clang-1/lib/AST/Stmt.cpp

866 строки
27 KiB
C++

//===--- Stmt.cpp - Statement AST Node Implementation ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Stmt class and statement subclasses.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Stmt.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/Type.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
static struct StmtClassNameTable {
const char *Name;
unsigned Counter;
unsigned Size;
} StmtClassInfo[Stmt::lastStmtConstant+1];
static StmtClassNameTable &getStmtInfoTableEntry(Stmt::StmtClass E) {
static bool Initialized = false;
if (Initialized)
return StmtClassInfo[E];
// Intialize the table on the first use.
Initialized = true;
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) \
StmtClassInfo[(unsigned)Stmt::CLASS##Class].Name = #CLASS; \
StmtClassInfo[(unsigned)Stmt::CLASS##Class].Size = sizeof(CLASS);
#include "clang/AST/StmtNodes.inc"
return StmtClassInfo[E];
}
const char *Stmt::getStmtClassName() const {
return getStmtInfoTableEntry((StmtClass) StmtBits.sClass).Name;
}
void Stmt::PrintStats() {
// Ensure the table is primed.
getStmtInfoTableEntry(Stmt::NullStmtClass);
unsigned sum = 0;
llvm::errs() << "\n*** Stmt/Expr Stats:\n";
for (int i = 0; i != Stmt::lastStmtConstant+1; i++) {
if (StmtClassInfo[i].Name == 0) continue;
sum += StmtClassInfo[i].Counter;
}
llvm::errs() << " " << sum << " stmts/exprs total.\n";
sum = 0;
for (int i = 0; i != Stmt::lastStmtConstant+1; i++) {
if (StmtClassInfo[i].Name == 0) continue;
if (StmtClassInfo[i].Counter == 0) continue;
llvm::errs() << " " << StmtClassInfo[i].Counter << " "
<< StmtClassInfo[i].Name << ", " << StmtClassInfo[i].Size
<< " each (" << StmtClassInfo[i].Counter*StmtClassInfo[i].Size
<< " bytes)\n";
sum += StmtClassInfo[i].Counter*StmtClassInfo[i].Size;
}
llvm::errs() << "Total bytes = " << sum << "\n";
}
void Stmt::addStmtClass(StmtClass s) {
++getStmtInfoTableEntry(s).Counter;
}
bool Stmt::StatisticsEnabled = false;
void Stmt::EnableStatistics() {
StatisticsEnabled = true;
}
Stmt *Stmt::IgnoreImplicit() {
Stmt *s = this;
if (ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(s))
s = ewc->getSubExpr();
while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(s))
s = ice->getSubExpr();
return s;
}
/// \brief Strip off all label-like statements.
///
/// This will strip off label statements, case statements, and default
/// statements recursively.
const Stmt *Stmt::stripLabelLikeStatements() const {
const Stmt *S = this;
while (true) {
if (const LabelStmt *LS = dyn_cast<LabelStmt>(S))
S = LS->getSubStmt();
else if (const SwitchCase *SC = dyn_cast<SwitchCase>(S))
S = SC->getSubStmt();
else
return S;
}
}
namespace {
struct good {};
struct bad {};
// These silly little functions have to be static inline to suppress
// unused warnings, and they have to be defined to suppress other
// warnings.
static inline good is_good(good) { return good(); }
typedef Stmt::child_range children_t();
template <class T> good implements_children(children_t T::*) {
return good();
}
static inline bad implements_children(children_t Stmt::*) {
return bad();
}
typedef SourceRange getSourceRange_t() const;
template <class T> good implements_getSourceRange(getSourceRange_t T::*) {
return good();
}
static inline bad implements_getSourceRange(getSourceRange_t Stmt::*) {
return bad();
}
#define ASSERT_IMPLEMENTS_children(type) \
(void) sizeof(is_good(implements_children(&type::children)))
#define ASSERT_IMPLEMENTS_getSourceRange(type) \
(void) sizeof(is_good(implements_getSourceRange(&type::getSourceRange)))
}
/// Check whether the various Stmt classes implement their member
/// functions.
