зеркало из https://github.com/microsoft/clang-1.git
677 строки
24 KiB
C++
677 строки
24 KiB
C++
//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is the code that handles AST -> LLVM type lowering.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenTypes.h"
|
|
#include "CGCall.h"
|
|
#include "CGCXXABI.h"
|
|
#include "CGRecordLayout.h"
|
|
#include "TargetInfo.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
CodeGenTypes::CodeGenTypes(CodeGenModule &CGM)
|
|
: Context(CGM.getContext()), Target(Context.getTargetInfo()),
|
|
TheModule(CGM.getModule()), TheTargetData(CGM.getTargetData()),
|
|
TheABIInfo(CGM.getTargetCodeGenInfo().getABIInfo()),
|
|
TheCXXABI(CGM.getCXXABI()),
|
|
CodeGenOpts(CGM.getCodeGenOpts()), CGM(CGM) {
|
|
SkippedLayout = false;
|
|
}
|
|
|
|
CodeGenTypes::~CodeGenTypes() {
|
|
for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
|
|
I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
|
|
I != E; ++I)
|
|
delete I->second;
|
|
|
|
for (llvm::FoldingSet<CGFunctionInfo>::iterator
|
|
I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
|
|
delete &*I++;
|
|
}
|
|
|
|
void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
|
|
llvm::StructType *Ty,
|
|
StringRef suffix) {
|
|
SmallString<256> TypeName;
|
|
llvm::raw_svector_ostream OS(TypeName);
|
|
OS << RD->getKindName() << '.';
|
|
|
|
// Name the codegen type after the typedef name
|
|
// if there is no tag type name available
|
|
if (RD->getIdentifier()) {
|
|
// FIXME: We should not have to check for a null decl context here.
|
|
// Right now we do it because the implicit Obj-C decls don't have one.
|
|
if (RD->getDeclContext())
|
|
OS << RD->getQualifiedNameAsString();
|
|
else
|
|
RD->printName(OS);
|
|
} else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
|
|
// FIXME: We should not have to check for a null decl context here.
|
|
// Right now we do it because the implicit Obj-C decls don't have one.
|
|
if (TDD->getDeclContext())
|
|
OS << TDD->getQualifiedNameAsString();
|
|
else
|
|
TDD->printName(OS);
|
|
} else
|
|
OS << "anon";
|
|
|
|
if (!suffix.empty())
|
|
OS << suffix;
|
|
|
|
Ty->setName(OS.str());
|
|
}
|
|
|
|
/// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
|
|
/// ConvertType in that it is used to convert to the memory representation for
|
|
/// a type. For example, the scalar representation for _Bool is i1, but the
|
|
/// memory representation is usually i8 or i32, depending on the target.
|
|
llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
|
|
llvm::Type *R = ConvertType(T);
|
|
|
|
// If this is a non-bool type, don't map it.
|
|
if (!R->isIntegerTy(1))
|
|
return R;
|
|
|
|
// Otherwise, return an integer of the target-specified size.
|
|
return llvm::IntegerType::get(getLLVMContext(),
|
|
(unsigned)Context.getTypeSize(T));
|
|
}
|
|
|
|
|
|
/// isRecordLayoutComplete - Return true if the specified type is already
|
|
/// completely laid out.
|
|
bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
|
|
llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
|
|
RecordDeclTypes.find(Ty);
|
|
return I != RecordDeclTypes.end() && !I->second->isOpaque();
|
|
}
|
|
|
|
static bool
|
|
isSafeToConvert(QualType T, CodeGenTypes &CGT,
|
|
llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
|
|
|
|
|
|
/// isSafeToConvert - Return true if it is safe to convert the specified record
|
|
/// decl to IR and lay it out, false if doing so would cause us to get into a
|
|
/// recursive compilation mess.
|
|
static bool
|
|
isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
|
|
llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
|
|
// If we have already checked this type (maybe the same type is used by-value
|
|
// multiple times in multiple structure fields, don't check again.
|
|
if (!AlreadyChecked.insert(RD)) return true;
|
|
|
|
const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
|
|
|
|
// If this type is already laid out, converting it is a noop.
|
|
if (CGT.isRecordLayoutComplete(Key)) return true;
|
|
|
|
// If this type is currently being laid out, we can't recursively compile it.
