|
|
return QualType();
|
|
}
|
|
|
|
// Enforce C99 6.7.3p2: "Types other than pointer types derived from
|
|
// object or incomplete types shall not be restrict-qualified."
|
|
if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
|
|
Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
|
|
<< T;
|
|
|
|
// FIXME: If we're doing this as part of template instantiation,
|
|
// we should return immediately.
|
|
Quals.removeRestrict();
|
|
}
|
|
|
|
if (!Class->isDependentType() && !Class->isRecordType()) {
|
|
Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
|
|
return QualType();
|
|
}
|
|
|
|
return Context.getQualifiedType(
|
|
Context.getMemberPointerType(T, Class.getTypePtr()), Quals);
|
|
}
|
|
|
|
/// \brief Build a block pointer type.
|
|
///
|
|
/// \param T The type to which we'll be building a block pointer.
|
|
///
|
|
/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// block pointer type or, if there is no such entity, the location of the
|
|
/// type that will have block pointer type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the block pointer
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable block pointer type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType Sema::BuildBlockPointerType(QualType T, unsigned CVR,
|
|
SourceLocation Loc,
|
|
DeclarationName Entity) {
|
|
if (!T->isFunctionType()) {
|
|
Diag(Loc, diag::err_nonfunction_block_type);
|
|
return QualType();
|
|
}
|
|
|
|
Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
|
|
return Context.getQualifiedType(Context.getBlockPointerType(T), Quals);
|
|
}
|
|
|
|
QualType Sema::GetTypeFromParser(TypeTy *Ty, TypeSourceInfo **TInfo) {
|
|
QualType QT = QualType::getFromOpaquePtr(Ty);
|
|
if (QT.isNull()) {
|
|
if (TInfo) *TInfo = 0;
|
|
return QualType();
|
|
}
|
|
|
|
TypeSourceInfo *DI = 0;
|
|
if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
|
|
QT = LIT->getType();
|
|
DI = LIT->getTypeSourceInfo();
|
|
}
|
|
|
|
if (TInfo) *TInfo = DI;
|
|
return QT;
|
|
}
|
|
|
|
/// GetTypeForDeclarator - Convert the type for the specified
|
|
/// declarator to Type instances.
|
|
///
|
|
/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
|
|
/// owns the declaration of a type (e.g., the definition of a struct
|
|
/// type), then *OwnedDecl will receive the owned declaration.
|
|
QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
|
|
TypeSourceInfo **TInfo,
|
|
TagDecl **OwnedDecl) {
|
|
// Determine the type of the declarator. Not all forms of declarator
|
|
// have a type.
|
|
QualType T;
|
|
|
|
switch (D.getName().getKind()) {
|
|
case UnqualifiedId::IK_Identifier:
|
|
case UnqualifiedId::IK_OperatorFunctionId:
|
|
case UnqualifiedId::IK_LiteralOperatorId:
|
|
case UnqualifiedId::IK_TemplateId:
|
|
T = ConvertDeclSpecToType(D, *this);
|
|
|
|
if (!D.isInvalidType() && OwnedDecl && D.getDeclSpec().isTypeSpecOwned())
|
|
*OwnedDecl = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
|
|
break;
|
|
|
|
case UnqualifiedId::IK_ConstructorName:
|
|
case UnqualifiedId::IK_DestructorName:
|
|
case UnqualifiedId::IK_ConversionFunctionId:
|
|
// Constructors and destructors don't have return types. Use
|
|
// "void" instead. Conversion operators will check their return
|
|
// types separately.
|
|
T = Context.VoidTy;
|
|
break;
|
|
}
|
|
|
|
if (T.isNull())
|
|
return T;
|
|
|
|
if (T == Context.UndeducedAutoTy) {
|
|
int Error = -1;
|
|
|
|
switch (D.getContext()) {
|
|
case Declarator::KNRTypeListContext:
|
|
assert(0 && "K&R type lists aren't allowed in C++");
|
|
break;
|
|
case Declarator::PrototypeContext:
|
|
Error = 0; // Function prototype
|
|
break;
|
|
case Declarator::MemberContext:
|
|
switch (cast<TagDecl>(CurContext)->getTagKind()) {
|
|
case TagDecl::TK_enum: assert(0 && "unhandled tag kind"); break;
|
|
case TagDecl::TK_struct: Error = 1; /* Struct member */ break;
|
|
case TagDecl::TK_union: Error = 2; /* Union member */ break;
|
|
case TagDecl::TK_class: Error = 3; /* Class member */ break;
|
|
}
|
|
break;
|
|
case Declarator::CXXCatchContext:
|
|
Error = 4; // Exception declaration
|
|
break;
|
|
case Declarator::TemplateParamContext:
|
|
Error = 5; // Template parameter
|
|
break;
|
|
case Declarator::BlockLiteralContext:
|
|
Error = 6; // Block literal
|
|
break;
|
|
case Declarator::FileContext:
|
|
case Declarator::BlockContext:
|
|
case Declarator::ForContext:
|
|
case Declarator::ConditionContext:
|
|
case Declarator::TypeNameContext:
|
|
break;
|
|
}
|
|
|
|
if (Error != -1) {
|
|
Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
|
|
<< Error;
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
}
|
|
}
|
|
|
|
// The name we're declaring, if any.