static inline void check_implementations() {
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
ASSERT_IMPLEMENTS_children(type); \
ASSERT_IMPLEMENTS_getSourceRange(type);
#include "clang/AST/StmtNodes.inc"
}
Stmt::child_range Stmt::children() {
switch (getStmtClass()) {
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
case Stmt::type##Class: \
return static_cast<type*>(this)->children();
#include "clang/AST/StmtNodes.inc"
}
llvm_unreachable("unknown statement kind!");
}
SourceRange Stmt::getSourceRange() const {
switch (getStmtClass()) {
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
case Stmt::type##Class: \
return static_cast<const type*>(this)->getSourceRange();
#include "clang/AST/StmtNodes.inc"
}
llvm_unreachable("unknown statement kind!");
}
// Amusing macro metaprogramming hack: check whether a class provides
// a more specific implementation of getLocStart() and getLocEnd().
//
// See also Expr.cpp:getExprLoc().
namespace {
/// This implementation is used when a class provides a custom
/// implementation of getLocStart.
template <class S, class T>
SourceLocation getLocStartImpl(const Stmt *stmt,
SourceLocation (T::*v)() const) {
return static_cast<const S*>(stmt)->getLocStart();
}
/// This implementation is used when a class doesn't provide a custom
/// implementation of getLocStart. Overload resolution should pick it over
/// the implementation above because it's more specialized according to
/// function template partial ordering.
template <class S>
SourceLocation getLocStartImpl(const Stmt *stmt,
SourceLocation (Stmt::*v)() const) {
return static_cast<const S*>(stmt)->getSourceRange().getBegin();
}
/// This implementation is used when a class provides a custom
/// implementation of getLocEnd.
template <class S, class T>
SourceLocation getLocEndImpl(const Stmt *stmt,
SourceLocation (T::*v)() const) {
return static_cast<const S*>(stmt)->getLocEnd();
}
/// This implementation is used when a class doesn't provide a custom
/// implementation of getLocEnd. Overload resolution should pick it over
/// the implementation above because it's more specialized according to
/// function template partial ordering.
template <class S>
SourceLocation getLocEndImpl(const Stmt *stmt,
SourceLocation (Stmt::*v)() const) {
return static_cast<const S*>(stmt)->getSourceRange().getEnd();
}
}
SourceLocation Stmt::getLocStart() const {
switch (getStmtClass()) {
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
case Stmt::type##Class: \
return getLocStartImpl<type>(this, &type::getLocStart);
#include "clang/AST/StmtNodes.inc"
}
llvm_unreachable("unknown statement kind");
}
SourceLocation Stmt::getLocEnd() const {
switch (getStmtClass()) {
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
case Stmt::type##Class: \
return getLocEndImpl<type>(this, &type::getLocEnd);
#include "clang/AST/StmtNodes.inc"
}
llvm_unreachable("unknown statement kind");
}
void CompoundStmt::setStmts(ASTContext &C, Stmt **Stmts, unsigned NumStmts) {
if (this->Body)
C.Deallocate(Body);
this->CompoundStmtBits.NumStmts = NumStmts;
Body = new (C) Stmt*[NumStmts];
memcpy(Body, Stmts, sizeof(Stmt *) * NumStmts);
}
const char *LabelStmt::getName() const {
return getDecl()->getIdentifier()->getNameStart();
}
// This is defined here to avoid polluting Stmt.h with importing Expr.h
SourceRange ReturnStmt::getSourceRange() const {
if (RetExpr)
return SourceRange(RetLoc, RetExpr->getLocEnd());
else
return SourceRange(RetLoc);
}
bool Stmt::hasImplicitControlFlow() const {
switch (StmtBits.sClass) {
default:
return false;
case CallExprClass:
case ConditionalOperatorClass:
case ChooseExprClass:
case StmtExprClass:
case DeclStmtClass:
return true;
case Stmt::BinaryOperatorClass: {
const BinaryOperator* B = cast<BinaryOperator>(this);
if (B->isLogicalOp() || B->getOpcode() == BO_Comma)
return true;
else
return false;
}
}
}
Expr *AsmStmt::getOutputExpr(unsigned i) {
return cast<Expr>(Exprs[i]);
}
/// getOutputConstraint - Return the constraint string for the specified
/// output operand. All output constraints are known to be non-empty (either
/// '=' or '+').
