clang-1/include/clang/Sema/Sema.h

6379 строки
285 KiB
C++

//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Sema class, which performs semantic analysis and
// builds ASTs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SEMA_SEMA_H
#define LLVM_CLANG_SEMA_SEMA_H
#include "clang/Sema/Ownership.h"
#include "clang/Sema/AnalysisBasedWarnings.h"
#include "clang/Sema/IdentifierResolver.h"
#include "clang/Sema/ObjCMethodList.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/ExternalSemaSource.h"
#include "clang/Sema/LocInfoType.h"
#include "clang/Sema/MultiInitializer.h"
#include "clang/Sema/TypoCorrection.h"
#include "clang/Sema/Weak.h"
#include "clang/AST/Expr.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Lex/ModuleLoader.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TemplateKinds.h"
#include "clang/Basic/TypeTraits.h"
#include "clang/Basic/ExpressionTraits.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include <deque>
#include <string>
namespace llvm {
class APSInt;
template <typename ValueT> struct DenseMapInfo;
template <typename ValueT, typename ValueInfoT> class DenseSet;
}
namespace clang {
class ADLResult;
class ASTConsumer;
class ASTContext;
class ASTMutationListener;
class ASTReader;
class ASTWriter;
class ArrayType;
class AttributeList;
class BlockDecl;
class CXXBasePath;
class CXXBasePaths;
typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
class CXXConstructorDecl;
class CXXConversionDecl;
class CXXDestructorDecl;
class CXXFieldCollector;
class CXXMemberCallExpr;
class CXXMethodDecl;
class CXXScopeSpec;
class CXXTemporary;
class CXXTryStmt;
class CallExpr;
class ClassTemplateDecl;
class ClassTemplatePartialSpecializationDecl;
class ClassTemplateSpecializationDecl;
class CodeCompleteConsumer;
class CodeCompletionAllocator;
class CodeCompletionResult;
class Decl;
class DeclAccessPair;
class DeclContext;
class DeclRefExpr;
class DeclaratorDecl;
class DeducedTemplateArgument;
class DependentDiagnostic;
class DesignatedInitExpr;
class Designation;
class EnumConstantDecl;
class Expr;
class ExtVectorType;
class ExternalSemaSource;
class FormatAttr;
class FriendDecl;
class FunctionDecl;
class FunctionProtoType;
class FunctionTemplateDecl;
class ImplicitConversionSequence;
class InitListExpr;
class InitializationKind;
class InitializationSequence;
class InitializedEntity;
class IntegerLiteral;
class LabelStmt;
class LangOptions;
class LocalInstantiationScope;
class LookupResult;
class MacroInfo;
class MultiLevelTemplateArgumentList;
class NamedDecl;
class NonNullAttr;
class ObjCCategoryDecl;
class ObjCCategoryImplDecl;
class ObjCCompatibleAliasDecl;
class ObjCContainerDecl;
class ObjCImplDecl;
class ObjCImplementationDecl;
class ObjCInterfaceDecl;
class ObjCIvarDecl;
template <class T> class ObjCList;
class ObjCMessageExpr;
class ObjCMethodDecl;
class ObjCPropertyDecl;
class ObjCProtocolDecl;
class OverloadCandidateSet;
class OverloadExpr;
class ParenListExpr;
class ParmVarDecl;
class Preprocessor;
class PseudoDestructorTypeStorage;
class PseudoObjectExpr;
class QualType;
class StandardConversionSequence;
class Stmt;
class StringLiteral;
class SwitchStmt;
class TargetAttributesSema;
class TemplateArgument;
class TemplateArgumentList;
class TemplateArgumentLoc;
class TemplateDecl;
class TemplateParameterList;
class TemplatePartialOrderingContext;
class TemplateTemplateParmDecl;
class Token;
class TypeAliasDecl;
class TypedefDecl;
class TypedefNameDecl;
class TypeLoc;
class UnqualifiedId;
class UnresolvedLookupExpr;
class UnresolvedMemberExpr;
class UnresolvedSetImpl;
class UnresolvedSetIterator;
class UsingDecl;
class UsingShadowDecl;
class ValueDecl;
class VarDecl;
class VisibilityAttr;
class VisibleDeclConsumer;
class IndirectFieldDecl;
namespace sema {
class AccessedEntity;
class BlockScopeInfo;
class DelayedDiagnostic;
class FunctionScopeInfo;
class LambdaScopeInfo;
class TemplateDeductionInfo;
}
// FIXME: No way to easily map from TemplateTypeParmTypes to
// TemplateTypeParmDecls, so we have this horrible PointerUnion.