|
|
if (CGT.isRecordBeingLaidOut(Key))
|
|
return false;
|
|
|
|
// If this type would require laying out bases that are currently being laid
|
|
// out, don't do it. This includes virtual base classes which get laid out
|
|
// when a class is translated, even though they aren't embedded by-value into
|
|
// the class.
|
|
if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(),
|
|
E = CRD->bases_end(); I != E; ++I)
|
|
if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(),
|
|
CGT, AlreadyChecked))
|
|
return false;
|
|
}
|
|
|
|
// If this type would require laying out members that are currently being laid
|
|
// out, don't do it.
|
|
for (RecordDecl::field_iterator I = RD->field_begin(),
|
|
E = RD->field_end(); I != E; ++I)
|
|
if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
|
|
return false;
|
|
|
|
// If there are no problems, lets do it.
|
|
return true;
|
|
}
|
|
|
|
/// isSafeToConvert - Return true if it is safe to convert this field type,
|
|
/// which requires the structure elements contained by-value to all be
|
|
/// recursively safe to convert.
|
|
static bool
|
|
isSafeToConvert(QualType T, CodeGenTypes &CGT,
|
|
llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
|
|
T = T.getCanonicalType();
|
|
|
|
// If this is a record, check it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(T))
|
|
return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
|
|
|
|
// If this is an array, check the elements, which are embedded inline.
|
|
if (const ArrayType *AT = dyn_cast<ArrayType>(T))
|
|
return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
|
|
|
|
// Otherwise, there is no concern about transforming this. We only care about
|
|
// things that are contained by-value in a structure that can have another
|
|
// structure as a member.
|
|
return true;
|
|
}
|
|
|
|
|
|
/// isSafeToConvert - Return true if it is safe to convert the specified record
|
|
/// decl to IR and lay it out, false if doing so would cause us to get into a
|
|
/// recursive compilation mess.
|
|
static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
|
|
// If no structs are being laid out, we can certainly do this one.
|
|
if (CGT.noRecordsBeingLaidOut()) return true;
|
|
|
|
llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
|
|
return isSafeToConvert(RD, CGT, AlreadyChecked);
|
|
}
|
|
|
|
|
|
/// isFuncTypeArgumentConvertible - Return true if the specified type in a
|
|
/// function argument or result position can be converted to an IR type at this
|
|
/// point. This boils down to being whether it is complete, as well as whether
|
|
/// we've temporarily deferred expanding the type because we're in a recursive
|
|
/// context.
|
|
bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) {
|
|
// If this isn't a tagged type, we can convert it!
|
|
const TagType *TT = Ty->getAs<TagType>();
|
|
if (TT == 0) return true;
|
|
|
|
// Incomplete types cannot be converted.
|
|
if (TT->isIncompleteType())
|
|
return false;
|
|
|
|
// If this is an enum, then it is always safe to convert.
|
|
const RecordType *RT = dyn_cast<RecordType>(TT);
|
|
if (RT == 0) return true;
|
|
|
|
// Otherwise, we have to be careful. If it is a struct that we're in the
|
|
// process of expanding, then we can't convert the function type. That's ok
|
|
// though because we must be in a pointer context under the struct, so we can
|
|
// just convert it to a dummy type.
|
|
//
|
|
// We decide this by checking whether ConvertRecordDeclType returns us an
|
|
// opaque type for a struct that we know is defined.
|
|
return isSafeToConvert(RT->getDecl(), *this);
|
|
}
|
|
|
|
|
|
/// Code to verify a given function type is complete, i.e. the return type
|
|
/// and all of the argument types are complete. Also check to see if we are in
|
|
/// a RS_StructPointer context, and if so whether any struct types have been
|
|
/// pended. If so, we don't want to ask the ABI lowering code to handle a type
|
|
/// that cannot be converted to an IR type.
|
|
bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
|
|
if (!isFuncTypeArgumentConvertible(FT->getResultType()))
|
|
return false;
|
|
|
|
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
|
|
for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
|
|
if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// UpdateCompletedType - When we find the full definition for a TagDecl,
|
|
/// replace the 'opaque' type we previously made for it if applicable.
