clang-1/lib/CodeGen/CGRTTI.cpp

1016 строки
35 KiB
C++

//===--- CGCXXRTTI.cpp - Emit LLVM Code for C++ RTTI descriptors ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with C++ code generation of RTTI descriptors.
//
//===----------------------------------------------------------------------===//
#include "CodeGenModule.h"
#include "CGCXXABI.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Type.h"
#include "clang/Frontend/CodeGenOptions.h"
#include "CGObjCRuntime.h"
using namespace clang;
using namespace CodeGen;
namespace {
class RTTIBuilder {
CodeGenModule &CGM; // Per-module state.
llvm::LLVMContext &VMContext;
/// Fields - The fields of the RTTI descriptor currently being built.
SmallVector<llvm::Constant *, 16> Fields;
/// GetAddrOfTypeName - Returns the mangled type name of the given type.
llvm::GlobalVariable *
GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage);
/// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI
/// descriptor of the given type.
llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty);
/// BuildVTablePointer - Build the vtable pointer for the given type.
void BuildVTablePointer(const Type *Ty);
/// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
/// inheritance, according to the Itanium C++ ABI, 2.9.5p6b.
void BuildSIClassTypeInfo(const CXXRecordDecl *RD);
/// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
/// classes with bases that do not satisfy the abi::__si_class_type_info
/// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
void BuildVMIClassTypeInfo(const CXXRecordDecl *RD);
/// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used
/// for pointer types.
void BuildPointerTypeInfo(QualType PointeeTy);
/// BuildObjCObjectTypeInfo - Build the appropriate kind of
/// type_info for an object type.
void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty);
/// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
/// struct, used for member pointer types.
void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty);
public:
RTTIBuilder(CodeGenModule &CGM) : CGM(CGM),
VMContext(CGM.getModule().getContext()) { }
// Pointer type info flags.
enum {
/// PTI_Const - Type has const qualifier.
PTI_Const = 0x1,
/// PTI_Volatile - Type has volatile qualifier.
PTI_Volatile = 0x2,
/// PTI_Restrict - Type has restrict qualifier.
PTI_Restrict = 0x4,
/// PTI_Incomplete - Type is incomplete.
PTI_Incomplete = 0x8,
/// PTI_ContainingClassIncomplete - Containing class is incomplete.
/// (in pointer to member).
PTI_ContainingClassIncomplete = 0x10
};
// VMI type info flags.
enum {
/// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance.
VMI_NonDiamondRepeat = 0x1,
/// VMI_DiamondShaped - Class is diamond shaped.
VMI_DiamondShaped = 0x2
};
// Base class type info flags.
enum {
/// BCTI_Virtual - Base class is virtual.
BCTI_Virtual = 0x1,
/// BCTI_Public - Base class is public.
BCTI_Public = 0x2
};
/// BuildTypeInfo - Build the RTTI type info struct for the given type.
///
/// \param Force - true to force the creation of this RTTI value
/// \param ForEH - true if this is for exception handling
llvm::Constant *BuildTypeInfo(QualType Ty, bool Force = false);
};
}
llvm::GlobalVariable *
RTTIBuilder::GetAddrOfTypeName(QualType Ty,
llvm::GlobalVariable::LinkageTypes Linkage) {
SmallString<256> OutName;
llvm::raw_svector_ostream Out(OutName);
CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out);
Out.flush();
StringRef Name = OutName.str();
// We know that the mangled name of the type starts at index 4 of the
// mangled name of the typename, so we can just index into it in order to
// get the mangled name of the type.
llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
Name.substr(4));
llvm::GlobalVariable *GV =
CGM.CreateOrReplaceCXXRuntimeVariable(Name, Init->getType(), Linkage);
GV->setInitializer(Init);
return GV;
}
llvm::Constant *RTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) {
// Mangle the RTTI name.
SmallString<256> OutName;
llvm::raw_svector_ostream Out(OutName);
CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
Out.flush();
StringRef Name = OutName.str();
// Look for an existing global.
llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name);
if (!GV) {
// Create a new global variable.
GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
/*Constant=*/true,
llvm::GlobalValue::ExternalLinkage, 0, Name);
}
return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
}
/// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type
/// info for that type is defined in the standard library.
static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) {
// Itanium C++ ABI 2.9.2:
// Basic type information (e.g. for "int", "bool", etc.) will be kept in
// the run-time support library. Specifically, the run-time support
// library should contain type_info objects for the types X, X* and
// X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char,
// unsigned char, signed char, short, unsigned short, int, unsigned int,
// long, unsigned long, long long, unsigned long long, float, double,
// long double, char16_t, char32_t, and the IEEE 754r decimal and
// half-precision floating point types.
switch (Ty->getKind()) {
case BuiltinType::Void:
case BuiltinType::NullPtr:
case BuiltinType::Bool:
case BuiltinType::WChar_S:
case BuiltinType::WChar_U:
case BuiltinType::Char_U:
case BuiltinType::Char_S:
case BuiltinType::UChar:
case BuiltinType::SChar:
case BuiltinType::Short:
case BuiltinType::UShort:
case BuiltinType::Int:
case BuiltinType::UInt:
case BuiltinType::Long:
case BuiltinType::ULong:
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
case BuiltinType::Half:
case BuiltinType::Float:
case BuiltinType::Double:
case BuiltinType::LongDouble:
case BuiltinType::Char16:
case BuiltinType::Char32:
case BuiltinType::Int128:
case BuiltinType::UInt128:
return true;
case BuiltinType::Dependent:
#define BUILTIN_TYPE(Id, SingletonId)
#define PLACEHOLDER_TYPE(Id, SingletonId) \
case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
llvm_unreachable("asking for RRTI for a placeholder type!");
case BuiltinType::ObjCId:
case BuiltinType::ObjCClass:
case BuiltinType::ObjCSel:
llvm_unreachable("FIXME: Objective-C types are unsupported!");
}
llvm_unreachable("Invalid BuiltinType Kind!");
}
static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) {
QualType PointeeTy = PointerTy->getPointeeType();
const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(PointeeTy);
if (!BuiltinTy)
return false;
// Check the qualifiers.
Qualifiers Quals = PointeeTy.getQualifiers();
Quals.removeConst();
if (!Quals.empty())
return false;
return TypeInfoIsInStandardLibrary(BuiltinTy);
}
/// IsStandardLibraryRTTIDescriptor - Returns whether the type
/// information for the given type exists in the standard library.
static bool IsStandardLibraryRTTIDescriptor(QualType Ty) {
// Type info for builtin types is defined in the standard library.
if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Ty))
return TypeInfoIsInStandardLibrary(BuiltinTy);
// Type info for some pointer types to builtin types is defined in the
// standard library.
if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
return TypeInfoIsInStandardLibrary(PointerTy);
return false;
}
/// ShouldUseExternalRTTIDescriptor - Returns whether the type information for
/// the given type exists somewhere else, and that we should not emit the type
/// information in this translation unit. Assumes that it is not a
/// standard-library type.
static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM, QualType Ty) {
ASTContext &Context = CGM.getContext();
// If RTTI is disabled, don't consider key functions.
if (!Context.getLangOpts().RTTI) return false;
if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
if (!RD->hasDefinition())
return false;
if (!RD->isDynamicClass())
return false;
return !CGM.getVTables().ShouldEmitVTableInThisTU(RD);
}
return false;
}
/// IsIncompleteClassType - Returns whether the given record type is incomplete.
static bool IsIncompleteClassType(const RecordType *RecordTy) {
return !RecordTy->getDecl()->isCompleteDefinition();
}
/// ContainsIncompleteClassType - Returns whether the given type contains an
/// incomplete class type. This is true if
///
/// * The given type is an incomplete class type.
/// * The given type is a pointer type whose pointee type contains an
/// incomplete class type.
/// * The given type is a member pointer type whose class is an incomplete
/// class type.
/// * The given type is a member pointer type whoise pointee type contains an
/// incomplete class type.
/// is an indirect or direct pointer to an incomplete class type.
static bool ContainsIncompleteClassType(QualType Ty) {
if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
if (IsIncompleteClassType(RecordTy))
return true;
}
if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
return ContainsIncompleteClassType(PointerTy->getPointeeType());
if (const MemberPointerType *MemberPointerTy =
dyn_cast<MemberPointerType>(Ty)) {
// Check if the class type is incomplete.
const RecordType *ClassType = cast<RecordType>(MemberPointerTy->getClass());
if (IsIncompleteClassType(ClassType))
return true;
return ContainsIncompleteClassType(MemberPointerTy->getPointeeType());
}
return false;
}
/// getTypeInfoLinkage - Return the linkage that the type info and type info
/// name constants should have for the given type.
