clang-1/include/clang/Sema/Initialization.h

913 строки
34 KiB
C++

//===--- SemaInit.h - Semantic Analysis for Initializers --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides supporting data types for initialization of objects.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SEMA_INITIALIZATION_H
#define LLVM_CLANG_SEMA_INITIALIZATION_H
#include "clang/Sema/Ownership.h"
#include "clang/Sema/Overload.h"
#include "clang/AST/Type.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include <cassert>
namespace clang {
class CXXBaseSpecifier;
class DeclaratorDecl;
class DeclaratorInfo;
class FieldDecl;
class FunctionDecl;
class ParmVarDecl;
class Sema;
class TypeLoc;
class VarDecl;
/// \brief Describes an entity that is being initialized.
class InitializedEntity {
public:
/// \brief Specifies the kind of entity being initialized.
enum EntityKind {
/// \brief The entity being initialized is a variable.
EK_Variable,
/// \brief The entity being initialized is a function parameter.
EK_Parameter,
/// \brief The entity being initialized is the result of a function call.
EK_Result,
/// \brief The entity being initialized is an exception object that
/// is being thrown.
EK_Exception,
/// \brief The entity being initialized is a non-static data member
/// subobject.
EK_Member,
/// \brief The entity being initialized is an element of an array.
EK_ArrayElement,
/// \brief The entity being initialized is an object (or array of
/// objects) allocated via new.
EK_New,
/// \brief The entity being initialized is a temporary object.
EK_Temporary,
/// \brief The entity being initialized is a base member subobject.
EK_Base,
/// \brief The initialization is being done by a delegating constructor.
EK_Delegating,
/// \brief The entity being initialized is an element of a vector.
/// or vector.
EK_VectorElement,
/// \brief The entity being initialized is a field of block descriptor for
/// the copied-in c++ object.
EK_BlockElement,
/// \brief The entity being initialized is the real or imaginary part of a
/// complex number.
EK_ComplexElement
};
private:
/// \brief The kind of entity being initialized.
EntityKind Kind;
/// \brief If non-NULL, the parent entity in which this
/// initialization occurs.
const InitializedEntity *Parent;
/// \brief The type of the object or reference being initialized.
QualType Type;
union {
/// \brief When Kind == EK_Variable or EK_Member, the VarDecl or
/// FieldDecl, respectively.
DeclaratorDecl *VariableOrMember;
/// \brief When Kind == EK_Parameter, the ParmVarDecl, with the
/// low bit indicating whether the parameter is "consumed".
uintptr_t Parameter;
/// \brief When Kind == EK_Temporary, the type source information for
/// the temporary.
TypeSourceInfo *TypeInfo;
struct {
/// \brief When Kind == EK_Result, EK_Exception, or EK_New, the
/// location of the 'return', 'throw', or 'new' keyword,
/// respectively. When Kind == EK_Temporary, the location where
/// the temporary is being created.
unsigned Location;
/// \brief Whether the entity being initialized may end up using the
/// named return value optimization (NRVO).
bool NRVO;
} LocAndNRVO;
/// \brief When Kind == EK_Base, the base specifier that provides the
/// base class. The lower bit specifies whether the base is an inherited
/// virtual base.
uintptr_t Base;
/// \brief When Kind == EK_ArrayElement, EK_VectorElement, or
/// EK_ComplexElement, the index of the array or vector element being
/// initialized.
unsigned Index;
};
InitializedEntity() { }
/// \brief Create the initialization entity for a variable.
InitializedEntity(VarDecl *Var)
: Kind(EK_Variable), Parent(0), Type(Var->getType()),
VariableOrMember(Var) { }
/// \brief Create the initialization entity for the result of a
/// function, throwing an object, performing an explicit cast, or
/// initializing a parameter for which there is no declaration.
