clang-1/Driver/CacheTokens.cpp

497 строки
15 KiB
C++

//===--- CacheTokens.cpp - Caching of lexer tokens for PCH support --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This provides a possible implementation of PCH support for Clang that is
// based on caching lexed tokens and identifiers.
//
//===----------------------------------------------------------------------===//
#include "clang.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Path.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Streams.h"
using namespace clang;
typedef uint32_t Offset;
namespace {
class VISIBILITY_HIDDEN PCHEntry {
Offset TokenData, PPCondData;
public:
PCHEntry() {}
PCHEntry(Offset td, Offset ppcd)
: TokenData(td), PPCondData(ppcd) {}
Offset getTokenOffset() const { return TokenData; }
Offset getPPCondTableOffset() const { return PPCondData; }
};
class OffsetOpt {
bool valid;
Offset off;
public:
OffsetOpt() : valid(false) {}
bool hasOffset() const { return valid; }
Offset getOffset() const { assert(valid); return off; }
void setOffset(Offset o) { off = o; valid = true; }
};
} // end anonymous namespace
typedef llvm::DenseMap<const FileEntry*, PCHEntry> PCHMap;
typedef llvm::DenseMap<const IdentifierInfo*,uint32_t> IDMap;
typedef llvm::StringMap<OffsetOpt, llvm::BumpPtrAllocator> CachedStrsTy;
namespace {
class VISIBILITY_HIDDEN PTHWriter {
IDMap IM;
llvm::raw_fd_ostream& Out;
Preprocessor& PP;
uint32_t idcount;
PCHMap PM;
CachedStrsTy CachedStrs;
Offset CurStrOffset;
std::vector<llvm::StringMapEntry<OffsetOpt>*> StrEntries;
//// Get the persistent id for the given IdentifierInfo*.
uint32_t ResolveID(const IdentifierInfo* II);
/// Emit a token to the PTH file.
void EmitToken(const Token& T);
void Emit8(uint32_t V) {
Out << (unsigned char)(V);
}
void Emit16(uint32_t V) {
Out << (unsigned char)(V);
Out << (unsigned char)(V >> 8);
assert((V >> 16) == 0);
}
void Emit24(uint32_t V) {
Out << (unsigned char)(V);
Out << (unsigned char)(V >> 8);
Out << (unsigned char)(V >> 16);
assert((V >> 24) == 0);
}
void Emit32(uint32_t V) {
Out << (unsigned char)(V);
Out << (unsigned char)(V >> 8);
Out << (unsigned char)(V >> 16);
Out << (unsigned char)(V >> 24);
}
void EmitBuf(const char* I, const char* E) {
for ( ; I != E ; ++I) Out << *I;
}
std::pair<Offset,std::pair<Offset, Offset> > EmitIdentifierTable();
Offset EmitFileTable();
PCHEntry LexTokens(Lexer& L);
Offset EmitCachedSpellings();
public:
PTHWriter(llvm::raw_fd_ostream& out, Preprocessor& pp)
: Out(out), PP(pp), idcount(0), CurStrOffset(0) {}
void GeneratePTH();
};
} // end anonymous namespace
uint32_t PTHWriter::ResolveID(const IdentifierInfo* II) {
// Null IdentifierInfo's map to the persistent ID 0.
if (!II)
return 0;
IDMap::iterator I = IM.find(II);
if (I == IM.end()) {
IM[II] = ++idcount; // Pre-increment since '0' is reserved for NULL.
return idcount;
}
return I->second; // We've already added 1.