StringRef AsmStmt::getOutputConstraint(unsigned i) const {
return getOutputConstraintLiteral(i)->getString();
}
/// getNumPlusOperands - Return the number of output operands that have a "+"
/// constraint.
unsigned AsmStmt::getNumPlusOperands() const {
unsigned Res = 0;
for (unsigned i = 0, e = getNumOutputs(); i != e; ++i)
if (isOutputPlusConstraint(i))
++Res;
return Res;
}
Expr *AsmStmt::getInputExpr(unsigned i) {
return cast<Expr>(Exprs[i + NumOutputs]);
}
void AsmStmt::setInputExpr(unsigned i, Expr *E) {
Exprs[i + NumOutputs] = E;
}
/// getInputConstraint - Return the specified input constraint. Unlike output
/// constraints, these can be empty.
StringRef AsmStmt::getInputConstraint(unsigned i) const {
return getInputConstraintLiteral(i)->getString();
}
void AsmStmt::setOutputsAndInputsAndClobbers(ASTContext &C,
IdentifierInfo **Names,
StringLiteral **Constraints,
Stmt **Exprs,
unsigned NumOutputs,
unsigned NumInputs,
StringLiteral **Clobbers,
unsigned NumClobbers) {
this->NumOutputs = NumOutputs;
this->NumInputs = NumInputs;
this->NumClobbers = NumClobbers;
unsigned NumExprs = NumOutputs + NumInputs;
C.Deallocate(this->Names);
this->Names = new (C) IdentifierInfo*[NumExprs];
std::copy(Names, Names + NumExprs, this->Names);
C.Deallocate(this->Exprs);
this->Exprs = new (C) Stmt*[NumExprs];
std::copy(Exprs, Exprs + NumExprs, this->Exprs);
C.Deallocate(this->Constraints);
this->Constraints = new (C) StringLiteral*[NumExprs];
std::copy(Constraints, Constraints + NumExprs, this->Constraints);
C.Deallocate(this->Clobbers);
this->Clobbers = new (C) StringLiteral*[NumClobbers];
std::copy(Clobbers, Clobbers + NumClobbers, this->Clobbers);
}
/// getNamedOperand - Given a symbolic operand reference like %[foo],
/// translate this into a numeric value needed to reference the same operand.
/// This returns -1 if the operand name is invalid.
int AsmStmt::getNamedOperand(StringRef SymbolicName) const {
unsigned NumPlusOperands = 0;
// Check if this is an output operand.
for (unsigned i = 0, e = getNumOutputs(); i != e; ++i) {
if (getOutputName(i) == SymbolicName)
return i;
}
for (unsigned i = 0, e = getNumInputs(); i != e; ++i)
if (getInputName(i) == SymbolicName)
return getNumOutputs() + NumPlusOperands + i;
// Not found.
return -1;
}
/// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing
/// it into pieces. If the asm string is erroneous, emit errors and return
/// true, otherwise return false.
unsigned AsmStmt::AnalyzeAsmString(SmallVectorImpl<AsmStringPiece>&Pieces,
ASTContext &C, unsigned &DiagOffs) const {
StringRef Str = getAsmString()->getString();
const char *StrStart = Str.begin();
const char *StrEnd = Str.end();
const char *CurPtr = StrStart;
// "Simple" inline asms have no constraints or operands, just convert the asm
// string to escape $'s.
if (isSimple()) {
std::string Result;
for (; CurPtr != StrEnd; ++CurPtr) {
switch (*CurPtr) {
case '$':
Result += "$$";
break;
default:
Result += *CurPtr;
break;
}
}
Pieces.push_back(AsmStringPiece(Result));
return 0;
}
// CurStringPiece - The current string that we are building up as we scan the
// asm string.
std::string CurStringPiece;
bool HasVariants = !C.getTargetInfo().hasNoAsmVariants();
while (1) {
// Done with the string?
if (CurPtr == StrEnd) {
if (!CurStringPiece.empty())
Pieces.push_back(AsmStringPiece(CurStringPiece));
return 0;
}
char CurChar = *CurPtr++;
switch (CurChar) {
case '$': CurStringPiece += "$$"; continue;
case '{': CurStringPiece += (HasVariants ? "$(" : "{"); continue;
case '|': CurStringPiece += (HasVariants ? "$|" : "|"); continue;
case '}': CurStringPiece += (HasVariants ? "$)" : "}"); continue;
case '%':
break;
default:
CurStringPiece += CurChar;
continue;
}
// Escaped "%" character in asm string.
if (CurPtr == StrEnd) {
// % at end of string is invalid (no escape).