InitializedEntity(EntityKind Kind, SourceLocation Loc, QualType Type,
bool NRVO = false)
: Kind(Kind), Parent(0), Type(Type)
{
LocAndNRVO.Location = Loc.getRawEncoding();
LocAndNRVO.NRVO = NRVO;
}
/// \brief Create the initialization entity for a member subobject.
InitializedEntity(FieldDecl *Member, const InitializedEntity *Parent)
: Kind(EK_Member), Parent(Parent), Type(Member->getType()),
VariableOrMember(Member) { }
/// \brief Create the initialization entity for an array element.
InitializedEntity(ASTContext &Context, unsigned Index,
const InitializedEntity &Parent);
public:
/// \brief Create the initialization entity for a variable.
static InitializedEntity InitializeVariable(VarDecl *Var) {
return InitializedEntity(Var);
}
/// \brief Create the initialization entity for a parameter.
static InitializedEntity InitializeParameter(ASTContext &Context,
ParmVarDecl *Parm) {
bool Consumed = (Context.getLangOptions().ObjCAutoRefCount &&
Parm->hasAttr<NSConsumedAttr>());
InitializedEntity Entity;
Entity.Kind = EK_Parameter;
Entity.Type = Context.getVariableArrayDecayedType(
Parm->getType().getUnqualifiedType());
Entity.Parent = 0;
Entity.Parameter
= (static_cast<uintptr_t>(Consumed) | reinterpret_cast<uintptr_t>(Parm));
return Entity;
}
/// \brief Create the initialization entity for a parameter that is
/// only known by its type.
static InitializedEntity InitializeParameter(ASTContext &Context,
QualType Type,
bool Consumed) {
InitializedEntity Entity;
Entity.Kind = EK_Parameter;
Entity.Type = Context.getVariableArrayDecayedType(Type);
Entity.Parent = 0;
Entity.Parameter = (Consumed);
return Entity;
}
/// \brief Create the initialization entity for the result of a function.
static InitializedEntity InitializeResult(SourceLocation ReturnLoc,
QualType Type, bool NRVO) {
return InitializedEntity(EK_Result, ReturnLoc, Type, NRVO);
}
static InitializedEntity InitializeBlock(SourceLocation BlockVarLoc,
QualType Type, bool NRVO) {
return InitializedEntity(EK_BlockElement, BlockVarLoc, Type, NRVO);
}
/// \brief Create the initialization entity for an exception object.
static InitializedEntity InitializeException(SourceLocation ThrowLoc,
QualType Type, bool NRVO) {
return InitializedEntity(EK_Exception, ThrowLoc, Type, NRVO);
}
/// \brief Create the initialization entity for an object allocated via new.
static InitializedEntity InitializeNew(SourceLocation NewLoc, QualType Type) {
return InitializedEntity(EK_New, NewLoc, Type);
}
/// \brief Create the initialization entity for a temporary.
static InitializedEntity InitializeTemporary(QualType Type) {
return InitializedEntity(EK_Temporary, SourceLocation(), Type);
}
/// \brief Create the initialization entity for a temporary.
static InitializedEntity InitializeTemporary(TypeSourceInfo *TypeInfo) {
InitializedEntity Result(EK_Temporary, SourceLocation(),
TypeInfo->getType());
Result.TypeInfo = TypeInfo;
return Result;
}
/// \brief Create the initialization entity for a base class subobject.
static InitializedEntity InitializeBase(ASTContext &Context,
CXXBaseSpecifier *Base,
bool IsInheritedVirtualBase);
/// \brief Create the initialization entity for a delegated constructor.
static InitializedEntity InitializeDelegation(QualType Type) {
return InitializedEntity(EK_Delegating, SourceLocation(), Type);
}
/// \brief Create the initialization entity for a member subobject.
static InitializedEntity InitializeMember(FieldDecl *Member,
const InitializedEntity *Parent = 0) {
return InitializedEntity(Member, Parent);
}
/// \brief Create the initialization entity for a member subobject.
static InitializedEntity InitializeMember(IndirectFieldDecl *Member,
const InitializedEntity *Parent = 0) {
return InitializedEntity(Member->getAnonField(), Parent);
}
/// \brief Create the initialization entity for an array element.
static InitializedEntity InitializeElement(ASTContext &Context,
unsigned Index,
const InitializedEntity &Parent) {
return InitializedEntity(Context, Index, Parent);
}
/// \brief Determine the kind of initialization.