static llvm::GlobalVariable::LinkageTypes
getTypeInfoLinkage(CodeGenModule &CGM, QualType Ty) {
// Itanium C++ ABI 2.9.5p7:
// In addition, it and all of the intermediate abi::__pointer_type_info
// structs in the chain down to the abi::__class_type_info for the
// incomplete class type must be prevented from resolving to the
// corresponding type_info structs for the complete class type, possibly
// by making them local static objects. Finally, a dummy class RTTI is
// generated for the incomplete type that will not resolve to the final
// complete class RTTI (because the latter need not exist), possibly by
// making it a local static object.
if (ContainsIncompleteClassType(Ty))
return llvm::GlobalValue::InternalLinkage;
switch (Ty->getLinkage()) {
case NoLinkage:
case InternalLinkage:
case UniqueExternalLinkage:
return llvm::GlobalValue::InternalLinkage;
case ExternalLinkage:
if (!CGM.getLangOpts().RTTI) {
// RTTI is not enabled, which means that this type info struct is going
// to be used for exception handling. Give it linkonce_odr linkage.
return llvm::GlobalValue::LinkOnceODRLinkage;
}
if (const RecordType *Record = dyn_cast<RecordType>(Ty)) {
const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
if (RD->hasAttr<WeakAttr>())
return llvm::GlobalValue::WeakODRLinkage;
if (RD->isDynamicClass())
return CGM.getVTableLinkage(RD);
}
return llvm::GlobalValue::LinkOnceODRLinkage;
}
llvm_unreachable("Invalid linkage!");
}
// CanUseSingleInheritance - Return whether the given record decl has a "single,
// public, non-virtual base at offset zero (i.e. the derived class is dynamic
// iff the base is)", according to Itanium C++ ABI, 2.95p6b.
static bool CanUseSingleInheritance(const CXXRecordDecl *RD) {
// Check the number of bases.
if (RD->getNumBases() != 1)
return false;
// Get the base.
CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin();
// Check that the base is not virtual.
if (Base->isVirtual())
return false;
// Check that the base is public.
if (Base->getAccessSpecifier() != AS_public)
return false;
// Check that the class is dynamic iff the base is.
const CXXRecordDecl *BaseDecl =
cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
if (!BaseDecl->isEmpty() &&
BaseDecl->isDynamicClass() != RD->isDynamicClass())
return false;
return true;
}
void RTTIBuilder::BuildVTablePointer(const Type *Ty) {
// abi::__class_type_info.
static const char * const ClassTypeInfo =
"_ZTVN10__cxxabiv117__class_type_infoE";
// abi::__si_class_type_info.
static const char * const SIClassTypeInfo =
"_ZTVN10__cxxabiv120__si_class_type_infoE";
// abi::__vmi_class_type_info.
static const char * const VMIClassTypeInfo =
"_ZTVN10__cxxabiv121__vmi_class_type_infoE";
const char *VTableName = 0;
switch (Ty->getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
llvm_unreachable("Non-canonical and dependent types shouldn't get here");
case Type::LValueReference:
case Type::RValueReference:
llvm_unreachable("References shouldn't get here");
case Type::Builtin:
// GCC treats vector and complex types as fundamental types.
case Type::Vector:
case Type::ExtVector:
case Type::Complex:
case Type::Atomic:
// FIXME: GCC treats block pointers as fundamental types?!
case Type::BlockPointer:
// abi::__fundamental_type_info.
VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE";
break;
case Type::ConstantArray:
case Type::IncompleteArray:
case Type::VariableArray:
// abi::__array_type_info.
VTableName = "_ZTVN10__cxxabiv117__array_type_infoE";
break;
case Type::FunctionNoProto:
case Type::FunctionProto:
// abi::__function_type_info.
VTableName = "_ZTVN10__cxxabiv120__function_type_infoE";
break;
case Type::Enum:
// abi::__enum_type_info.
VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE";
break;
case Type::Record: {
const CXXRecordDecl *RD =
cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
if (!RD->hasDefinition() || !RD->getNumBases()) {
VTableName = ClassTypeInfo;
} else if (CanUseSingleInheritance(RD)) {
VTableName = SIClassTypeInfo;
} else {
VTableName = VMIClassTypeInfo;
}
break;
}
case Type::ObjCObject:
// Ignore protocol qualifiers.