|
|
DeclarationName Name;
|
|
if (D.getIdentifier())
|
|
Name = D.getIdentifier();
|
|
|
|
// Walk the DeclTypeInfo, building the recursive type as we go.
|
|
// DeclTypeInfos are ordered from the identifier out, which is
|
|
// opposite of what we want :).
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
|
|
switch (DeclType.Kind) {
|
|
default: assert(0 && "Unknown decltype!");
|
|
case DeclaratorChunk::BlockPointer:
|
|
// If blocks are disabled, emit an error.
|
|
if (!LangOpts.Blocks)
|
|
Diag(DeclType.Loc, diag::err_blocks_disable);
|
|
|
|
T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
|
|
Name);
|
|
break;
|
|
case DeclaratorChunk::Pointer:
|
|
// Verify that we're not building a pointer to pointer to function with
|
|
// exception specification.
|
|
if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
|
|
Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
|
|
D.setInvalidType(true);
|
|
// Build the type anyway.
|
|
}
|
|
if (getLangOptions().ObjC1 && T->isObjCInterfaceType()) {
|
|
const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>();
|
|
T = Context.getObjCObjectPointerType(T,
|
|
(ObjCProtocolDecl **)OIT->qual_begin(),
|
|
OIT->getNumProtocols());
|
|
break;
|
|
}
|
|
T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
|
|
break;
|
|
case DeclaratorChunk::Reference: {
|
|
Qualifiers Quals;
|
|
if (DeclType.Ref.HasRestrict) Quals.addRestrict();
|
|
|
|
// Verify that we're not building a reference to pointer to function with
|
|
// exception specification.
|
|
if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
|
|
Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
|
|
D.setInvalidType(true);
|
|
// Build the type anyway.
|
|
}
|
|
T = BuildReferenceType(T, DeclType.Ref.LValueRef, Quals,
|
|
DeclType.Loc, Name);
|
|
break;
|
|
}
|
|
case DeclaratorChunk::Array: {
|
|
// Verify that we're not building an array of pointers to function with
|
|
// exception specification.
|
|
if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
|
|
Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
|
|
D.setInvalidType(true);
|
|
// Build the type anyway.
|
|
}
|
|
DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
|
|
Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
|
|
ArrayType::ArraySizeModifier ASM;
|
|
if (ATI.isStar)
|
|
ASM = ArrayType::Star;
|
|
else if (ATI.hasStatic)
|
|
ASM = ArrayType::Static;
|
|
else
|
|
ASM = ArrayType::Normal;
|
|
if (ASM == ArrayType::Star &&
|
|
D.getContext() != Declarator::PrototypeContext) {
|
|
// FIXME: This check isn't quite right: it allows star in prototypes
|
|
// for function definitions, and disallows some edge cases detailed
|
|
// in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
|
|
Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
|
|
ASM = ArrayType::Normal;
|
|
D.setInvalidType(true);
|
|
}
|
|
T = BuildArrayType(T, ASM, ArraySize,
|
|
Qualifiers::fromCVRMask(ATI.TypeQuals),
|
|
SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
|
|
break;
|
|
}
|
|
case DeclaratorChunk::Function: {
|
|
// If the function declarator has a prototype (i.e. it is not () and
|
|
// does not have a K&R-style identifier list), then the arguments are part
|
|
// of the type, otherwise the argument list is ().
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
|
|
|
|
// C99 6.7.5.3p1: The return type may not be a function or array type.
|
|
if (T->isArrayType() || T->isFunctionType()) {
|
|
Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
|
|
// C++ [dcl.fct]p6:
|
|
// Types shall not be defined in return or parameter types.
|
|
TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
|
|
if (Tag->isDefinition())
|
|
Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
|
|
<< Context.getTypeDeclType(Tag);
|
|
}
|
|
|
|
// Exception specs are not allowed in typedefs. Complain, but add it
|
|
// anyway.
|
|
if (FTI.hasExceptionSpec &&
|
|
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
|
|
Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
|
|
|
|
if (FTI.NumArgs == 0) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
// C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
|
|
// function takes no arguments.