DiagOffs = CurPtr-StrStart-1;
return diag::err_asm_invalid_escape;
}
char EscapedChar = *CurPtr++;
if (EscapedChar == '%') { // %% -> %
// Escaped percentage sign.
CurStringPiece += '%';
continue;
}
if (EscapedChar == '=') { // %= -> Generate an unique ID.
CurStringPiece += "${:uid}";
continue;
}
// Otherwise, we have an operand. If we have accumulated a string so far,
// add it to the Pieces list.
if (!CurStringPiece.empty()) {
Pieces.push_back(AsmStringPiece(CurStringPiece));
CurStringPiece.clear();
}
// Handle %x4 and %x[foo] by capturing x as the modifier character.
char Modifier = '\0';
if (isalpha(EscapedChar)) {
if (CurPtr == StrEnd) { // Premature end.
DiagOffs = CurPtr-StrStart-1;
return diag::err_asm_invalid_escape;
}
Modifier = EscapedChar;
EscapedChar = *CurPtr++;
}
if (isdigit(EscapedChar)) {
// %n - Assembler operand n
unsigned N = 0;
--CurPtr;
while (CurPtr != StrEnd && isdigit(*CurPtr))
N = N*10 + ((*CurPtr++)-'0');
unsigned NumOperands =
getNumOutputs() + getNumPlusOperands() + getNumInputs();
if (N >= NumOperands) {
DiagOffs = CurPtr-StrStart-1;
return diag::err_asm_invalid_operand_number;
}
Pieces.push_back(AsmStringPiece(N, Modifier));
continue;
}
// Handle %[foo], a symbolic operand reference.
if (EscapedChar == '[') {
DiagOffs = CurPtr-StrStart-1;
// Find the ']'.
const char *NameEnd = (const char*)memchr(CurPtr, ']', StrEnd-CurPtr);
if (NameEnd == 0)
return diag::err_asm_unterminated_symbolic_operand_name;
if (NameEnd == CurPtr)
return diag::err_asm_empty_symbolic_operand_name;
StringRef SymbolicName(CurPtr, NameEnd - CurPtr);
int N = getNamedOperand(SymbolicName);
if (N == -1) {
// Verify that an operand with that name exists.
DiagOffs = CurPtr-StrStart;
return diag::err_asm_unknown_symbolic_operand_name;
}
Pieces.push_back(AsmStringPiece(N, Modifier));
CurPtr = NameEnd+1;
continue;
}
DiagOffs = CurPtr-StrStart-1;
return diag::err_asm_invalid_escape;
}
}
QualType CXXCatchStmt::getCaughtType() const {
if (ExceptionDecl)
return ExceptionDecl->getType();
return QualType();
}
//===----------------------------------------------------------------------===//
// Constructors
//===----------------------------------------------------------------------===//
AsmStmt::AsmStmt(ASTContext &C, SourceLocation asmloc, bool issimple,
bool isvolatile, bool msasm,
unsigned numoutputs, unsigned numinputs,
IdentifierInfo **names, StringLiteral **constraints,
Expr **exprs, StringLiteral *asmstr, unsigned numclobbers,
StringLiteral **clobbers, SourceLocation rparenloc)
: Stmt(AsmStmtClass), AsmLoc(asmloc), RParenLoc(rparenloc), AsmStr(asmstr)
, IsSimple(issimple), IsVolatile(isvolatile), MSAsm(msasm)
, NumOutputs(numoutputs), NumInputs(numinputs), NumClobbers(numclobbers) {
unsigned NumExprs = NumOutputs +NumInputs;
Names = new (C) IdentifierInfo*[NumExprs];
std::copy(names, names + NumExprs, Names);
Exprs = new (C) Stmt*[NumExprs];