Ty = cast<ObjCObjectType>(Ty)->getBaseType().getTypePtr();
// Handle id and Class.
if (isa<BuiltinType>(Ty)) {
VTableName = ClassTypeInfo;
break;
}
assert(isa<ObjCInterfaceType>(Ty));
// Fall through.
case Type::ObjCInterface:
if (cast<ObjCInterfaceType>(Ty)->getDecl()->getSuperClass()) {
VTableName = SIClassTypeInfo;
} else {
VTableName = ClassTypeInfo;
}
break;
case Type::ObjCObjectPointer:
case Type::Pointer:
// abi::__pointer_type_info.
VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE";
break;
case Type::MemberPointer:
// abi::__pointer_to_member_type_info.
VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE";
break;
}
llvm::Constant *VTable =
CGM.getModule().getOrInsertGlobal(VTableName, CGM.Int8PtrTy);
llvm::Type *PtrDiffTy =
CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
// The vtable address point is 2.
llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2);
VTable = llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, Two);
VTable = llvm::ConstantExpr::getBitCast(VTable, CGM.Int8PtrTy);
Fields.push_back(VTable);
}
// maybeUpdateRTTILinkage - Will update the linkage of the RTTI data structures
// from available_externally to the correct linkage if necessary. An example of
// this is:
//
// struct A {
// virtual void f();
// };
//
// const std::type_info &g() {
// return typeid(A);
// }
//
// void A::f() { }
//
// When we're generating the typeid(A) expression, we do not yet know that
// A's key function is defined in this translation unit, so we will give the
// typeinfo and typename structures available_externally linkage. When A::f
// forces the vtable to be generated, we need to change the linkage of the
// typeinfo and typename structs, otherwise we'll end up with undefined
// externals when linking.
static void
maybeUpdateRTTILinkage(CodeGenModule &CGM, llvm::GlobalVariable *GV,
QualType Ty) {
// We're only interested in globals with available_externally linkage.
if (!GV->hasAvailableExternallyLinkage())
return;
// Get the real linkage for the type.
llvm::GlobalVariable::LinkageTypes Linkage = getTypeInfoLinkage(CGM, Ty);
// If variable is supposed to have available_externally linkage, we don't
// need to do anything.
if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
return;
// Update the typeinfo linkage.
GV->setLinkage(Linkage);
// Get the typename global.
SmallString<256> OutName;
llvm::raw_svector_ostream Out(OutName);
CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out);
Out.flush();
StringRef Name = OutName.str();
llvm::GlobalVariable *TypeNameGV = CGM.getModule().getNamedGlobal(Name);
assert(TypeNameGV->hasAvailableExternallyLinkage() &&
"Type name has different linkage from type info!");
// And update its linkage.
TypeNameGV->setLinkage(Linkage);
}
llvm::Constant *RTTIBuilder::BuildTypeInfo(QualType Ty, bool Force) {
// We want to operate on the canonical type.
Ty = CGM.getContext().getCanonicalType(Ty);
// Check if we've already emitted an RTTI descriptor for this type.
SmallString<256> OutName;
llvm::raw_svector_ostream Out(OutName);
CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
Out.flush();
StringRef Name = OutName.str();
llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name);
if (OldGV && !OldGV->isDeclaration()) {
maybeUpdateRTTILinkage(CGM, OldGV, Ty);
return llvm::ConstantExpr::getBitCast(OldGV, CGM.Int8PtrTy);
}
// Check if there is already an external RTTI descriptor for this type.
bool IsStdLib = IsStandardLibraryRTTIDescriptor(Ty);
if (!Force && (IsStdLib || ShouldUseExternalRTTIDescriptor(CGM, Ty)))
return GetAddrOfExternalRTTIDescriptor(Ty);
// Emit the standard library with external linkage.
llvm::GlobalVariable::LinkageTypes Linkage;
if (IsStdLib)
Linkage = llvm::GlobalValue::ExternalLinkage;
else
Linkage = getTypeInfoLinkage(CGM, Ty);
// Add the vtable pointer.