|
|
llvm::SmallVector<QualType, 4> Exceptions;
|
|
Exceptions.reserve(FTI.NumExceptions);
|
|
for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
|
|
// FIXME: Preserve type source info.
|
|
QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
|
|
// Check that the type is valid for an exception spec, and drop it
|
|
// if not.
|
|
if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
|
|
Exceptions.push_back(ET);
|
|
}
|
|
T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
|
|
FTI.hasExceptionSpec,
|
|
FTI.hasAnyExceptionSpec,
|
|
Exceptions.size(), Exceptions.data());
|
|
} else if (FTI.isVariadic) {
|
|
// We allow a zero-parameter variadic function in C if the
|
|
// function is marked with the "overloadable"
|
|
// attribute. Scan for this attribute now.
|
|
bool Overloadable = false;
|
|
for (const AttributeList *Attrs = D.getAttributes();
|
|
Attrs; Attrs = Attrs->getNext()) {
|
|
if (Attrs->getKind() == AttributeList::AT_overloadable) {
|
|
Overloadable = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Overloadable)
|
|
Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
|
|
T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
|
|
} else {
|
|
// Simple void foo(), where the incoming T is the result type.
|
|
T = Context.getFunctionNoProtoType(T);
|
|
}
|
|
} else if (FTI.ArgInfo[0].Param == 0) {
|
|
// C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
|
|
Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
|
|
D.setInvalidType(true);
|
|
} else {
|
|
// Otherwise, we have a function with an argument list that is
|
|
// potentially variadic.
|
|
llvm::SmallVector<QualType, 16> ArgTys;
|
|
|
|
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
|
|
ParmVarDecl *Param =
|
|
cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
|
|
QualType ArgTy = Param->getType();
|
|
assert(!ArgTy.isNull() && "Couldn't parse type?");
|
|
|
|
// Adjust the parameter type.
|
|
assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
|
|
|
|
// Look for 'void'. void is allowed only as a single argument to a
|
|
// function with no other parameters (C99 6.7.5.3p10). We record
|
|
// int(void) as a FunctionProtoType with an empty argument list.
|
|
if (ArgTy->isVoidType()) {
|
|
// If this is something like 'float(int, void)', reject it. 'void'
|
|
// is an incomplete type (C99 6.2.5p19) and function decls cannot
|
|
// have arguments of incomplete type.
|
|
if (FTI.NumArgs != 1 || FTI.isVariadic) {
|
|
Diag(DeclType.Loc, diag::err_void_only_param);
|
|
ArgTy = Context.IntTy;
|
|
Param->setType(ArgTy);
|
|
} else if (FTI.ArgInfo[i].Ident) {
|
|
// Reject, but continue to parse 'int(void abc)'.
|
|
Diag(FTI.ArgInfo[i].IdentLoc,
|
|
diag::err_param_with_void_type);
|
|
ArgTy = Context.IntTy;
|
|
Param->setType(ArgTy);
|
|
} else {
|
|
// Reject, but continue to parse 'float(const void)'.
|
|
if (ArgTy.hasQualifiers())
|
|
Diag(DeclType.Loc, diag::err_void_param_qualified);
|
|
|
|
// Do not add 'void' to the ArgTys list.
|
|
break;
|
|
}
|
|
} else if (!FTI.hasPrototype) {
|
|
if (ArgTy->isPromotableIntegerType()) {
|
|
ArgTy = Context.getPromotedIntegerType(ArgTy);
|
|
} else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
|
|
if (BTy->getKind() == BuiltinType::Float)
|
|
ArgTy = Context.DoubleTy;
|
|
}
|
|
}
|
|
|
|
ArgTys.push_back(ArgTy);
|
|
}
|
|
|
|
llvm::SmallVector<QualType, 4> Exceptions;
|
|
Exceptions.reserve(FTI.NumExceptions);
|
|
for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
|
|
// FIXME: Preserve type source info.
|
|
QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
|
|
// Check that the type is valid for an exception spec, and drop it if
|
|
// not.
|
|
if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
|
|
Exceptions.push_back(ET);
|
|
}
|
|
|
|
T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
|
|
FTI.isVariadic, FTI.TypeQuals,
|
|
FTI.hasExceptionSpec,
|
|
FTI.hasAnyExceptionSpec,
|
|
Exceptions.size(), Exceptions.data());
|
|
}
|
|
break;
|
|
}
|
|
case DeclaratorChunk::MemberPointer:
|
|
// Verify that we're not building a pointer to pointer to function with
|
|
// exception specification.
|
|
if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
|
|
Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
|
|
D.setInvalidType(true);
|
|
// Build the type anyway.
|
|
}
|
|
// The scope spec must refer to a class, or be dependent.