EntityKind getKind() const { return Kind; }
/// \brief Retrieve the parent of the entity being initialized, when
/// the initialization itself is occurring within the context of a
/// larger initialization.
const InitializedEntity *getParent() const { return Parent; }
/// \brief Retrieve type being initialized.
QualType getType() const { return Type; }
/// \brief Retrieve complete type-source information for the object being
/// constructed, if known.
TypeSourceInfo *getTypeSourceInfo() const {
if (Kind == EK_Temporary)
return TypeInfo;
return 0;
}
/// \brief Retrieve the name of the entity being initialized.
DeclarationName getName() const;
/// \brief Retrieve the variable, parameter, or field being
/// initialized.
DeclaratorDecl *getDecl() const;
/// \brief Determine whether this initialization allows the named return
/// value optimization, which also applies to thrown objects.
bool allowsNRVO() const;
/// \brief Determine whether this initialization consumes the
/// parameter.
bool isParameterConsumed() const {
assert(getKind() == EK_Parameter && "Not a parameter");
return (Parameter & 1);
}
/// \brief Retrieve the base specifier.
CXXBaseSpecifier *getBaseSpecifier() const {
assert(getKind() == EK_Base && "Not a base specifier");
return reinterpret_cast<CXXBaseSpecifier *>(Base & ~0x1);
}
/// \brief Return whether the base is an inherited virtual base.
bool isInheritedVirtualBase() const {
assert(getKind() == EK_Base && "Not a base specifier");
return Base & 0x1;
}
/// \brief Determine the location of the 'return' keyword when initializing
/// the result of a function call.
SourceLocation getReturnLoc() const {
assert(getKind() == EK_Result && "No 'return' location!");
return SourceLocation::getFromRawEncoding(LocAndNRVO.Location);
}
/// \brief Determine the location of the 'throw' keyword when initializing
/// an exception object.
SourceLocation getThrowLoc() const {
assert(getKind() == EK_Exception && "No 'throw' location!");
return SourceLocation::getFromRawEncoding(LocAndNRVO.Location);
}
/// \brief If this is already the initializer for an array or vector
/// element, sets the element index.
void setElementIndex(unsigned Index) {
assert(getKind() == EK_ArrayElement || getKind() == EK_VectorElement ||
EK_ComplexElement);
this->Index = Index;
}
};
/// \brief Describes the kind of initialization being performed, along with
/// location information for tokens related to the initialization (equal sign,
/// parentheses).
class InitializationKind {
public:
/// \brief The kind of initialization being performed.
enum InitKind {
IK_Direct, ///< Direct initialization
IK_Copy, ///< Copy initialization
IK_Default, ///< Default initialization
IK_Value ///< Value initialization
};
private:
/// \brief The kind of initialization that we're storing.
enum StoredInitKind {
SIK_Direct = IK_Direct, ///< Direct initialization
SIK_Copy = IK_Copy, ///< Copy initialization
SIK_Default = IK_Default, ///< Default initialization
SIK_Value = IK_Value, ///< Value initialization
SIK_ImplicitValue, ///< Implicit value initialization
SIK_DirectCast, ///< Direct initialization due to a cast
/// \brief Direct initialization due to a C-style cast.
SIK_DirectCStyleCast,
/// \brief Direct initialization due to a functional-style cast.
SIK_DirectFunctionalCast
};
/// \brief The kind of initialization being performed.