}
void PTHWriter::EmitToken(const Token& T) {
Emit32(((uint32_t) T.getKind()) |
(((uint32_t) T.getFlags()) << 8) |
(((uint32_t) T.getLength()) << 16));
// Literals (strings, numbers, characters) get cached spellings.
if (T.isLiteral()) {
// FIXME: This uses the slow getSpelling(). Perhaps we do better
// in the future? This only slows down PTH generation.
const std::string &spelling = PP.getSpelling(T);
const char* s = spelling.c_str();
// Get the string entry.
llvm::StringMapEntry<OffsetOpt> *E =
&CachedStrs.GetOrCreateValue(s, s+spelling.size());
if (!E->getValue().hasOffset()) {
E->getValue().setOffset(CurStrOffset);
StrEntries.push_back(E);
CurStrOffset += spelling.size() + 1;
}
Emit32(E->getValue().getOffset());
}
else
Emit32(ResolveID(T.getIdentifierInfo()));
Emit32(PP.getSourceManager().getFileOffset(T.getLocation()));
}
namespace {
struct VISIBILITY_HIDDEN IDData {
const IdentifierInfo* II;
uint32_t FileOffset;
};
class VISIBILITY_HIDDEN CompareIDDataIndex {
IDData* Table;
public:
CompareIDDataIndex(IDData* table) : Table(table) {}
bool operator()(unsigned i, unsigned j) const {
const IdentifierInfo* II_i = Table[i].II;
const IdentifierInfo* II_j = Table[j].II;
unsigned i_len = II_i->getLength();
unsigned j_len = II_j->getLength();
if (i_len > j_len)
return false;
if (i_len < j_len)
return true;
// Otherwise, compare the strings themselves!
return strncmp(II_i->getName(), II_j->getName(), i_len) < 0;
}
};
}
std::pair<Offset,std::pair<Offset,Offset> >
PTHWriter::EmitIdentifierTable() {
llvm::BumpPtrAllocator Alloc;
// Build an inverse map from persistent IDs -> IdentifierInfo*.
IDData* IIDMap = Alloc.Allocate<IDData>(idcount);
// Generate mapping from persistent IDs -> IdentifierInfo*.
for (IDMap::iterator I=IM.begin(), E=IM.end(); I!=E; ++I) {
// Decrement by 1 because we are using a vector for the lookup and
// 0 is reserved for NULL.
assert(I->second > 0);
assert(I->second-1 < idcount);
unsigned idx = I->second-1;
IIDMap[idx].II = I->first;
}
// We want to write out the strings in lexical order to support binary
// search of strings to identifiers. Create such a table.
unsigned *LexicalOrder = Alloc.Allocate<unsigned>(idcount);
for (unsigned i = 0; i < idcount ; ++i ) LexicalOrder[i] = i;
std::sort(LexicalOrder, LexicalOrder+idcount, CompareIDDataIndex(IIDMap));
// Write out the lexically-sorted table of persistent ids.
Offset LexicalOff = Out.tell();
for (unsigned i = 0; i < idcount ; ++i) Emit32(LexicalOrder[i]);
// Write out the string data itself.
Offset DataOff = Out.tell();
for (unsigned i = 0; i < idcount; ++i) {
IDData& d = IIDMap[i];
d.FileOffset = Out.tell(); // Record the location for this data.
unsigned len = d.II->getLength(); // Write out the string length.
Emit32(len);
const char* buf = d.II->getName(); // Write out the string data.
EmitBuf(buf, buf+len);
// Emit a null character for those clients expecting that IdentifierInfo
// strings are null terminated.
Emit8('\0');
}
// Now emit the table mapping from persistent IDs to PTH file offsets.
Offset IDOff = Out.tell();
Emit32(idcount); // Emit the number of identifiers.
for (unsigned i = 0 ; i < idcount; ++i) Emit32(IIDMap[i].FileOffset);
return std::make_pair(DataOff, std::make_pair(IDOff, LexicalOff));
}
Offset PTHWriter::EmitFileTable() {
// Determine the offset where this table appears in the PTH file.
Offset off = (Offset) Out.tell();
// Output the size of the table.
Emit32(PM.size());
for (PCHMap::iterator I=PM.begin(), E=PM.end(); I!=E; ++I) {
const FileEntry* FE = I->first;
const char* Name = FE->getName();
unsigned size = strlen(Name);
Emit32(size);
EmitBuf(Name, Name+size);
Emit32(I->second.getTokenOffset());
Emit32(I->second.getPPCondTableOffset());
}
return off;
}
PCHEntry PTHWriter::LexTokens(Lexer& L) {
// Pad 0's so that we emit tokens to a 4-byte alignment.