|
|
QualType ClsType;
|
|
if (isDependentScopeSpecifier(DeclType.Mem.Scope())
|
|
|| dyn_cast_or_null<CXXRecordDecl>(
|
|
computeDeclContext(DeclType.Mem.Scope()))) {
|
|
NestedNameSpecifier *NNS
|
|
= (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
|
|
NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
|
|
switch (NNS->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
ClsType = Context.getTypenameType(NNSPrefix, NNS->getAsIdentifier());
|
|
break;
|
|
|
|
case NestedNameSpecifier::Namespace:
|
|
case NestedNameSpecifier::Global:
|
|
llvm_unreachable("Nested-name-specifier must name a type");
|
|
break;
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
ClsType = QualType(NNS->getAsType(), 0);
|
|
if (NNSPrefix)
|
|
ClsType = Context.getQualifiedNameType(NNSPrefix, ClsType);
|
|
break;
|
|
}
|
|
} else {
|
|
Diag(DeclType.Mem.Scope().getBeginLoc(),
|
|
diag::err_illegal_decl_mempointer_in_nonclass)
|
|
<< (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
|
|
<< DeclType.Mem.Scope().getRange();
|
|
D.setInvalidType(true);
|
|
}
|
|
|
|
if (!ClsType.isNull())
|
|
T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
|
|
DeclType.Loc, D.getIdentifier());
|
|
if (T.isNull()) {
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (T.isNull()) {
|
|
D.setInvalidType(true);
|
|
T = Context.IntTy;
|
|
}
|
|
|
|
// See if there are any attributes on this declarator chunk.
|
|
if (const AttributeList *AL = DeclType.getAttrs())
|
|
ProcessTypeAttributeList(T, AL);
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus && T->isFunctionType()) {
|
|
const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
|
|
assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
|
|
|
|
// C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
|
|
// for a nonstatic member function, the function type to which a pointer
|
|
// to member refers, or the top-level function type of a function typedef
|
|
// declaration.
|
|
if (FnTy->getTypeQuals() != 0 &&
|
|
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
|
|
((D.getContext() != Declarator::MemberContext &&
|
|
(!D.getCXXScopeSpec().isSet() ||
|
|
!computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
|
|
->isRecord())) ||
|
|
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
|
|
if (D.isFunctionDeclarator())
|
|
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
|
|
else
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_invalid_qualified_typedef_function_type_use);
|
|
|
|
// Strip the cv-quals from the type.
|
|
T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
|
|
FnTy->getNumArgs(), FnTy->isVariadic(), 0);
|
|
}
|
|
}
|
|
|
|
// If there were any type attributes applied to the decl itself (not the
|
|
// type, apply the type attribute to the type!)
|
|
if (const AttributeList *Attrs = D.getAttributes())
|
|
ProcessTypeAttributeList(T, Attrs);
|
|
|
|
if (TInfo) {
|
|
if (D.isInvalidType())
|
|
*TInfo = 0;
|
|
else
|
|
*TInfo = GetTypeSourceInfoForDeclarator(D, T);
|
|
}
|
|
|
|
return T;
|
|
}
|
|
|
|
namespace {
|
|
class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
|
|
const DeclSpec &DS;
|
|
|
|
public:
|
|
TypeSpecLocFiller(const DeclSpec &DS) : DS(DS) {}
|
|
|
|
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
|
|
Visit(TL.getUnqualifiedLoc());
|
|
}
|
|
void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
|
|
TL.setNameLoc(DS.getTypeSpecTypeLoc());
|
|
}
|
|
void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
|
|
TL.setNameLoc(DS.getTypeSpecTypeLoc());
|
|
|
|
if (DS.getProtocolQualifiers()) {
|
|
assert(TL.getNumProtocols() > 0);
|
|
assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
|
|
TL.setLAngleLoc(DS.getProtocolLAngleLoc());
|
|
TL.setRAngleLoc(DS.getSourceRange().getEnd());
|
|
for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
|
|
TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
|
|
} else {
|
|
assert(TL.getNumProtocols() == 0);
|
|
TL.setLAngleLoc(SourceLocation());
|
|
TL.setRAngleLoc(SourceLocation());
|
|
}
|
|
}
|
|
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
|
|
assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
|
|
|
|
TL.setStarLoc(SourceLocation());
|
|
|
|
if (DS.getProtocolQualifiers()) {
|
|
assert(TL.getNumProtocols() > 0);
|
|
assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
|
|
TL.setHasProtocolsAsWritten(true);
|
|
TL.setLAngleLoc(DS.getProtocolLAngleLoc());
|
|
TL.setRAngleLoc(DS.getSourceRange().getEnd());
|
|
for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
|
|
TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
|
|
|
|
} else {
|
|
assert(TL.getNumProtocols() == 0);
|
|
TL.setHasProtocolsAsWritten(false);
|
|
TL.setLAngleLoc(SourceLocation());
|
|
TL.setRAngleLoc(SourceLocation());
|
|
}
|
|
|
|
// This might not have been written with an inner type.