StoredInitKind Kind;
/// \brief The source locations involved in the initialization.
SourceLocation Locations[3];
InitializationKind(StoredInitKind Kind, SourceLocation Loc1,
SourceLocation Loc2, SourceLocation Loc3)
: Kind(Kind)
{
Locations[0] = Loc1;
Locations[1] = Loc2;
Locations[2] = Loc3;
}
public:
/// \brief Create a direct initialization.
static InitializationKind CreateDirect(SourceLocation InitLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
return InitializationKind(SIK_Direct, InitLoc, LParenLoc, RParenLoc);
}
/// \brief Create a direct initialization due to a cast that isn't a C-style
/// or functional cast.
static InitializationKind CreateCast(SourceRange TypeRange) {
return InitializationKind(SIK_DirectCast,
TypeRange.getBegin(), TypeRange.getBegin(),
TypeRange.getEnd());
}
/// \brief Create a direct initialization for a C-style cast.
static InitializationKind CreateCStyleCast(SourceLocation StartLoc,
SourceRange TypeRange) {
return InitializationKind(SIK_DirectCStyleCast,
StartLoc, TypeRange.getBegin(),
TypeRange.getEnd());
}
/// \brief Create a direct initialization for a functional cast.
static InitializationKind CreateFunctionalCast(SourceRange TypeRange) {
return InitializationKind(SIK_DirectFunctionalCast,
TypeRange.getBegin(), TypeRange.getBegin(),
TypeRange.getEnd());
}
/// \brief Create a copy initialization.
static InitializationKind CreateCopy(SourceLocation InitLoc,
SourceLocation EqualLoc) {
return InitializationKind(SIK_Copy, InitLoc, EqualLoc, EqualLoc);
}
/// \brief Create a default initialization.
static InitializationKind CreateDefault(SourceLocation InitLoc) {
return InitializationKind(SIK_Default, InitLoc, InitLoc, InitLoc);
}
/// \brief Create a value initialization.
static InitializationKind CreateValue(SourceLocation InitLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc,
bool isImplicit = false) {
return InitializationKind(isImplicit? SIK_ImplicitValue : SIK_Value,
InitLoc, LParenLoc, RParenLoc);
}
/// \brief Determine the initialization kind.
InitKind getKind() const {
if (Kind > SIK_ImplicitValue)
return IK_Direct;
if (Kind == SIK_ImplicitValue)
return IK_Value;
return (InitKind)Kind;
}
/// \brief Determine whether this initialization is an explicit cast.
bool isExplicitCast() const {
return Kind == SIK_DirectCast ||
Kind == SIK_DirectCStyleCast ||
Kind == SIK_DirectFunctionalCast;
}
/// \brief Determine whether this initialization is a C-style cast.
bool isCStyleOrFunctionalCast() const {
return Kind == SIK_DirectCStyleCast || Kind == SIK_DirectFunctionalCast;
}
/// brief Determine whether this is a C-style cast.
bool isCStyleCast() const {
return Kind == SIK_DirectCStyleCast;
}
/// brief Determine whether this is a functional-style cast.
bool isFunctionalCast() const {
return Kind == SIK_DirectFunctionalCast;
}
/// \brief Determine whether this initialization is an implicit
/// value-initialization, e.g., as occurs during aggregate
/// initialization.
bool isImplicitValueInit() const { return Kind == SIK_ImplicitValue; }
/// \brief Retrieve the location at which initialization is occurring.
SourceLocation getLocation() const { return Locations[0]; }
/// \brief Retrieve the source range that covers the initialization.
SourceRange getRange() const {
return SourceRange(Locations[0], Locations[2]);
}
/// \brief Retrieve the location of the equal sign for copy initialization
/// (if present).
SourceLocation getEqualLoc() const {
assert(Kind == SIK_Copy && "Only copy initialization has an '='");
return Locations[1];
}
bool isCopyInit() const { return Kind == SIK_Copy; }
/// \brief Retrieve the source range containing the locations of the open
/// and closing parentheses for value and direct initializations.