|
|
void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
|
|
// If this is an enum being completed, then we flush all non-struct types from
|
|
// the cache. This allows function types and other things that may be derived
|
|
// from the enum to be recomputed.
|
|
if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
|
|
// Only flush the cache if we've actually already converted this type.
|
|
if (TypeCache.count(ED->getTypeForDecl())) {
|
|
// Okay, we formed some types based on this. We speculated that the enum
|
|
// would be lowered to i32, so we only need to flush the cache if this
|
|
// didn't happen.
|
|
if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
|
|
TypeCache.clear();
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If we completed a RecordDecl that we previously used and converted to an
|
|
// anonymous type, then go ahead and complete it now.
|
|
const RecordDecl *RD = cast<RecordDecl>(TD);
|
|
if (RD->isDependentType()) return;
|
|
|
|
// Only complete it if we converted it already. If we haven't converted it
|
|
// yet, we'll just do it lazily.
|
|
if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
|
|
ConvertRecordDeclType(RD);
|
|
}
|
|
|
|
static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
|
|
const llvm::fltSemantics &format) {
|
|
if (&format == &llvm::APFloat::IEEEhalf)
|
|
return llvm::Type::getInt16Ty(VMContext);
|
|
if (&format == &llvm::APFloat::IEEEsingle)
|
|
return llvm::Type::getFloatTy(VMContext);
|
|
if (&format == &llvm::APFloat::IEEEdouble)
|
|
return llvm::Type::getDoubleTy(VMContext);
|
|
if (&format == &llvm::APFloat::IEEEquad)
|
|
return llvm::Type::getFP128Ty(VMContext);
|
|
if (&format == &llvm::APFloat::PPCDoubleDouble)
|
|
return llvm::Type::getPPC_FP128Ty(VMContext);
|
|
if (&format == &llvm::APFloat::x87DoubleExtended)
|
|
return llvm::Type::getX86_FP80Ty(VMContext);
|
|
llvm_unreachable("Unknown float format!");
|
|
}
|
|
|
|
/// ConvertType - Convert the specified type to its LLVM form.
|
|
llvm::Type *CodeGenTypes::ConvertType(QualType T) {
|
|
T = Context.getCanonicalType(T);
|
|
|
|
const Type *Ty = T.getTypePtr();
|
|
|
|
// RecordTypes are cached and processed specially.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(Ty))
|
|
return ConvertRecordDeclType(RT->getDecl());
|
|
|
|
// See if type is already cached.
|
|
llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
|
|
// If type is found in map then use it. Otherwise, convert type T.
|
|
if (TCI != TypeCache.end())
|
|
return TCI->second;
|
|
|
|
// If we don't have it in the cache, convert it now.
|
|
llvm::Type *ResultType = 0;
|
|
switch (Ty->getTypeClass()) {
|
|
case Type::Record: // Handled above.
|
|
#define TYPE(Class, Base)
|
|
#define ABSTRACT_TYPE(Class, Base)
|
|
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
|
|
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
|
|
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
|
|
#include "clang/AST/TypeNodes.def"
|
|
llvm_unreachable("Non-canonical or dependent types aren't possible.");
|
|
|
|
case Type::Builtin: {
|
|
switch (cast<BuiltinType>(Ty)->getKind()) {
|
|
case BuiltinType::Void:
|
|
case BuiltinType::ObjCId:
|
|
case BuiltinType::ObjCClass:
|
|
case BuiltinType::ObjCSel:
|
|
// LLVM void type can only be used as the result of a function call. Just
|
|
// map to the same as char.
|
|
ResultType = llvm::Type::getInt8Ty(getLLVMContext());
|
|
break;
|
|
|
|
case BuiltinType::Bool:
|
|
// Note that we always return bool as i1 for use as a scalar type.
|
|
ResultType = llvm::Type::getInt1Ty(getLLVMContext());
|
|
break;
|
|
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::SChar:
|
|
case BuiltinType::UChar:
|
|
case BuiltinType::Short:
|
|
case BuiltinType::UShort:
|
|
case BuiltinType::Int:
|
|
case BuiltinType::UInt:
|
|
case BuiltinType::Long:
|
|
case BuiltinType::ULong:
|
|
case BuiltinType::LongLong:
|
|
case BuiltinType::ULongLong:
|
|
case BuiltinType::WChar_S:
|
|
case BuiltinType::WChar_U:
|
|
case BuiltinType::Char16:
|
|
case BuiltinType::Char32:
|
|
ResultType = llvm::IntegerType::get(getLLVMContext(),
|
|
static_cast<unsigned>(Context.getTypeSize(T)));
|
|
break;
|
|
|
|
case BuiltinType::Half:
|
|
// Half is special: it might be lowered to i16 (and will be storage-only
|
|
// type),. or can be represented as a set of native operations.