std::copy(exprs, exprs + NumExprs, Exprs);
Constraints = new (C) StringLiteral*[NumExprs];
std::copy(constraints, constraints + NumExprs, Constraints);
Clobbers = new (C) StringLiteral*[NumClobbers];
std::copy(clobbers, clobbers + NumClobbers, Clobbers);
}
ObjCForCollectionStmt::ObjCForCollectionStmt(Stmt *Elem, Expr *Collect,
Stmt *Body, SourceLocation FCL,
SourceLocation RPL)
: Stmt(ObjCForCollectionStmtClass) {
SubExprs[ELEM] = Elem;
SubExprs[COLLECTION] = reinterpret_cast<Stmt*>(Collect);
SubExprs[BODY] = Body;
ForLoc = FCL;
RParenLoc = RPL;
}
ObjCAtTryStmt::ObjCAtTryStmt(SourceLocation atTryLoc, Stmt *atTryStmt,
Stmt **CatchStmts, unsigned NumCatchStmts,
Stmt *atFinallyStmt)
: Stmt(ObjCAtTryStmtClass), AtTryLoc(atTryLoc),
NumCatchStmts(NumCatchStmts), HasFinally(atFinallyStmt != 0)
{
Stmt **Stmts = getStmts();
Stmts[0] = atTryStmt;
for (unsigned I = 0; I != NumCatchStmts; ++I)
Stmts[I + 1] = CatchStmts[I];
if (HasFinally)
Stmts[NumCatchStmts + 1] = atFinallyStmt;
}
ObjCAtTryStmt *ObjCAtTryStmt::Create(ASTContext &Context,
SourceLocation atTryLoc,
Stmt *atTryStmt,
Stmt **CatchStmts,
unsigned NumCatchStmts,
Stmt *atFinallyStmt) {
unsigned Size = sizeof(ObjCAtTryStmt) +
(1 + NumCatchStmts + (atFinallyStmt != 0)) * sizeof(Stmt *);
void *Mem = Context.Allocate(Size, llvm::alignOf<ObjCAtTryStmt>());
return new (Mem) ObjCAtTryStmt(atTryLoc, atTryStmt, CatchStmts, NumCatchStmts,
atFinallyStmt);
}
ObjCAtTryStmt *ObjCAtTryStmt::CreateEmpty(ASTContext &Context,
unsigned NumCatchStmts,
bool HasFinally) {
unsigned Size = sizeof(ObjCAtTryStmt) +
(1 + NumCatchStmts + HasFinally) * sizeof(Stmt *);
void *Mem = Context.Allocate(Size, llvm::alignOf<ObjCAtTryStmt>());
return new (Mem) ObjCAtTryStmt(EmptyShell(), NumCatchStmts, HasFinally);
}
SourceRange ObjCAtTryStmt::getSourceRange() const {
SourceLocation EndLoc;
if (HasFinally)
EndLoc = getFinallyStmt()->getLocEnd();
else if (NumCatchStmts)
EndLoc = getCatchStmt(NumCatchStmts - 1)->getLocEnd();
else
EndLoc = getTryBody()->getLocEnd();
return SourceRange(AtTryLoc, EndLoc);
}
CXXTryStmt *CXXTryStmt::Create(ASTContext &C, SourceLocation tryLoc,
Stmt *tryBlock, Stmt **handlers,
unsigned numHandlers) {
std::size_t Size = sizeof(CXXTryStmt);
Size += ((numHandlers + 1) * sizeof(Stmt));
void *Mem = C.Allocate(Size, llvm::alignOf<CXXTryStmt>());
return new (Mem) CXXTryStmt(tryLoc, tryBlock, handlers, numHandlers);
}
CXXTryStmt *CXXTryStmt::Create(ASTContext &C, EmptyShell Empty,
unsigned numHandlers) {
std::size_t Size = sizeof(CXXTryStmt);
Size += ((numHandlers + 1) * sizeof(Stmt));
void *Mem = C.Allocate(Size, llvm::alignOf<CXXTryStmt>());
return new (Mem) CXXTryStmt(Empty, numHandlers);
}
CXXTryStmt::CXXTryStmt(SourceLocation tryLoc, Stmt *tryBlock,
Stmt **handlers, unsigned numHandlers)
: Stmt(CXXTryStmtClass), TryLoc(tryLoc), NumHandlers(numHandlers) {
Stmt **Stmts = reinterpret_cast<Stmt **>(this + 1);