SourceRange getParenRange() const {
assert((getKind() == IK_Direct || Kind == SIK_Value) &&
"Only direct- and value-initialization have parentheses");
return SourceRange(Locations[1], Locations[2]);
}
};
/// \brief Describes the sequence of initializations required to initialize
/// a given object or reference with a set of arguments.
class InitializationSequence {
public:
/// \brief Describes the kind of initialization sequence computed.
enum SequenceKind {
/// \brief A failed initialization sequence. The failure kind tells what
/// happened.
FailedSequence = 0,
/// \brief A dependent initialization, which could not be
/// type-checked due to the presence of dependent types or
/// dependently-typed expressions.
DependentSequence,
/// \brief A normal sequence.
NormalSequence
};
/// \brief Describes the kind of a particular step in an initialization
/// sequence.
enum StepKind {
/// \brief Resolve the address of an overloaded function to a specific
/// function declaration.
SK_ResolveAddressOfOverloadedFunction,
/// \brief Perform a derived-to-base cast, producing an rvalue.
SK_CastDerivedToBaseRValue,
/// \brief Perform a derived-to-base cast, producing an xvalue.
SK_CastDerivedToBaseXValue,
/// \brief Perform a derived-to-base cast, producing an lvalue.
SK_CastDerivedToBaseLValue,
/// \brief Reference binding to an lvalue.
SK_BindReference,
/// \brief Reference binding to a temporary.
SK_BindReferenceToTemporary,
/// \brief An optional copy of a temporary object to another
/// temporary object, which is permitted (but not required) by
/// C++98/03 but not C++0x.
SK_ExtraneousCopyToTemporary,
/// \brief Perform a user-defined conversion, either via a conversion
/// function or via a constructor.
SK_UserConversion,
/// \brief Perform a qualification conversion, producing an rvalue.
SK_QualificationConversionRValue,
/// \brief Perform a qualification conversion, producing an xvalue.
SK_QualificationConversionXValue,
/// \brief Perform a qualification conversion, producing an lvalue.
SK_QualificationConversionLValue,
/// \brief Perform an implicit conversion sequence.
SK_ConversionSequence,
/// \brief Perform list-initialization without a constructor
SK_ListInitialization,
/// \brief Perform list-initialization with a constructor.
SK_ListConstructorCall,
/// \brief Unwrap the single-element initializer list for a reference.
SK_UnwrapInitList,
/// \brief Rewrap the single-element initializer list for a reference.
SK_RewrapInitList,
/// \brief Perform initialization via a constructor.
SK_ConstructorInitialization,
/// \brief Zero-initialize the object
SK_ZeroInitialization,
/// \brief C assignment
SK_CAssignment,
/// \brief Initialization by string
SK_StringInit,
/// \brief An initialization that "converts" an Objective-C object
/// (not a point to an object) to another Objective-C object type.
SK_ObjCObjectConversion,
/// \brief Array initialization (from an array rvalue).
/// This is a GNU C extension.
SK_ArrayInit,
/// \brief Pass an object by indirect copy-and-restore.
SK_PassByIndirectCopyRestore,
/// \brief Pass an object by indirect restore.
SK_PassByIndirectRestore,
/// \brief Produce an Objective-C object pointer.
SK_ProduceObjCObject
};
/// \brief A single step in the initialization sequence.
class Step {
public:
/// \brief The kind of conversion or initialization step we are taking.
StepKind Kind;
// \brief The type that results from this initialization.
QualType Type;
union {
/// \brief When Kind == SK_ResolvedOverloadedFunction or Kind ==
/// SK_UserConversion, the function that the expression should be
/// resolved to or the conversion function to call, respectively.
/// When Kind == SK_ConstructorInitialization or SK_ListConstruction,
/// the constructor to be called.