typedef std::pair<llvm::PointerUnion<const TemplateTypeParmType*, NamedDecl*>,
SourceLocation> UnexpandedParameterPack;
/// Sema - This implements semantic analysis and AST building for C.
class Sema {
Sema(const Sema&); // DO NOT IMPLEMENT
void operator=(const Sema&); // DO NOT IMPLEMENT
mutable const TargetAttributesSema* TheTargetAttributesSema;
public:
typedef OpaquePtr<DeclGroupRef> DeclGroupPtrTy;
typedef OpaquePtr<TemplateName> TemplateTy;
typedef OpaquePtr<QualType> TypeTy;
OpenCLOptions OpenCLFeatures;
FPOptions FPFeatures;
const LangOptions &LangOpts;
Preprocessor &PP;
ASTContext &Context;
ASTConsumer &Consumer;
DiagnosticsEngine &Diags;
SourceManager &SourceMgr;
/// \brief Flag indicating whether or not to collect detailed statistics.
bool CollectStats;
/// \brief Source of additional semantic information.
ExternalSemaSource *ExternalSource;
/// \brief Code-completion consumer.
CodeCompleteConsumer *CodeCompleter;
/// CurContext - This is the current declaration context of parsing.
DeclContext *CurContext;
/// \brief Generally null except when we temporarily switch decl contexts,
/// like in \see ActOnObjCTemporaryExitContainerContext.
DeclContext *OriginalLexicalContext;
/// VAListTagName - The declaration name corresponding to __va_list_tag.
/// This is used as part of a hack to omit that class from ADL results.
DeclarationName VAListTagName;
/// PackContext - Manages the stack for #pragma pack. An alignment
/// of 0 indicates default alignment.
void *PackContext; // Really a "PragmaPackStack*"
bool MSStructPragmaOn; // True when #pragma ms_struct on
/// VisContext - Manages the stack for #pragma GCC visibility.
void *VisContext; // Really a "PragmaVisStack*"
/// ExprNeedsCleanups - True if the current evaluation context
/// requires cleanups to be run at its conclusion.
bool ExprNeedsCleanups;
/// ExprCleanupObjects - This is the stack of objects requiring
/// cleanup that are created by the current full expression. The
/// element type here is ExprWithCleanups::Object.
SmallVector<BlockDecl*, 8> ExprCleanupObjects;
/// \brief Stack containing information about each of the nested
/// function, block, and method scopes that are currently active.
///
/// This array is never empty. Clients should ignore the first
/// element, which is used to cache a single FunctionScopeInfo
/// that's used to parse every top-level function.
SmallVector<sema::FunctionScopeInfo *, 4> FunctionScopes;
typedef LazyVector<TypedefNameDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadExtVectorDecls, 2, 2>
ExtVectorDeclsType;
/// ExtVectorDecls - This is a list all the extended vector types. This allows
/// us to associate a raw vector type with one of the ext_vector type names.
/// This is only necessary for issuing pretty diagnostics.
ExtVectorDeclsType ExtVectorDecls;
/// \brief The set of types for which we have already complained about the
/// definitions being hidden.
///
/// This set is used to suppress redundant diagnostics.
llvm::SmallPtrSet<NamedDecl *, 4> HiddenDefinitions;
/// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes.
llvm::OwningPtr<CXXFieldCollector> FieldCollector;
typedef llvm::SmallPtrSet<const CXXRecordDecl*, 8> RecordDeclSetTy;
/// PureVirtualClassDiagSet - a set of class declarations which we have
/// emitted a list of pure virtual functions. Used to prevent emitting the
/// same list more than once.
llvm::OwningPtr<RecordDeclSetTy> PureVirtualClassDiagSet;
/// ParsingInitForAutoVars - a set of declarations with auto types for which
/// we are currently parsing the initializer.
llvm::SmallPtrSet<const Decl*, 4> ParsingInitForAutoVars;
/// \brief A mapping from external names to the most recent
/// locally-scoped external declaration with that name.
///
/// This map contains external declarations introduced in local
/// scoped, e.g.,
///
/// \code
/// void f() {
/// void foo(int, int);
/// }
/// \endcode
///
/// Here, the name "foo" will be associated with the declaration on
/// "foo" within f. This name is not visible outside of
/// "f". However, we still find it in two cases:
///
/// - If we are declaring another external with the name "foo", we
/// can find "foo" as a previous declaration, so that the types
/// of this external declaration can be checked for
/// compatibility.