Stmts[0] = tryBlock;
std::copy(handlers, handlers + NumHandlers, Stmts + 1);
}
CXXForRangeStmt::CXXForRangeStmt(DeclStmt *Range, DeclStmt *BeginEndStmt,
Expr *Cond, Expr *Inc, DeclStmt *LoopVar,
Stmt *Body, SourceLocation FL,
SourceLocation CL, SourceLocation RPL)
: Stmt(CXXForRangeStmtClass), ForLoc(FL), ColonLoc(CL), RParenLoc(RPL) {
SubExprs[RANGE] = Range;
SubExprs[BEGINEND] = BeginEndStmt;
SubExprs[COND] = reinterpret_cast<Stmt*>(Cond);
SubExprs[INC] = reinterpret_cast<Stmt*>(Inc);
SubExprs[LOOPVAR] = LoopVar;
SubExprs[BODY] = Body;
}
Expr *CXXForRangeStmt::getRangeInit() {
DeclStmt *RangeStmt = getRangeStmt();
VarDecl *RangeDecl = dyn_cast_or_null<VarDecl>(RangeStmt->getSingleDecl());
assert(RangeDecl &&& "for-range should have a single var decl");
return RangeDecl->getInit();
}
const Expr *CXXForRangeStmt::getRangeInit() const {
return const_cast<CXXForRangeStmt*>(this)->getRangeInit();
}
VarDecl *CXXForRangeStmt::getLoopVariable() {
Decl *LV = cast<DeclStmt>(getLoopVarStmt())->getSingleDecl();
assert(LV && "No loop variable in CXXForRangeStmt");
return cast<VarDecl>(LV);
}
const VarDecl *CXXForRangeStmt::getLoopVariable() const {
return const_cast<CXXForRangeStmt*>(this)->getLoopVariable();
}
IfStmt::IfStmt(ASTContext &C, SourceLocation IL, VarDecl *var, Expr *cond,
Stmt *then, SourceLocation EL, Stmt *elsev)
: Stmt(IfStmtClass), IfLoc(IL), ElseLoc(EL)
{
setConditionVariable(C, var);
SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
SubExprs[THEN] = then;
SubExprs[ELSE] = elsev;
}
VarDecl *IfStmt::getConditionVariable() const {
if (!SubExprs[VAR])
return 0;
DeclStmt *DS = cast<DeclStmt>(SubExprs[VAR]);
return cast<VarDecl>(DS->getSingleDecl());
}
void IfStmt::setConditionVariable(ASTContext &C, VarDecl *V) {
if (!V) {
SubExprs[VAR] = 0;
return;
}
SourceRange VarRange = V->getSourceRange();
SubExprs[VAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
VarRange.getEnd());
}
ForStmt::ForStmt(ASTContext &C, Stmt *Init, Expr *Cond, VarDecl *condVar,
Expr *Inc, Stmt *Body, SourceLocation FL, SourceLocation LP,
SourceLocation RP)
: Stmt(ForStmtClass), ForLoc(FL), LParenLoc(LP), RParenLoc(RP)
{
SubExprs[INIT] = Init;
setConditionVariable(C, condVar);
SubExprs[COND] = reinterpret_cast<Stmt*>(Cond);
SubExprs[INC] = reinterpret_cast<Stmt*>(Inc);
SubExprs[BODY] = Body;
}
VarDecl *ForStmt::getConditionVariable() const {
if (!SubExprs[CONDVAR])
return 0;
DeclStmt *DS = cast<DeclStmt>(SubExprs[CONDVAR]);
return cast<VarDecl>(DS->getSingleDecl());
}
void ForStmt::setConditionVariable(ASTContext &C, VarDecl *V) {
if (!V) {
SubExprs[CONDVAR] = 0;
return;
}
SourceRange VarRange = V->getSourceRange();
SubExprs[CONDVAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
VarRange.getEnd());
}
SwitchStmt::SwitchStmt(ASTContext &C, VarDecl *Var, Expr *cond)
: Stmt(SwitchStmtClass), FirstCase(0), AllEnumCasesCovered(0)
{