///
/// Always a FunctionDecl, plus a Boolean flag telling if it was
/// selected from an overloaded set having size greater than 1.
/// For conversion decls, the naming class is the source type.
/// For construct decls, the naming class is the target type.
struct {
bool HadMultipleCandidates;
FunctionDecl *Function;
DeclAccessPair FoundDecl;
} Function;
/// \brief When Kind = SK_ConversionSequence, the implicit conversion
/// sequence.
ImplicitConversionSequence *ICS;
/// \brief When Kind = SK_RewrapInitList, the syntactic form of the
/// wrapping list.
InitListExpr *WrappingSyntacticList;
};
void Destroy();
};
private:
/// \brief The kind of initialization sequence computed.
enum SequenceKind SequenceKind;
/// \brief Steps taken by this initialization.
SmallVector<Step, 4> Steps;
public:
/// \brief Describes why initialization failed.
enum FailureKind {
/// \brief Too many initializers provided for a reference.
FK_TooManyInitsForReference,
/// \brief Array must be initialized with an initializer list.
FK_ArrayNeedsInitList,
/// \brief Array must be initialized with an initializer list or a
/// string literal.
FK_ArrayNeedsInitListOrStringLiteral,
/// \brief Array type mismatch.
FK_ArrayTypeMismatch,
/// \brief Non-constant array initializer
FK_NonConstantArrayInit,
/// \brief Cannot resolve the address of an overloaded function.
FK_AddressOfOverloadFailed,
/// \brief Overloading due to reference initialization failed.
FK_ReferenceInitOverloadFailed,
/// \brief Non-const lvalue reference binding to a temporary.
FK_NonConstLValueReferenceBindingToTemporary,
/// \brief Non-const lvalue reference binding to an lvalue of unrelated
/// type.
FK_NonConstLValueReferenceBindingToUnrelated,
/// \brief Rvalue reference binding to an lvalue.
FK_RValueReferenceBindingToLValue,
/// \brief Reference binding drops qualifiers.
FK_ReferenceInitDropsQualifiers,
/// \brief Reference binding failed.
FK_ReferenceInitFailed,
/// \brief Implicit conversion failed.
FK_ConversionFailed,
/// \brief Implicit conversion failed.
FK_ConversionFromPropertyFailed,
/// \brief Too many initializers for scalar
FK_TooManyInitsForScalar,
/// \brief Reference initialization from an initializer list
FK_ReferenceBindingToInitList,
/// \brief Initialization of some unused destination type with an
/// initializer list.
FK_InitListBadDestinationType,
/// \brief Overloading for a user-defined conversion failed.
FK_UserConversionOverloadFailed,
/// \brief Overloading for initialization by constructor failed.
FK_ConstructorOverloadFailed,
/// \brief Overloading for list-initialization by constructor failed.
FK_ListConstructorOverloadFailed,
/// \brief Default-initialization of a 'const' object.
FK_DefaultInitOfConst,
/// \brief Initialization of an incomplete type.
FK_Incomplete,
/// \brief Variable-length array must not have an initializer.
FK_VariableLengthArrayHasInitializer,
/// \brief List initialization failed at some point.
FK_ListInitializationFailed,
/// \brief Initializer has a placeholder type which cannot be
/// resolved by initialization.
FK_PlaceholderType
};
private:
/// \brief The reason why initialization failed.
FailureKind Failure;
/// \brief The failed result of overload resolution.
OverloadingResult FailedOverloadResult;
/// \brief The candidate set created when initialization failed.
OverloadCandidateSet FailedCandidateSet;
/// \brief Prints a follow-up note that highlights the location of
/// the initialized entity, if it's remote.
void PrintInitLocationNote(Sema &S, const InitializedEntity &Entity);
public:
/// \brief Try to perform initialization of the given entity, creating a
/// record of the steps required to perform the initialization.