// This speed up reading them back in.
Offset off = (Offset) Out.tell();
for (unsigned Pad = off % 4 ; Pad != 0 ; --Pad, ++off) Emit8(0);
// Keep track of matching '#if' ... '#endif'.
typedef std::vector<std::pair<Offset, unsigned> > PPCondTable;
PPCondTable PPCond;
std::vector<unsigned> PPStartCond;
bool ParsingPreprocessorDirective = false;
Token Tok;
do {
L.LexFromRawLexer(Tok);
if ((Tok.isAtStartOfLine() || Tok.is(tok::eof)) &&
ParsingPreprocessorDirective) {
// Insert an eom token into the token cache. It has the same
// position as the next token that is not on the same line as the
// preprocessor directive. Observe that we continue processing
// 'Tok' when we exit this branch.
Token Tmp = Tok;
Tmp.setKind(tok::eom);
Tmp.clearFlag(Token::StartOfLine);
Tmp.setIdentifierInfo(0);
EmitToken(Tmp);
ParsingPreprocessorDirective = false;
}
if (Tok.is(tok::identifier)) {
Tok.setIdentifierInfo(PP.LookUpIdentifierInfo(Tok));
continue;
}
if (Tok.is(tok::hash) && Tok.isAtStartOfLine()) {
// Special processing for #include. Store the '#' token and lex
// the next token.
assert(!ParsingPreprocessorDirective);
Offset HashOff = (Offset) Out.tell();
EmitToken(Tok);
// Get the next token.
L.LexFromRawLexer(Tok);
assert(!Tok.isAtStartOfLine());
// Did we see 'include'/'import'/'include_next'?
if (!Tok.is(tok::identifier))
continue;
IdentifierInfo* II = PP.LookUpIdentifierInfo(Tok);
Tok.setIdentifierInfo(II);
tok::PPKeywordKind K = II->getPPKeywordID();
assert(K != tok::pp_not_keyword);
ParsingPreprocessorDirective = true;
switch (K) {
default:
break;
case tok::pp_include:
case tok::pp_import:
case tok::pp_include_next: {
// Save the 'include' token.
EmitToken(Tok);
// Lex the next token as an include string.
L.setParsingPreprocessorDirective(true);
L.LexIncludeFilename(Tok);
L.setParsingPreprocessorDirective(false);
assert(!Tok.isAtStartOfLine());
if (Tok.is(tok::identifier))
Tok.setIdentifierInfo(PP.LookUpIdentifierInfo(Tok));
break;
}
case tok::pp_if:
case tok::pp_ifdef:
case tok::pp_ifndef: {
// Ad an entry for '#if' and friends. We initially set the target index
// to 0. This will get backpatched when we hit #endif.
PPStartCond.push_back(PPCond.size());
PPCond.push_back(std::make_pair(HashOff, 0U));
break;
}
case tok::pp_endif: {
// Add an entry for '#endif'. We set the target table index to itself.
// This will later be set to zero when emitting to the PTH file. We
// use 0 for uninitialized indices because that is easier to debug.
unsigned index = PPCond.size();
// Backpatch the opening '#if' entry.
assert(!PPStartCond.empty());
assert(PPCond.size() > PPStartCond.back());
assert(PPCond[PPStartCond.back()].second == 0);
PPCond[PPStartCond.back()].second = index;
PPStartCond.pop_back();
// Add the new entry to PPCond.
PPCond.push_back(std::make_pair(HashOff, index));
break;
}
case tok::pp_elif:
case tok::pp_else: {
// Add an entry for #elif or #else.
// This serves as both a closing and opening of a conditional block.
// This means that its entry will get backpatched later.
unsigned index = PPCond.size();
// Backpatch the previous '#if' entry.
assert(!PPStartCond.empty());
assert(PPCond.size() > PPStartCond.back());
assert(PPCond[PPStartCond.back()].second == 0);
PPCond[PPStartCond.back()].second = index;
PPStartCond.pop_back();
// Now add '#elif' as a new block opening.