setConditionVariable(C, Var);
SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
SubExprs[BODY] = NULL;
}
VarDecl *SwitchStmt::getConditionVariable() const {
if (!SubExprs[VAR])
return 0;
DeclStmt *DS = cast<DeclStmt>(SubExprs[VAR]);
return cast<VarDecl>(DS->getSingleDecl());
}
void SwitchStmt::setConditionVariable(ASTContext &C, VarDecl *V) {
if (!V) {
SubExprs[VAR] = 0;
return;
}
SourceRange VarRange = V->getSourceRange();
SubExprs[VAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
VarRange.getEnd());
}
Stmt *SwitchCase::getSubStmt() {
if (isa<CaseStmt>(this))
return cast<CaseStmt>(this)->getSubStmt();
return cast<DefaultStmt>(this)->getSubStmt();
}
WhileStmt::WhileStmt(ASTContext &C, VarDecl *Var, Expr *cond, Stmt *body,
SourceLocation WL)
: Stmt(WhileStmtClass) {
setConditionVariable(C, Var);
SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
SubExprs[BODY] = body;
WhileLoc = WL;
}
VarDecl *WhileStmt::getConditionVariable() const {
if (!SubExprs[VAR])
return 0;
DeclStmt *DS = cast<DeclStmt>(SubExprs[VAR]);
return cast<VarDecl>(DS->getSingleDecl());
}
void WhileStmt::setConditionVariable(ASTContext &C, VarDecl *V) {
if (!V) {
SubExprs[VAR] = 0;
return;
}
SourceRange VarRange = V->getSourceRange();
SubExprs[VAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
VarRange.getEnd());
}
// IndirectGotoStmt
LabelDecl *IndirectGotoStmt::getConstantTarget() {
if (AddrLabelExpr *E =
dyn_cast<AddrLabelExpr>(getTarget()->IgnoreParenImpCasts()))
return E->getLabel();
return 0;
}
// ReturnStmt
const Expr* ReturnStmt::getRetValue() const {
return cast_or_null<Expr>(RetExpr);
}
Expr* ReturnStmt::getRetValue() {
return cast_or_null<Expr>(RetExpr);
}
SEHTryStmt::SEHTryStmt(bool IsCXXTry,
SourceLocation TryLoc,
Stmt *TryBlock,
Stmt *Handler)
: Stmt(SEHTryStmtClass),
IsCXXTry(IsCXXTry),
TryLoc(TryLoc)
{
Children[TRY] = TryBlock;
Children[HANDLER] = Handler;
}
SEHTryStmt* SEHTryStmt::Create(ASTContext &C,
bool IsCXXTry,
SourceLocation TryLoc,
Stmt *TryBlock,
Stmt *Handler) {
return new(C) SEHTryStmt(IsCXXTry,TryLoc,TryBlock,Handler);
}
SEHExceptStmt* SEHTryStmt::getExceptHandler() const {
return dyn_cast<SEHExceptStmt>(getHandler());
}
SEHFinallyStmt* SEHTryStmt::getFinallyHandler() const {
return dyn_cast<SEHFinallyStmt>(getHandler());
}
SEHExceptStmt::SEHExceptStmt(SourceLocation Loc,
Expr *FilterExpr,
Stmt *Block)
: Stmt(SEHExceptStmtClass),
Loc(Loc)
{
Children[FILTER_EXPR] = reinterpret_cast<Stmt*>(FilterExpr);
Children[BLOCK] = Block;
}
SEHExceptStmt* SEHExceptStmt::Create(ASTContext &C,
SourceLocation Loc,
Expr *FilterExpr,
Stmt *Block) {
return new(C) SEHExceptStmt(Loc,FilterExpr,Block);
}
SEHFinallyStmt::SEHFinallyStmt(SourceLocation Loc,
Stmt *Block)
: Stmt(SEHFinallyStmtClass),
Loc(Loc),
Block(Block)
{}
SEHFinallyStmt* SEHFinallyStmt::Create(ASTContext &C,
SourceLocation Loc,
Stmt *Block) {
return new(C)SEHFinallyStmt(Loc,Block);
}