///
/// The generated initialization sequence will either contain enough
/// information to diagnose
///
/// \param S the semantic analysis object.
///
/// \param Entity the entity being initialized.
///
/// \param Kind the kind of initialization being performed.
///
/// \param Args the argument(s) provided for initialization.
///
/// \param NumArgs the number of arguments provided for initialization.
InitializationSequence(Sema &S,
const InitializedEntity &Entity,
const InitializationKind &Kind,
Expr **Args,
unsigned NumArgs);
~InitializationSequence();
/// \brief Perform the actual initialization of the given entity based on
/// the computed initialization sequence.
///
/// \param S the semantic analysis object.
///
/// \param Entity the entity being initialized.
///
/// \param Kind the kind of initialization being performed.
///
/// \param Args the argument(s) provided for initialization, ownership of
/// which is transferred into the routine.
///
/// \param ResultType if non-NULL, will be set to the type of the
/// initialized object, which is the type of the declaration in most
/// cases. However, when the initialized object is a variable of
/// incomplete array type and the initializer is an initializer
/// list, this type will be set to the completed array type.
///
/// \returns an expression that performs the actual object initialization, if
/// the initialization is well-formed. Otherwise, emits diagnostics
/// and returns an invalid expression.
ExprResult Perform(Sema &S,
const InitializedEntity &Entity,
const InitializationKind &Kind,
MultiExprArg Args,
QualType *ResultType = 0);
/// \brief Diagnose an potentially-invalid initialization sequence.
///
/// \returns true if the initialization sequence was ill-formed,
/// false otherwise.
bool Diagnose(Sema &S,
const InitializedEntity &Entity,
const InitializationKind &Kind,
Expr **Args, unsigned NumArgs);
/// \brief Determine the kind of initialization sequence computed.
enum SequenceKind getKind() const { return SequenceKind; }
/// \brief Set the kind of sequence computed.
void setSequenceKind(enum SequenceKind SK) { SequenceKind = SK; }
/// \brief Determine whether the initialization sequence is valid.
operator bool() const { return !Failed(); }
/// \brief Determine whether the initialization sequence is invalid.
bool Failed() const { return SequenceKind == FailedSequence; }
typedef SmallVector<Step, 4>::const_iterator step_iterator;
step_iterator step_begin() const { return Steps.begin(); }
step_iterator step_end() const { return Steps.end(); }
/// \brief Determine whether this initialization is a direct reference
/// binding (C++ [dcl.init.ref]).
bool isDirectReferenceBinding() const;
/// \brief Determine whether this initialization failed due to an ambiguity.
bool isAmbiguous() const;
/// \brief Determine whether this initialization is direct call to a
/// constructor.
bool isConstructorInitialization() const;
/// \brief Returns whether the last step in this initialization sequence is a
/// narrowing conversion, defined by C++0x [dcl.init.list]p7.
///
/// If this function returns true, *isInitializerConstant will be set to
/// describe whether *Initializer was a constant expression. If
/// *isInitializerConstant is set to true, *ConstantValue will be set to the
/// evaluated value of *Initializer.
bool endsWithNarrowing(ASTContext &Ctx, const Expr *Initializer,
bool *isInitializerConstant,
APValue *ConstantValue) const;
/// \brief Add a new step in the initialization that resolves the address
/// of an overloaded function to a specific function declaration.
///
/// \param Function the function to which the overloaded function reference
/// resolves.
void AddAddressOverloadResolutionStep(FunctionDecl *Function,
DeclAccessPair Found,
bool HadMultipleCandidates);
/// \brief Add a new step in the initialization that performs a derived-to-
/// base cast.
///
/// \param BaseType the base type to which we will be casting.
///
/// \param IsLValue true if the result of this cast will be treated as
/// an lvalue.
void AddDerivedToBaseCastStep(QualType BaseType,
ExprValueKind Category);
/// \brief Add a new step binding a reference to an object.