PPCond.push_back(std::make_pair(HashOff, 0U));
PPStartCond.push_back(index);
break;
}
}
}
}
while (EmitToken(Tok), Tok.isNot(tok::eof));
assert(PPStartCond.empty() && "Error: imblanced preprocessor conditionals.");
// Next write out PPCond.
Offset PPCondOff = (Offset) Out.tell();
// Write out the size of PPCond so that clients can identifer empty tables.
Emit32(PPCond.size());
for (unsigned i = 0, e = PPCond.size(); i!=e; ++i) {
Emit32(PPCond[i].first - off);
uint32_t x = PPCond[i].second;
assert(x != 0 && "PPCond entry not backpatched.");
// Emit zero for #endifs. This allows us to do checking when
// we read the PTH file back in.
Emit32(x == i ? 0 : x);
}
return PCHEntry(off, PPCondOff);
}
Offset PTHWriter::EmitCachedSpellings() {
// Write each cached strings to the PTH file.
Offset SpellingsOff = Out.tell();
for (std::vector<llvm::StringMapEntry<OffsetOpt>*>::iterator
I = StrEntries.begin(), E = StrEntries.end(); I!=E; ++I) {
const char* data = (*I)->getKeyData();
EmitBuf(data, data + (*I)->getKeyLength());
Emit8('\0');
}
return SpellingsOff;
}
void PTHWriter::GeneratePTH() {
// Generate the prologue.
Out << "cfe-pth";
Emit32(PTHManager::Version);
Offset JumpOffset = Out.tell();
Emit32(0);
// Iterate over all the files in SourceManager. Create a lexer
// for each file and cache the tokens.
SourceManager &SM = PP.getSourceManager();
const LangOptions &LOpts = PP.getLangOptions();
for (SourceManager::fileinfo_iterator I = SM.fileinfo_begin(),
E = SM.fileinfo_end(); I != E; ++I) {
const SrcMgr::ContentCache &C = *I->second;
const FileEntry *FE = C.Entry;
// FIXME: Handle files with non-absolute paths.
llvm::sys::Path P(FE->getName());
if (!P.isAbsolute())
continue;
assert(!PM.count(FE) && "fileinfo's are not uniqued on FileEntry?");
const llvm::MemoryBuffer *B = C.getBuffer();
if (!B) continue;
FileID FID = SM.createFileID(FE, SourceLocation(), SrcMgr::C_User);
Lexer L(FID, SM, LOpts);
PM[FE] = LexTokens(L);
}
// Write out the identifier table.
const std::pair<Offset, std::pair<Offset,Offset> >& IdTableOff
= EmitIdentifierTable();
// Write out the cached strings table.
Offset SpellingOff = EmitCachedSpellings();
// Write out the file table.
Offset FileTableOff = EmitFileTable();
// Finally, write out the offset table at the end.
Offset JumpTargetOffset = Out.tell();
Emit32(IdTableOff.first);
Emit32(IdTableOff.second.first);
Emit32(IdTableOff.second.second);
Emit32(FileTableOff);
Emit32(SpellingOff);
// Now write the offset in the prologue.
Out.seek(JumpOffset);
Emit32(JumpTargetOffset);
}
void clang::CacheTokens(Preprocessor& PP, const std::string& OutFile) {
// Lex through the entire file. This will populate SourceManager with
// all of the header information.
Token Tok;
PP.EnterMainSourceFile();
do { PP.Lex(Tok); } while (Tok.isNot(tok::eof));
// Open up the PTH file.
std::string ErrMsg;
llvm::raw_fd_ostream Out(OutFile.c_str(), true, ErrMsg);
if (!ErrMsg.empty()) {
llvm::errs() << "PTH error: " << ErrMsg << "\n";
return;
}
// Create the PTHWriter and generate the PTH file.
PTHWriter PW(Out, PP);
PW.GeneratePTH();
}