|
|
|
|
// FIXME: Ask target which kind of half FP it prefers (storage only vs
|
|
// native).
|
|
ResultType = llvm::Type::getInt16Ty(getLLVMContext());
|
|
break;
|
|
case BuiltinType::Float:
|
|
case BuiltinType::Double:
|
|
case BuiltinType::LongDouble:
|
|
ResultType = getTypeForFormat(getLLVMContext(),
|
|
Context.getFloatTypeSemantics(T));
|
|
break;
|
|
|
|
case BuiltinType::NullPtr:
|
|
// Model std::nullptr_t as i8*
|
|
ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
|
|
break;
|
|
|
|
case BuiltinType::UInt128:
|
|
case BuiltinType::Int128:
|
|
ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
|
|
break;
|
|
|
|
case BuiltinType::Dependent:
|
|
#define BUILTIN_TYPE(Id, SingletonId)
|
|
#define PLACEHOLDER_TYPE(Id, SingletonId) \
|
|
case BuiltinType::Id:
|
|
#include "clang/AST/BuiltinTypes.def"
|
|
llvm_unreachable("Unexpected placeholder builtin type!");
|
|
}
|
|
break;
|
|
}
|
|
case Type::Complex: {
|
|
llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
|
|
ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
|
|
break;
|
|
}
|
|
case Type::LValueReference:
|
|
case Type::RValueReference: {
|
|
const ReferenceType *RTy = cast<ReferenceType>(Ty);
|
|
QualType ETy = RTy->getPointeeType();
|
|
llvm::Type *PointeeType = ConvertTypeForMem(ETy);
|
|
unsigned AS = Context.getTargetAddressSpace(ETy);
|
|
ResultType = llvm::PointerType::get(PointeeType, AS);
|
|
break;
|
|
}
|
|
case Type::Pointer: {
|
|
const PointerType *PTy = cast<PointerType>(Ty);
|
|
QualType ETy = PTy->getPointeeType();
|
|
llvm::Type *PointeeType = ConvertTypeForMem(ETy);
|
|
if (PointeeType->isVoidTy())
|
|
PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
|
|
unsigned AS = Context.getTargetAddressSpace(ETy);
|
|
ResultType = llvm::PointerType::get(PointeeType, AS);
|
|
break;
|
|
}
|
|
|
|
case Type::VariableArray: {
|
|
const VariableArrayType *A = cast<VariableArrayType>(Ty);
|
|
assert(A->getIndexTypeCVRQualifiers() == 0 &&
|
|
"FIXME: We only handle trivial array types so far!");
|
|
// VLAs resolve to the innermost element type; this matches
|
|
// the return of alloca, and there isn't any obviously better choice.
|
|
ResultType = ConvertTypeForMem(A->getElementType());
|
|
break;
|
|
}
|
|
case Type::IncompleteArray: {
|
|
const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
|
|
assert(A->getIndexTypeCVRQualifiers() == 0 &&
|
|
"FIXME: We only handle trivial array types so far!");
|
|
// int X[] -> [0 x int], unless the element type is not sized. If it is
|
|
// unsized (e.g. an incomplete struct) just use [0 x i8].
|
|
ResultType = ConvertTypeForMem(A->getElementType());
|
|
if (!ResultType->isSized()) {
|
|
SkippedLayout = true;
|
|
ResultType = llvm::Type::getInt8Ty(getLLVMContext());
|
|
}
|
|
ResultType = llvm::ArrayType::get(ResultType, 0);
|
|
break;
|
|
}
|
|
case Type::ConstantArray: {
|
|
const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
|
|
llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
|
|
|
|
// Lower arrays of undefined struct type to arrays of i8 just to have a
|
|
// concrete type.