///
/// - If we would implicitly declare "foo" (e.g., due to a call to
/// "foo" in C when no prototype or definition is visible), then
/// we find this declaration of "foo" and complain that it is
/// not visible.
llvm::DenseMap<DeclarationName, NamedDecl *> LocallyScopedExternalDecls;
/// \brief Look for a locally scoped external declaration by the given name.
llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
findLocallyScopedExternalDecl(DeclarationName Name);
typedef LazyVector<VarDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadTentativeDefinitions, 2, 2>
TentativeDefinitionsType;
/// \brief All the tentative definitions encountered in the TU.
TentativeDefinitionsType TentativeDefinitions;
typedef LazyVector<const DeclaratorDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadUnusedFileScopedDecls, 2, 2>
UnusedFileScopedDeclsType;
/// \brief The set of file scoped decls seen so far that have not been used
/// and must warn if not used. Only contains the first declaration.
UnusedFileScopedDeclsType UnusedFileScopedDecls;
typedef LazyVector<CXXConstructorDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadDelegatingConstructors, 2, 2>
DelegatingCtorDeclsType;
/// \brief All the delegating constructors seen so far in the file, used for
/// cycle detection at the end of the TU.
DelegatingCtorDeclsType DelegatingCtorDecls;
/// \brief All the overriding destructors seen during a class definition
/// (there could be multiple due to nested classes) that had their exception
/// spec checks delayed, plus the overridden destructor.
SmallVector<std::pair<const CXXDestructorDecl*,
const CXXDestructorDecl*>, 2>
DelayedDestructorExceptionSpecChecks;
/// \brief Callback to the parser to parse templated functions when needed.
typedef void LateTemplateParserCB(void *P, const FunctionDecl *FD);
LateTemplateParserCB *LateTemplateParser;
void *OpaqueParser;
void SetLateTemplateParser(LateTemplateParserCB *LTP, void *P) {
LateTemplateParser = LTP;
OpaqueParser = P;
}
class DelayedDiagnostics;
class ParsingDeclState {
unsigned SavedStackSize;
friend class Sema::DelayedDiagnostics;
};
class ProcessingContextState {
unsigned SavedParsingDepth;
unsigned SavedActiveStackBase;
friend class Sema::DelayedDiagnostics;
};
/// A class which encapsulates the logic for delaying diagnostics
/// during parsing and other processing.
class DelayedDiagnostics {
/// \brief The stack of diagnostics that were delayed due to being
/// produced during the parsing of a declaration.
sema::DelayedDiagnostic *Stack;
/// \brief The number of objects on the delayed-diagnostics stack.
unsigned StackSize;
/// \brief The current capacity of the delayed-diagnostics stack.
unsigned StackCapacity;
/// \brief The index of the first "active" delayed diagnostic in
/// the stack. When parsing class definitions, we ignore active
/// delayed diagnostics from the surrounding context.
unsigned ActiveStackBase;
/// \brief The depth of the declarations we're currently parsing.
/// This gets saved and reset whenever we enter a class definition.
unsigned ParsingDepth;
public:
DelayedDiagnostics() : Stack(0), StackSize(0), StackCapacity(0),
ActiveStackBase(0), ParsingDepth(0) {}
~DelayedDiagnostics() {
delete[] reinterpret_cast<char*>(Stack);
}
/// Adds a delayed diagnostic.
void add(const sema::DelayedDiagnostic &diag);
/// Determines whether diagnostics should be delayed.
bool shouldDelayDiagnostics() { return ParsingDepth > 0; }
/// Observe that we've started parsing a declaration. Access and
/// deprecation diagnostics will be delayed; when the declaration
/// is completed, all active delayed diagnostics will be evaluated
/// in its context, and then active diagnostics stack will be
/// popped down to the saved depth.
ParsingDeclState pushParsingDecl() {
ParsingDepth++;
ParsingDeclState state;
state.SavedStackSize = StackSize;
return state;
}
/// Observe that we're completed parsing a declaration.
static void popParsingDecl(Sema &S, ParsingDeclState state, Decl *decl);
/// Observe that we've started processing a different context, the
/// contents of which are semantically separate from the
/// declarations it may lexically appear in. This sets aside the
/// current stack of active diagnostics and starts afresh.