BuildVTablePointer(cast<Type>(Ty));
// And the name.
llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage);
Fields.push_back(llvm::ConstantExpr::getBitCast(TypeName, CGM.Int8PtrTy));
switch (Ty->getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
llvm_unreachable("Non-canonical and dependent types shouldn't get here");
// GCC treats vector types as fundamental types.
case Type::Builtin:
case Type::Vector:
case Type::ExtVector:
case Type::Complex:
case Type::BlockPointer:
// Itanium C++ ABI 2.9.5p4:
// abi::__fundamental_type_info adds no data members to std::type_info.
break;
case Type::LValueReference:
case Type::RValueReference:
llvm_unreachable("References shouldn't get here");
case Type::ConstantArray:
case Type::IncompleteArray:
case Type::VariableArray:
// Itanium C++ ABI 2.9.5p5:
// abi::__array_type_info adds no data members to std::type_info.
break;
case Type::FunctionNoProto:
case Type::FunctionProto:
// Itanium C++ ABI 2.9.5p5:
// abi::__function_type_info adds no data members to std::type_info.
break;
case Type::Enum:
// Itanium C++ ABI 2.9.5p5:
// abi::__enum_type_info adds no data members to std::type_info.
break;
case Type::Record: {
const CXXRecordDecl *RD =
cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
if (!RD->hasDefinition() || !RD->getNumBases()) {
// We don't need to emit any fields.
break;
}
if (CanUseSingleInheritance(RD))
BuildSIClassTypeInfo(RD);
else
BuildVMIClassTypeInfo(RD);
break;
}
case Type::ObjCObject:
case Type::ObjCInterface:
BuildObjCObjectTypeInfo(cast<ObjCObjectType>(Ty));
break;
case Type::ObjCObjectPointer:
BuildPointerTypeInfo(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
break;
case Type::Pointer:
BuildPointerTypeInfo(cast<PointerType>(Ty)->getPointeeType());
break;
case Type::MemberPointer:
BuildPointerToMemberTypeInfo(cast<MemberPointerType>(Ty));
break;
case Type::Atomic:
// No fields, at least for the moment.
break;
}
llvm::Constant *Init = llvm::ConstantStruct::getAnon(Fields);
llvm::GlobalVariable *GV =
new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
/*Constant=*/true, Linkage, Init, Name);
// If there's already an old global variable, replace it with the new one.
if (OldGV) {
GV->takeName(OldGV);
llvm::Constant *NewPtr =
llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
OldGV->replaceAllUsesWith(NewPtr);
OldGV->eraseFromParent();
}
// GCC only relies on the uniqueness of the type names, not the
// type_infos themselves, so we can emit these as hidden symbols.
// But don't do this if we're worried about strict visibility
// compatibility.
if (const RecordType *RT = dyn_cast<RecordType>(Ty)) {
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
CGM.setTypeVisibility(GV, RD, CodeGenModule::TVK_ForRTTI);
CGM.setTypeVisibility(TypeName, RD, CodeGenModule::TVK_ForRTTIName);
} else {
Visibility TypeInfoVisibility = DefaultVisibility;
if (CGM.getCodeGenOpts().HiddenWeakVTables &&
Linkage == llvm::GlobalValue::LinkOnceODRLinkage)
TypeInfoVisibility = HiddenVisibility;
// The type name should have the same visibility as the type itself.
Visibility ExplicitVisibility = Ty->getVisibility();
TypeName->setVisibility(CodeGenModule::
GetLLVMVisibility(ExplicitVisibility));
TypeInfoVisibility = minVisibility(TypeInfoVisibility, Ty->getVisibility());
GV->setVisibility(CodeGenModule::GetLLVMVisibility(TypeInfoVisibility));
}
GV->setUnnamedAddr(true);
return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
}
/// ComputeQualifierFlags - Compute the pointer type info flags from the
/// given qualifier.
static unsigned ComputeQualifierFlags(Qualifiers Quals) {
unsigned Flags = 0;
if (Quals.hasConst())
Flags |= RTTIBuilder::PTI_Const;
if (Quals.hasVolatile())
Flags |= RTTIBuilder::PTI_Volatile;
if (Quals.hasRestrict())
Flags |= RTTIBuilder::PTI_Restrict;
return Flags;
}
/// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info
/// for the given Objective-C object type.
void RTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) {
// Drop qualifiers.
const Type *T = OT->getBaseType().getTypePtr();
assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T));
// The builtin types are abi::__class_type_infos and don't require
// extra fields.
if (isa<BuiltinType>(T)) return;
ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(T)->getDecl();
ObjCInterfaceDecl *Super = Class->getSuperClass();
// Root classes are also __class_type_info.
if (!Super) return;
QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super);
// Everything else is single inheritance.