|
|
if (!EltTy->isSized()) {
|
|
SkippedLayout = true;
|
|
EltTy = llvm::Type::getInt8Ty(getLLVMContext());
|
|
}
|
|
|
|
ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
|
|
break;
|
|
}
|
|
case Type::ExtVector:
|
|
case Type::Vector: {
|
|
const VectorType *VT = cast<VectorType>(Ty);
|
|
ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
|
|
VT->getNumElements());
|
|
break;
|
|
}
|
|
case Type::FunctionNoProto:
|
|
case Type::FunctionProto: {
|
|
const FunctionType *FT = cast<FunctionType>(Ty);
|
|
// First, check whether we can build the full function type. If the
|
|
// function type depends on an incomplete type (e.g. a struct or enum), we
|
|
// cannot lower the function type.
|
|
if (!isFuncTypeConvertible(FT)) {
|
|
// This function's type depends on an incomplete tag type.
|
|
// Return a placeholder type.
|
|
ResultType = llvm::StructType::get(getLLVMContext());
|
|
|
|
SkippedLayout = true;
|
|
break;
|
|
}
|
|
|
|
// While we're converting the argument types for a function, we don't want
|
|
// to recursively convert any pointed-to structs. Converting directly-used
|
|
// structs is ok though.
|
|
if (!RecordsBeingLaidOut.insert(Ty)) {
|
|
ResultType = llvm::StructType::get(getLLVMContext());
|
|
|
|
SkippedLayout = true;
|
|
break;
|
|
}
|
|
|
|
// The function type can be built; call the appropriate routines to
|
|
// build it.
|
|
const CGFunctionInfo *FI;
|
|
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
|
|
FI = &arrangeFunctionType(
|
|
CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
|
|
} else {
|
|
const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
|
|
FI = &arrangeFunctionType(
|
|
CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
|
|
}
|
|
|
|
// If there is something higher level prodding our CGFunctionInfo, then
|
|
// don't recurse into it again.
|
|
if (FunctionsBeingProcessed.count(FI)) {
|
|
|
|
ResultType = llvm::StructType::get(getLLVMContext());
|
|
SkippedLayout = true;
|
|
} else {
|
|
|
|
// Otherwise, we're good to go, go ahead and convert it.
|
|
ResultType = GetFunctionType(*FI);
|
|
}
|
|
|
|
RecordsBeingLaidOut.erase(Ty);
|
|
|
|
if (SkippedLayout)
|
|
TypeCache.clear();
|
|
|
|
if (RecordsBeingLaidOut.empty())
|
|
while (!DeferredRecords.empty())
|
|
ConvertRecordDeclType(DeferredRecords.pop_back_val());
|
|
break;
|
|
}
|
|
|
|
case Type::ObjCObject:
|
|
ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
|
|
break;
|
|
|
|
case Type::ObjCInterface: {
|
|
// Objective-C interfaces are always opaque (outside of the
|
|
// runtime, which can do whatever it likes); we never refine
|
|
// these.
|
|
llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
|
|
if (!T)
|
|
T = llvm::StructType::create(getLLVMContext());
|
|
ResultType = T;
|
|
break;
|
|
}
|
|
|
|
case Type::ObjCObjectPointer: {
|
|
// Protocol qualifications do not influence the LLVM type, we just return a
|
|
// pointer to the underlying interface type. We don't need to worry about
|
|
// recursive conversion.
|
|
llvm::Type *T =
|
|
ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
|
|
ResultType = T->getPointerTo();
|
|
break;
|
|
}
|
|
|
|
case Type::Enum: {
|
|
const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
|
|
if (ED->isCompleteDefinition() || ED->isFixed())
|
|
return ConvertType(ED->getIntegerType());
|
|
// Return a placeholder 'i32' type. This can be changed later when the
|
|
// type is defined (see UpdateCompletedType), but is likely to be the
|
|
// "right" answer.