|
|
if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
|
|
TL.setHasBaseTypeAsWritten(false);
|
|
TL.getBaseTypeLoc().initialize(SourceLocation());
|
|
} else {
|
|
TL.setHasBaseTypeAsWritten(true);
|
|
Visit(TL.getBaseTypeLoc());
|
|
}
|
|
}
|
|
void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
|
|
TypeSourceInfo *TInfo = 0;
|
|
Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
|
|
|
|
// If we got no declarator info from previous Sema routines,
|
|
// just fill with the typespec loc.
|
|
if (!TInfo) {
|
|
TL.initialize(DS.getTypeSpecTypeLoc());
|
|
return;
|
|
}
|
|
|
|
TemplateSpecializationTypeLoc OldTL =
|
|
cast<TemplateSpecializationTypeLoc>(TInfo->getTypeLoc());
|
|
TL.copy(OldTL);
|
|
}
|
|
void VisitTypeLoc(TypeLoc TL) {
|
|
// FIXME: add other typespec types and change this to an assert.
|
|
TL.initialize(DS.getTypeSpecTypeLoc());
|
|
}
|
|
};
|
|
|
|
class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
|
|
const DeclaratorChunk &Chunk;
|
|
|
|
public:
|
|
DeclaratorLocFiller(const DeclaratorChunk &Chunk) : Chunk(Chunk) {}
|
|
|
|
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
|
|
llvm_unreachable("qualified type locs not expected here!");
|
|
}
|
|
|
|
void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
|
|
TL.setCaretLoc(Chunk.Loc);
|
|
}
|
|
void VisitPointerTypeLoc(PointerTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Pointer);
|
|
TL.setStarLoc(Chunk.Loc);
|
|
}
|
|
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Pointer);
|
|
TL.setStarLoc(Chunk.Loc);
|
|
TL.setHasBaseTypeAsWritten(true);
|
|
TL.setHasProtocolsAsWritten(false);
|
|
TL.setLAngleLoc(SourceLocation());
|
|
TL.setRAngleLoc(SourceLocation());
|
|
}
|
|
void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
|
|
TL.setStarLoc(Chunk.Loc);
|
|
// FIXME: nested name specifier
|
|
}
|
|
void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Reference);
|
|
// 'Amp' is misleading: this might have been originally
|
|
/// spelled with AmpAmp.
|
|
TL.setAmpLoc(Chunk.Loc);
|
|
}
|
|
void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Reference);
|
|
assert(!Chunk.Ref.LValueRef);
|
|
TL.setAmpAmpLoc(Chunk.Loc);
|
|
}
|
|
void VisitArrayTypeLoc(ArrayTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Array);
|
|
TL.setLBracketLoc(Chunk.Loc);
|
|
TL.setRBracketLoc(Chunk.EndLoc);
|
|
TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
|
|
}
|
|
void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Function);
|
|
TL.setLParenLoc(Chunk.Loc);
|
|
TL.setRParenLoc(Chunk.EndLoc);
|
|
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
|
|
for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
|
|
ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
|
|
TL.setArg(tpi++, Param);
|
|
}
|
|
// FIXME: exception specs
|
|
}
|
|
|
|
void VisitTypeLoc(TypeLoc TL) {
|
|
llvm_unreachable("unsupported TypeLoc kind in declarator!");
|
|
}
|
|
};
|
|
}
|
|
|
|
/// \brief Create and instantiate a TypeSourceInfo with type source information.
|
|
///
|
|
/// \param T QualType referring to the type as written in source code.
|
|
TypeSourceInfo *
|
|
Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T) {
|
|
TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
|
|
UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
|
|
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
DeclaratorLocFiller(D.getTypeObject(i)).Visit(CurrTL);
|
|
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
|
|
}
|
|
|
|
TypeSpecLocFiller(D.getDeclSpec()).Visit(CurrTL);
|
|
|
|
return TInfo;
|
|
}
|
|
|
|
/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
|
|
QualType Sema::CreateLocInfoType(QualType T, TypeSourceInfo *TInfo) {
|
|
// FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
|
|
// and Sema during declaration parsing. Try deallocating/caching them when
|
|
// it's appropriate, instead of allocating them and keeping them around.