llvm::Constant *BaseTypeInfo = RTTIBuilder(CGM).BuildTypeInfo(SuperTy);
Fields.push_back(BaseTypeInfo);
}
/// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
/// inheritance, according to the Itanium C++ ABI, 2.95p6b.
void RTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) {
// Itanium C++ ABI 2.9.5p6b:
// It adds to abi::__class_type_info a single member pointing to the
// type_info structure for the base type,
llvm::Constant *BaseTypeInfo =
RTTIBuilder(CGM).BuildTypeInfo(RD->bases_begin()->getType());
Fields.push_back(BaseTypeInfo);
}
namespace {
/// SeenBases - Contains virtual and non-virtual bases seen when traversing
/// a class hierarchy.
struct SeenBases {
llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases;
llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases;
};
}
/// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in
/// abi::__vmi_class_type_info.
///
static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base,
SeenBases &Bases) {
unsigned Flags = 0;
const CXXRecordDecl *BaseDecl =
cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
if (Base->isVirtual()) {
if (Bases.VirtualBases.count(BaseDecl)) {
// If this virtual base has been seen before, then the class is diamond
// shaped.
Flags |= RTTIBuilder::VMI_DiamondShaped;
} else {
if (Bases.NonVirtualBases.count(BaseDecl))
Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
// Mark the virtual base as seen.
Bases.VirtualBases.insert(BaseDecl);
}
} else {
if (Bases.NonVirtualBases.count(BaseDecl)) {
// If this non-virtual base has been seen before, then the class has non-
// diamond shaped repeated inheritance.
Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
} else {
if (Bases.VirtualBases.count(BaseDecl))
Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
// Mark the non-virtual base as seen.
Bases.NonVirtualBases.insert(BaseDecl);
}
}
// Walk all bases.
for (CXXRecordDecl::base_class_const_iterator I = BaseDecl->bases_begin(),
E = BaseDecl->bases_end(); I != E; ++I)
Flags |= ComputeVMIClassTypeInfoFlags(I, Bases);
return Flags;
}
static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) {
unsigned Flags = 0;
SeenBases Bases;
// Walk all bases.
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
E = RD->bases_end(); I != E; ++I)
Flags |= ComputeVMIClassTypeInfoFlags(I, Bases);
return Flags;
}
/// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
/// classes with bases that do not satisfy the abi::__si_class_type_info
/// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
void RTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) {
llvm::Type *UnsignedIntLTy =
CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
// Itanium C++ ABI 2.9.5p6c:
// __flags is a word with flags describing details about the class
// structure, which may be referenced by using the __flags_masks
// enumeration. These flags refer to both direct and indirect bases.
unsigned Flags = ComputeVMIClassTypeInfoFlags(RD);
Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
// Itanium C++ ABI 2.9.5p6c:
// __base_count is a word with the number of direct proper base class
// descriptions that follow.
Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases()));
if (!RD->getNumBases())
return;
llvm::Type *LongLTy =
CGM.getTypes().ConvertType(CGM.getContext().LongTy);
// Now add the base class descriptions.
// Itanium C++ ABI 2.9.5p6c:
// __base_info[] is an array of base class descriptions -- one for every
// direct proper base. Each description is of the type:
//
// struct abi::__base_class_type_info {
// public:
// const __class_type_info *__base_type;
// long __offset_flags;
//
// enum __offset_flags_masks {
// __virtual_mask = 0x1,
// __public_mask = 0x2,
// __offset_shift = 8
// };
// };
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
E = RD->bases_end(); I != E; ++I) {
const CXXBaseSpecifier *Base = I;
// The __base_type member points to the RTTI for the base type.
Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(Base->getType()));
const CXXRecordDecl *BaseDecl =
cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
int64_t OffsetFlags = 0;
// All but the lower 8 bits of __offset_flags are a signed offset.
// For a non-virtual base, this is the offset in the object of the base
// subobject. For a virtual base, this is the offset in the virtual table of
// the virtual base offset for the virtual base referenced (negative).