///
/// \param BindingTemporary True if we are binding a reference to a temporary
/// object (thereby extending its lifetime); false if we are binding to an
/// lvalue or an lvalue treated as an rvalue.
///
/// \param UnnecessaryCopy True if we should check for a copy
/// constructor for a completely unnecessary but
void AddReferenceBindingStep(QualType T, bool BindingTemporary);
/// \brief Add a new step that makes an extraneous copy of the input
/// to a temporary of the same class type.
///
/// This extraneous copy only occurs during reference binding in
/// C++98/03, where we are permitted (but not required) to introduce
/// an extra copy. At a bare minimum, we must check that we could
/// call the copy constructor, and produce a diagnostic if the copy
/// constructor is inaccessible or no copy constructor matches.
//
/// \param T The type of the temporary being created.
void AddExtraneousCopyToTemporary(QualType T);
/// \brief Add a new step invoking a conversion function, which is either
/// a constructor or a conversion function.
void AddUserConversionStep(FunctionDecl *Function,
DeclAccessPair FoundDecl,
QualType T,
bool HadMultipleCandidates);
/// \brief Add a new step that performs a qualification conversion to the
/// given type.
void AddQualificationConversionStep(QualType Ty,
ExprValueKind Category);
/// \brief Add a new step that applies an implicit conversion sequence.
void AddConversionSequenceStep(const ImplicitConversionSequence &ICS,
QualType T);
/// \brief Add a list-initialization step.
void AddListInitializationStep(QualType T);
/// \brief Add a constructor-initialization step.
void AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
AccessSpecifier Access,
QualType T,
bool HadMultipleCandidates,
bool FromInitList);
/// \brief Add a zero-initialization step.
void AddZeroInitializationStep(QualType T);
/// \brief Add a C assignment step.
//
// FIXME: It isn't clear whether this should ever be needed;
// ideally, we would handle everything needed in C in the common
// path. However, that isn't the case yet.
void AddCAssignmentStep(QualType T);
/// \brief Add a string init step.
void AddStringInitStep(QualType T);
/// \brief Add an Objective-C object conversion step, which is
/// always a no-op.
void AddObjCObjectConversionStep(QualType T);
/// \brief Add an array initialization step.
void AddArrayInitStep(QualType T);
/// \brief Add a step to pass an object by indirect copy-restore.
void AddPassByIndirectCopyRestoreStep(QualType T, bool shouldCopy);
/// \brief Add a step to "produce" an Objective-C object (by
/// retaining it).
void AddProduceObjCObjectStep(QualType T);
/// \brief Add steps to unwrap a initializer list for a reference around a
/// single element and rewrap it at the end.
void RewrapReferenceInitList(QualType T, InitListExpr *Syntactic);
/// \brief Note that this initialization sequence failed.
void SetFailed(FailureKind Failure) {
SequenceKind = FailedSequence;
this->Failure = Failure;
}
/// \brief Note that this initialization sequence failed due to failed
/// overload resolution.
void SetOverloadFailure(FailureKind Failure, OverloadingResult Result);
/// \brief Retrieve a reference to the candidate set when overload
/// resolution fails.
OverloadCandidateSet &getFailedCandidateSet() {
return FailedCandidateSet;
}
/// brief Get the overloading result, for when the initialization
/// sequence failed due to a bad overload.
OverloadingResult getFailedOverloadResult() const {
return FailedOverloadResult;
}
/// \brief Determine why initialization failed.
FailureKind getFailureKind() const {
assert(Failed() && "Not an initialization failure!");
return Failure;
}
/// \brief Dump a representation of this initialization sequence to
/// the given stream, for debugging purposes.
void dump(raw_ostream &OS) const;
/// \brief Dump a representation of this initialization sequence to
/// standard error, for debugging purposes.
void dump() const;
};
} // end namespace clang
#endif // LLVM_CLANG_SEMA_INITIALIZATION_H