|
|
LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
|
|
new (LocT) LocInfoType(T, TInfo);
|
|
assert(LocT->getTypeClass() != T->getTypeClass() &&
|
|
"LocInfoType's TypeClass conflicts with an existing Type class");
|
|
return QualType(LocT, 0);
|
|
}
|
|
|
|
void LocInfoType::getAsStringInternal(std::string &Str,
|
|
const PrintingPolicy &Policy) const {
|
|
assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
|
|
" was used directly instead of getting the QualType through"
|
|
" GetTypeFromParser");
|
|
}
|
|
|
|
/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
|
|
/// declarator
|
|
QualType Sema::ObjCGetTypeForMethodDefinition(DeclPtrTy D) {
|
|
ObjCMethodDecl *MDecl = cast<ObjCMethodDecl>(D.getAs<Decl>());
|
|
QualType T = MDecl->getResultType();
|
|
llvm::SmallVector<QualType, 16> ArgTys;
|
|
|
|
// Add the first two invisible argument types for self and _cmd.
|
|
if (MDecl->isInstanceMethod()) {
|
|
QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
|
|
selfTy = Context.getPointerType(selfTy);
|
|
ArgTys.push_back(selfTy);
|
|
} else
|
|
ArgTys.push_back(Context.getObjCIdType());
|
|
ArgTys.push_back(Context.getObjCSelType());
|
|
|
|
for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
|
|
E = MDecl->param_end(); PI != E; ++PI) {
|
|
QualType ArgTy = (*PI)->getType();
|
|
assert(!ArgTy.isNull() && "Couldn't parse type?");
|
|
ArgTy = adjustParameterType(ArgTy);
|
|
ArgTys.push_back(ArgTy);
|
|
}
|
|
T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
|
|
MDecl->isVariadic(), 0);
|
|
return T;
|
|
}
|
|
|
|
/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that
|
|
/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
|
|
/// they point to and return true. If T1 and T2 aren't pointer types
|
|
/// or pointer-to-member types, or if they are not similar at this
|
|
/// level, returns false and leaves T1 and T2 unchanged. Top-level
|
|
/// qualifiers on T1 and T2 are ignored. This function will typically
|
|
/// be called in a loop that successively "unwraps" pointer and
|
|
/// pointer-to-member types to compare them at each level.
|
|
bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
|
|
const PointerType *T1PtrType = T1->getAs<PointerType>(),
|
|
*T2PtrType = T2->getAs<PointerType>();
|
|
if (T1PtrType && T2PtrType) {
|
|
T1 = T1PtrType->getPointeeType();
|
|
T2 = T2PtrType->getPointeeType();
|
|
return true;
|
|
}
|
|
|
|
const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
|
|
*T2MPType = T2->getAs<MemberPointerType>();
|
|
if (T1MPType && T2MPType &&
|
|
Context.getCanonicalType(T1MPType->getClass()) ==
|
|
Context.getCanonicalType(T2MPType->getClass())) {
|
|
T1 = T1MPType->getPointeeType();
|
|
T2 = T2MPType->getPointeeType();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
|
|
// C99 6.7.6: Type names have no identifier. This is already validated by
|
|
// the parser.
|
|
assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
|
|
|
|
TypeSourceInfo *TInfo = 0;
|
|
TagDecl *OwnedTag = 0;
|
|
QualType T = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
|
|
if (D.isInvalidType())
|
|
return true;
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
// Check that there are no default arguments (C++ only).
|
|
CheckExtraCXXDefaultArguments(D);
|
|
|
|
// C++0x [dcl.type]p3:
|
|
// A type-specifier-seq shall not define a class or enumeration
|
|
// unless it appears in the type-id of an alias-declaration
|
|
// (7.1.3).
|
|
if (OwnedTag && OwnedTag->isDefinition())
|
|
Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
|
|
<< Context.getTypeDeclType(OwnedTag);
|
|
}
|
|
|
|
if (TInfo)
|
|
T = CreateLocInfoType(T, TInfo);
|
|
|
|
return T.getAsOpaquePtr();
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Attribute Processing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
|
|
/// specified type. The attribute contains 1 argument, the id of the address
|
|
/// space for the type.
|
|
static void HandleAddressSpaceTypeAttribute(QualType &Type,
|
|
const AttributeList &Attr, Sema &S){
|
|
|
|
// If this type is already address space qualified, reject it.
|
|
// Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
|
|
// for two or more different address spaces."
|
|
if (Type.getAddressSpace()) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
|
|
return;
|
|
}
|
|
|
|
// Check the attribute arguments.
|
|
if (Attr.getNumArgs() != 1) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
|
|
return;
|
|
}
|
|
Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
|
|
llvm::APSInt addrSpace(32);
|
|
if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
|
|
<< ASArgExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
// Bounds checking.