ProcessingContextState pushContext() {
assert(StackSize >= ActiveStackBase);
ProcessingContextState state;
state.SavedParsingDepth = ParsingDepth;
state.SavedActiveStackBase = ActiveStackBase;
ActiveStackBase = StackSize;
ParsingDepth = 0;
return state;
}
/// Observe that we've stopped processing a context. This
/// restores the previous stack of active diagnostics.
void popContext(ProcessingContextState state) {
assert(ActiveStackBase == StackSize);
assert(ParsingDepth == 0);
ActiveStackBase = state.SavedActiveStackBase;
ParsingDepth = state.SavedParsingDepth;
}
} DelayedDiagnostics;
/// A RAII object to temporarily push a declaration context.
class ContextRAII {
private:
Sema &S;
DeclContext *SavedContext;
ProcessingContextState SavedContextState;
public:
ContextRAII(Sema &S, DeclContext *ContextToPush)
: S(S), SavedContext(S.CurContext),
SavedContextState(S.DelayedDiagnostics.pushContext())
{
assert(ContextToPush && "pushing null context");
S.CurContext = ContextToPush;
}
void pop() {
if (!SavedContext) return;
S.CurContext = SavedContext;
S.DelayedDiagnostics.popContext(SavedContextState);
SavedContext = 0;
}
~ContextRAII() {
pop();
}
};
/// WeakUndeclaredIdentifiers - Identifiers contained in
/// #pragma weak before declared. rare. may alias another
/// identifier, declared or undeclared
llvm::DenseMap<IdentifierInfo*,WeakInfo> WeakUndeclaredIdentifiers;
/// \brief Load weak undeclared identifiers from the external source.
void LoadExternalWeakUndeclaredIdentifiers();
/// WeakTopLevelDecl - Translation-unit scoped declarations generated by
/// #pragma weak during processing of other Decls.
/// I couldn't figure out a clean way to generate these in-line, so
/// we store them here and handle separately -- which is a hack.
/// It would be best to refactor this.
SmallVector<Decl*,2> WeakTopLevelDecl;
IdentifierResolver IdResolver;
/// Translation Unit Scope - useful to Objective-C actions that need
/// to lookup file scope declarations in the "ordinary" C decl namespace.
/// For example, user-defined classes, built-in "id" type, etc.
Scope *TUScope;
/// \brief The C++ "std" namespace, where the standard library resides.
LazyDeclPtr StdNamespace;
/// \brief The C++ "std::bad_alloc" class, which is defined by the C++
/// standard library.
LazyDeclPtr StdBadAlloc;
/// \brief The C++ "type_info" declaration, which is defined in <typeinfo>.
RecordDecl *CXXTypeInfoDecl;
/// \brief The MSVC "_GUID" struct, which is defined in MSVC header files.
RecordDecl *MSVCGuidDecl;
/// A flag to remember whether the implicit forms of operator new and delete
/// have been declared.
bool GlobalNewDeleteDeclared;
/// A flag that is set when parsing a -dealloc method and no [super dealloc]
/// call was found yet.
bool ObjCShouldCallSuperDealloc;
/// A flag that is set when parsing a -finalize method and no [super finalize]
/// call was found yet.
bool ObjCShouldCallSuperFinalize;
/// \brief The set of declarations that have been referenced within
/// a potentially evaluated expression.
typedef SmallVector<std::pair<SourceLocation, Decl *>, 10>
PotentiallyReferencedDecls;
/// \brief A set of diagnostics that may be emitted.
typedef SmallVector<std::pair<SourceLocation, PartialDiagnostic>, 10>
PotentiallyEmittedDiagnostics;
/// \brief Describes how the expressions currently being parsed are
/// evaluated at run-time, if at all.
enum ExpressionEvaluationContext {
/// \brief The current expression and its subexpressions occur within an
/// unevaluated operand (C++11 [expr]p7), such as the subexpression of
/// \c sizeof, where the type of the expression may be significant but
/// no code will be generated to evaluate the value of the expression at
/// run time.
Unevaluated,
/// \brief The current expression and its subexpressions occur within a
/// constant expression. Such a context is not potentially-evaluated in
/// C++98, but is potentially-evaluated in C++11.
ConstantEvaluated,
/// \brief The current expression is potentially evaluated at run time,
/// which means that code may be generated to evaluate the value of the
/// expression at run time.
PotentiallyEvaluated,
/// \brief The current expression may be potentially evaluated or it may
/// be unevaluated, but it is impossible to tell from the lexical context.
/// This evaluation context is used primary for the operand of the C++
/// \c typeid expression, whose argument is potentially evaluated only when
/// it is an lvalue of polymorphic class type (C++ [basic.def.odr]p2).