CharUnits Offset;
if (Base->isVirtual())
Offset =
CGM.getVTableContext().getVirtualBaseOffsetOffset(RD, BaseDecl);
else {
const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
Offset = Layout.getBaseClassOffset(BaseDecl);
};
OffsetFlags = Offset.getQuantity() << 8;
// The low-order byte of __offset_flags contains flags, as given by the
// masks from the enumeration __offset_flags_masks.
if (Base->isVirtual())
OffsetFlags |= BCTI_Virtual;
if (Base->getAccessSpecifier() == AS_public)
OffsetFlags |= BCTI_Public;
Fields.push_back(llvm::ConstantInt::get(LongLTy, OffsetFlags));
}
}
/// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct,
/// used for pointer types.
void RTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) {
Qualifiers Quals;
QualType UnqualifiedPointeeTy =
CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
// Itanium C++ ABI 2.9.5p7:
// __flags is a flag word describing the cv-qualification and other
// attributes of the type pointed to
unsigned Flags = ComputeQualifierFlags(Quals);
// Itanium C++ ABI 2.9.5p7:
// When the abi::__pbase_type_info is for a direct or indirect pointer to an
// incomplete class type, the incomplete target type flag is set.
if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
Flags |= PTI_Incomplete;
llvm::Type *UnsignedIntLTy =
CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
// Itanium C++ ABI 2.9.5p7:
// __pointee is a pointer to the std::type_info derivation for the
// unqualified type being pointed to.
llvm::Constant *PointeeTypeInfo =
RTTIBuilder(CGM).BuildTypeInfo(UnqualifiedPointeeTy);
Fields.push_back(PointeeTypeInfo);
}
/// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
/// struct, used for member pointer types.
void RTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) {
QualType PointeeTy = Ty->getPointeeType();
Qualifiers Quals;
QualType UnqualifiedPointeeTy =
CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
// Itanium C++ ABI 2.9.5p7:
// __flags is a flag word describing the cv-qualification and other
// attributes of the type pointed to.
unsigned Flags = ComputeQualifierFlags(Quals);
const RecordType *ClassType = cast<RecordType>(Ty->getClass());
// Itanium C++ ABI 2.9.5p7:
// When the abi::__pbase_type_info is for a direct or indirect pointer to an
// incomplete class type, the incomplete target type flag is set.
if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
Flags |= PTI_Incomplete;
if (IsIncompleteClassType(ClassType))
Flags |= PTI_ContainingClassIncomplete;
llvm::Type *UnsignedIntLTy =
CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
// Itanium C++ ABI 2.9.5p7:
// __pointee is a pointer to the std::type_info derivation for the
// unqualified type being pointed to.
llvm::Constant *PointeeTypeInfo =
RTTIBuilder(CGM).BuildTypeInfo(UnqualifiedPointeeTy);
Fields.push_back(PointeeTypeInfo);
// Itanium C++ ABI 2.9.5p9:
// __context is a pointer to an abi::__class_type_info corresponding to the
// class type containing the member pointed to
// (e.g., the "A" in "int A::*").
Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(QualType(ClassType, 0)));
}
llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
bool ForEH) {
// Return a bogus pointer if RTTI is disabled, unless it's for EH.
// FIXME: should we even be calling this method if RTTI is disabled
// and it's not for EH?
if (!ForEH && !getContext().getLangOpts().RTTI)
return llvm::Constant::getNullValue(Int8PtrTy);
if (ForEH && Ty->isObjCObjectPointerType() && !LangOpts.NeXTRuntime)
return ObjCRuntime->GetEHType(Ty);
return RTTIBuilder(*this).BuildTypeInfo(Ty);
}
void CodeGenModule::EmitFundamentalRTTIDescriptor(QualType Type) {
QualType PointerType = Context.getPointerType(Type);
QualType PointerTypeConst = Context.getPointerType(Type.withConst());
RTTIBuilder(*this).BuildTypeInfo(Type, true);
RTTIBuilder(*this).BuildTypeInfo(PointerType, true);
RTTIBuilder(*this).BuildTypeInfo(PointerTypeConst, true);
}
void CodeGenModule::EmitFundamentalRTTIDescriptors() {
QualType FundamentalTypes[] = { Context.VoidTy, Context.NullPtrTy,
Context.BoolTy, Context.WCharTy,
Context.CharTy, Context.UnsignedCharTy,
Context.SignedCharTy, Context.ShortTy,
Context.UnsignedShortTy, Context.IntTy,
Context.UnsignedIntTy, Context.LongTy,
Context.UnsignedLongTy, Context.LongLongTy,
Context.UnsignedLongLongTy, Context.FloatTy,
Context.DoubleTy, Context.LongDoubleTy,
Context.Char16Ty, Context.Char32Ty };
for (unsigned i = 0; i < sizeof(FundamentalTypes)/sizeof(QualType); ++i)
EmitFundamentalRTTIDescriptor(FundamentalTypes[i]);
}