|
|
if (addrSpace.isSigned()) {
|
|
if (addrSpace.isNegative()) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
|
|
<< ASArgExpr->getSourceRange();
|
|
return;
|
|
}
|
|
addrSpace.setIsSigned(false);
|
|
}
|
|
llvm::APSInt max(addrSpace.getBitWidth());
|
|
max = Qualifiers::MaxAddressSpace;
|
|
if (addrSpace > max) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
|
|
<< Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
|
|
Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
|
|
}
|
|
|
|
/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
|
|
/// specified type. The attribute contains 1 argument, weak or strong.
|
|
static void HandleObjCGCTypeAttribute(QualType &Type,
|
|
const AttributeList &Attr, Sema &S) {
|
|
if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
|
|
return;
|
|
}
|
|
|
|
// Check the attribute arguments.
|
|
if (!Attr.getParameterName()) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
|
|
<< "objc_gc" << 1;
|
|
return;
|
|
}
|
|
Qualifiers::GC GCAttr;
|
|
if (Attr.getNumArgs() != 0) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
|
|
return;
|
|
}
|
|
if (Attr.getParameterName()->isStr("weak"))
|
|
GCAttr = Qualifiers::Weak;
|
|
else if (Attr.getParameterName()->isStr("strong"))
|
|
GCAttr = Qualifiers::Strong;
|
|
else {
|
|
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
|
|
<< "objc_gc" << Attr.getParameterName();
|
|
return;
|
|
}
|
|
|
|
Type = S.Context.getObjCGCQualType(Type, GCAttr);
|
|
}
|
|
|
|
/// HandleNoReturnTypeAttribute - Process the noreturn attribute on the
|
|
/// specified type. The attribute contains 0 arguments.
|
|
static void HandleNoReturnTypeAttribute(QualType &Type,
|
|
const AttributeList &Attr, Sema &S) {
|
|
if (Attr.getNumArgs() != 0)
|
|
return;
|
|
|
|
// We only apply this to a pointer to function or a pointer to block.
|
|
if (!Type->isFunctionPointerType()
|
|
&& !Type->isBlockPointerType()
|
|
&& !Type->isFunctionType())
|
|
return;
|
|
|
|
Type = S.Context.getNoReturnType(Type);
|
|
}
|
|
|
|
/// HandleVectorSizeAttribute - this attribute is only applicable to integral
|
|
/// and float scalars, although arrays, pointers, and function return values are
|
|
/// allowed in conjunction with this construct. Aggregates with this attribute
|
|
/// are invalid, even if they are of the same size as a corresponding scalar.
|
|
/// The raw attribute should contain precisely 1 argument, the vector size for
|
|
/// the variable, measured in bytes. If curType and rawAttr are well formed,
|
|
/// this routine will return a new vector type.
|
|
static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr, Sema &S) {
|
|
// Check the attribute arugments.
|
|
if (Attr.getNumArgs() != 1) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
|
|
return;
|
|
}
|
|
Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
|
|
llvm::APSInt vecSize(32);
|
|
if (!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
|
|
<< "vector_size" << sizeExpr->getSourceRange();
|
|
return;
|
|
}
|
|
// the base type must be integer or float, and can't already be a vector.
|
|
if (CurType->isVectorType() ||
|
|
(!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
|
|
return;
|
|
}
|
|
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
|
|
// vecSize is specified in bytes - convert to bits.
|
|
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
|
|
|
|
// the vector size needs to be an integral multiple of the type size.
|
|
if (vectorSize % typeSize) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
|
|
<< sizeExpr->getSourceRange();
|
|
return;
|
|
}
|
|
if (vectorSize == 0) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
|
|
<< sizeExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
// Success! Instantiate the vector type, the number of elements is > 0, and
|
|
// not required to be a power of 2, unlike GCC.
|
|
CurType = S.Context.getVectorType(CurType, vectorSize/typeSize);
|
|
}
|
|
|
|
void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
|
|
// Scan through and apply attributes to this type where it makes sense. Some
|
|
// attributes (such as __address_space__, __vector_size__, etc) apply to the
|
|
// type, but others can be present in the type specifiers even though they
|
|
// apply to the decl. Here we apply type attributes and ignore the rest.
|
|
for (; AL; AL = AL->getNext()) {
|
|
// If this is an attribute we can handle, do so now, otherwise, add it to
|
|
// the LeftOverAttrs list for rechaining.
|
|
switch (AL->getKind()) {
|
|
default: break;
|
|
case AttributeList::AT_address_space:
|
|
HandleAddressSpaceTypeAttribute(Result, *AL, *this);
|
|
break;
|
|
case AttributeList::AT_objc_gc:
|
|
HandleObjCGCTypeAttribute(Result, *AL, *this);
|
|
break;
|
|
case AttributeList::AT_noreturn:
|
|
HandleNoReturnTypeAttribute(Result, *AL, *this);
|
|
break;
|
|
case AttributeList::AT_vector_size:
|
|
HandleVectorSizeAttr(Result, *AL, *this);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// @brief Ensure that the type T is a complete type.