|
|
ResultType = llvm::Type::getInt32Ty(getLLVMContext());
|
|
break;
|
|
}
|
|
|
|
case Type::BlockPointer: {
|
|
const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
|
|
llvm::Type *PointeeType = ConvertTypeForMem(FTy);
|
|
unsigned AS = Context.getTargetAddressSpace(FTy);
|
|
ResultType = llvm::PointerType::get(PointeeType, AS);
|
|
break;
|
|
}
|
|
|
|
case Type::MemberPointer: {
|
|
ResultType =
|
|
getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
|
|
break;
|
|
}
|
|
|
|
case Type::Atomic: {
|
|
ResultType = ConvertType(cast<AtomicType>(Ty)->getValueType());
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(ResultType && "Didn't convert a type?");
|
|
|
|
TypeCache[Ty] = ResultType;
|
|
return ResultType;
|
|
}
|
|
|
|
/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
|
|
llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
|
|
// TagDecl's are not necessarily unique, instead use the (clang)
|
|
// type connected to the decl.
|
|
const Type *Key = Context.getTagDeclType(RD).getTypePtr();
|
|
|
|
llvm::StructType *&Entry = RecordDeclTypes[Key];
|
|
|
|
// If we don't have a StructType at all yet, create the forward declaration.
|
|
if (Entry == 0) {
|
|
Entry = llvm::StructType::create(getLLVMContext());
|
|
addRecordTypeName(RD, Entry, "");
|
|
}
|
|
llvm::StructType *Ty = Entry;
|
|
|
|
// If this is still a forward declaration, or the LLVM type is already
|
|
// complete, there's nothing more to do.
|
|
RD = RD->getDefinition();
|
|
if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque())
|
|
return Ty;
|
|
|
|
// If converting this type would cause us to infinitely loop, don't do it!
|
|
if (!isSafeToConvert(RD, *this)) {
|
|
DeferredRecords.push_back(RD);
|
|
return Ty;
|
|
}
|
|
|
|
// Okay, this is a definition of a type. Compile the implementation now.
|
|
bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
|
|
assert(InsertResult && "Recursively compiling a struct?");
|
|
|
|
// Force conversion of non-virtual base classes recursively.
|
|
if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
|
|
e = CRD->bases_end(); i != e; ++i) {
|
|
if (i->isVirtual()) continue;
|
|
|
|
ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl());
|
|
}
|
|
}
|
|
|
|
// Layout fields.
|
|
CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
|
|
CGRecordLayouts[Key] = Layout;
|
|
|
|
// We're done laying out this struct.
|
|
bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
|
|
assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
|
|
|
|
// If this struct blocked a FunctionType conversion, then recompute whatever
|
|
// was derived from that.
|
|
// FIXME: This is hugely overconservative.
|
|
if (SkippedLayout)
|
|
TypeCache.clear();
|
|
|
|
// If we're done converting the outer-most record, then convert any deferred
|
|
// structs as well.
|
|
if (RecordsBeingLaidOut.empty())
|
|
while (!DeferredRecords.empty())
|
|
ConvertRecordDeclType(DeferredRecords.pop_back_val());
|
|
|
|
return Ty;
|
|
}
|
|
|
|
/// getCGRecordLayout - Return record layout info for the given record decl.
|
|
const CGRecordLayout &
|
|
CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
|
|
const Type *Key = Context.getTagDeclType(RD).getTypePtr();
|
|
|
|
const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
|
|
if (!Layout) {
|
|
// Compute the type information.
|
|
ConvertRecordDeclType(RD);
|
|
|
|
// Now try again.
|
|
Layout = CGRecordLayouts.lookup(Key);
|
|
}
|
|
|
|
assert(Layout && "Unable to find record layout information for type");
|
|
return *Layout;
|
|
}
|
|
|
|
bool CodeGenTypes::isZeroInitializable(QualType T) {
|
|
// No need to check for member pointers when not compiling C++.
|
|
if (!Context.getLangOpts().CPlusPlus)
|
|
return true;
|
|
|
|
T = Context.getBaseElementType(T);
|
|
|
|
// Records are non-zero-initializable if they contain any
|
|
// non-zero-initializable subobjects.
|
|
if (const RecordType *RT = T->getAs<RecordType>()) {
|
|
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
return isZeroInitializable(RD);
|
|
}
|
|
|
|
// We have to ask the ABI about member pointers.
|
|
if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
|
|
return getCXXABI().isZeroInitializable(MPT);
|
|
|
|
// Everything else is okay.
|
|
return true;
|
|
}
|
|
|
|
bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
|
|
return getCGRecordLayout(RD).isZeroInitializable();
|
|
}
|