|
|
///
|
|
/// This routine checks whether the type @p T is complete in any
|
|
/// context where a complete type is required. If @p T is a complete
|
|
/// type, returns false. If @p T is a class template specialization,
|
|
/// this routine then attempts to perform class template
|
|
/// instantiation. If instantiation fails, or if @p T is incomplete
|
|
/// and cannot be completed, issues the diagnostic @p diag (giving it
|
|
/// the type @p T) and returns true.
|
|
///
|
|
/// @param Loc The location in the source that the incomplete type
|
|
/// diagnostic should refer to.
|
|
///
|
|
/// @param T The type that this routine is examining for completeness.
|
|
///
|
|
/// @param PD The partial diagnostic that will be printed out if T is not a
|
|
/// complete type.
|
|
///
|
|
/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
|
|
/// @c false otherwise.
|
|
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
|
|
const PartialDiagnostic &PD,
|
|
std::pair<SourceLocation,
|
|
PartialDiagnostic> Note) {
|
|
unsigned diag = PD.getDiagID();
|
|
|
|
// FIXME: Add this assertion to make sure we always get instantiation points.
|
|
// assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
|
|
// FIXME: Add this assertion to help us flush out problems with
|
|
// checking for dependent types and type-dependent expressions.
|
|
//
|
|
// assert(!T->isDependentType() &&
|
|
// "Can't ask whether a dependent type is complete");
|
|
|
|
// If we have a complete type, we're done.
|
|
if (!T->isIncompleteType())
|
|
return false;
|
|
|
|
// If we have a class template specialization or a class member of a
|
|
// class template specialization, or an array with known size of such,
|
|
// try to instantiate it.
|
|
QualType MaybeTemplate = T;
|
|
if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
|
|
MaybeTemplate = Array->getElementType();
|
|
if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
|
|
if (ClassTemplateSpecializationDecl *ClassTemplateSpec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
|
|
if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
|
|
return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
|
|
TSK_ImplicitInstantiation,
|
|
/*Complain=*/diag != 0);
|
|
} else if (CXXRecordDecl *Rec
|
|
= dyn_cast<CXXRecordDecl>(Record->getDecl())) {
|
|
if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
|
|
MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
|
|
assert(MSInfo && "Missing member specialization information?");
|
|
// This record was instantiated from a class within a template.
|
|
if (MSInfo->getTemplateSpecializationKind()
|
|
!= TSK_ExplicitSpecialization)
|
|
return InstantiateClass(Loc, Rec, Pattern,
|
|
getTemplateInstantiationArgs(Rec),
|
|
TSK_ImplicitInstantiation,
|
|
/*Complain=*/diag != 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (diag == 0)
|
|
return true;
|
|
|
|
// We have an incomplete type. Produce a diagnostic.
|
|
Diag(Loc, PD) << T;
|
|
|
|
// If we have a note, produce it.
|
|
if (!Note.first.isInvalid())
|
|
Diag(Note.first, Note.second);
|
|
|
|
// If the type was a forward declaration of a class/struct/union
|
|
// type, produce
|
|
const TagType *Tag = 0;
|
|
if (const RecordType *Record = T->getAs<RecordType>())
|
|
Tag = Record;
|
|
else if (const EnumType *Enum = T->getAs<EnumType>())
|
|
Tag = Enum;
|
|
|
|
if (Tag && !Tag->getDecl()->isInvalidDecl())
|
|
Diag(Tag->getDecl()->getLocation(),
|
|
Tag->isBeingDefined() ? diag::note_type_being_defined
|
|
: diag::note_forward_declaration)
|
|
<< QualType(Tag, 0);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Retrieve a version of the type 'T' that is qualified by the
|
|
/// nested-name-specifier contained in SS.
|
|
QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
|
|
if (!SS.isSet() || SS.isInvalid() || T.isNull())
|
|
return T;
|
|
|
|
NestedNameSpecifier *NNS
|
|
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
|
|
return Context.getQualifiedNameType(NNS, T);
|
|
}
|
|
|
|
QualType Sema::BuildTypeofExprType(Expr *E) {
|
|
return Context.getTypeOfExprType(E);
|
|
}
|
|
|
|
QualType Sema::BuildDecltypeType(Expr *E) {
|
|
if (E->getType() == Context.OverloadTy) {
|
|
Diag(E->getLocStart(),
|
|
diag::err_cannot_determine_declared_type_of_overloaded_function);
|
|
return QualType();
|
|
}
|
|
return Context.getDecltypeType(E);
|
|
}
|