PotentiallyPotentiallyEvaluated,
/// \brief The current expression is potentially evaluated, but any
/// declarations referenced inside that expression are only used if
/// in fact the current expression is used.
///
/// This value is used when parsing default function arguments, for which
/// we would like to provide diagnostics (e.g., passing non-POD arguments
/// through varargs) but do not want to mark declarations as "referenced"
/// until the default argument is used.
PotentiallyEvaluatedIfUsed
};
/// \brief Data structure used to record current or nested
/// expression evaluation contexts.
struct ExpressionEvaluationContextRecord {
/// \brief The expression evaluation context.
ExpressionEvaluationContext Context;
/// \brief Whether the enclosing context needed a cleanup.
bool ParentNeedsCleanups;
/// \brief The number of active cleanup objects when we entered
/// this expression evaluation context.
unsigned NumCleanupObjects;
/// \brief The set of declarations referenced within a
/// potentially potentially-evaluated context.
///
/// When leaving a potentially potentially-evaluated context, each
/// of these elements will be as referenced if the corresponding
/// potentially potentially evaluated expression is potentially
/// evaluated.
PotentiallyReferencedDecls *PotentiallyReferenced;
/// \brief The set of diagnostics to emit should this potentially
/// potentially-evaluated context become evaluated.
PotentiallyEmittedDiagnostics *PotentiallyDiagnosed;
ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context,
unsigned NumCleanupObjects,
bool ParentNeedsCleanups)
: Context(Context), ParentNeedsCleanups(ParentNeedsCleanups),
NumCleanupObjects(NumCleanupObjects),
PotentiallyReferenced(0), PotentiallyDiagnosed(0) { }
void addReferencedDecl(SourceLocation Loc, Decl *Decl) {
if (!PotentiallyReferenced)
PotentiallyReferenced = new PotentiallyReferencedDecls;
PotentiallyReferenced->push_back(std::make_pair(Loc, Decl));
}
void addDiagnostic(SourceLocation Loc, const PartialDiagnostic &PD) {
if (!PotentiallyDiagnosed)
PotentiallyDiagnosed = new PotentiallyEmittedDiagnostics;
PotentiallyDiagnosed->push_back(std::make_pair(Loc, PD));
}
void Destroy() {
delete PotentiallyReferenced;
delete PotentiallyDiagnosed;
PotentiallyReferenced = 0;
PotentiallyDiagnosed = 0;
}
};
/// A stack of expression evaluation contexts.
SmallVector<ExpressionEvaluationContextRecord, 8> ExprEvalContexts;
/// SpecialMemberOverloadResult - The overloading result for a special member
/// function.
///
/// This is basically a wrapper around PointerIntPair. The lowest bit of the
/// integer is used to determine whether we have a parameter qualification
/// match, the second-lowest is whether we had success in resolving the
/// overload to a unique non-deleted function.
///
/// The ConstParamMatch bit represents whether, when looking up a copy
/// constructor or assignment operator, we found a potential copy
/// constructor/assignment operator whose first parameter is const-qualified.
/// This is used for determining parameter types of other objects and is
/// utterly meaningless on other types of special members.
class SpecialMemberOverloadResult : public llvm::FastFoldingSetNode {
llvm::PointerIntPair<CXXMethodDecl*, 2> Pair;
public:
SpecialMemberOverloadResult(const llvm::FoldingSetNodeID &ID)
: FastFoldingSetNode(ID)
{}
CXXMethodDecl *getMethod() const { return Pair.getPointer(); }
void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); }
bool hasSuccess() const { return Pair.getInt() & 0x1; }
void setSuccess(bool B) {
Pair.setInt(unsigned(B) | hasConstParamMatch() << 1);
}
bool hasConstParamMatch() const { return Pair.getInt() & 0x2; }
void setConstParamMatch(bool B) {
Pair.setInt(B << 1 | unsigned(hasSuccess()));
}
};
/// \brief A cache of special member function overload resolution results
/// for C++ records.
llvm::FoldingSet<SpecialMemberOverloadResult> SpecialMemberCache;
/// \brief The kind of translation unit we are processing.
///
/// When we're processing a complete translation unit, Sema will perform
/// end-of-translation-unit semantic tasks (such as creating
/// initializers for tentative definitions in C) once parsing has
/// completed. Modules and precompiled headers perform different kinds of
/// checks.
TranslationUnitKind TUKind;
llvm::BumpPtrAllocator BumpAlloc;
/// \brief The number of SFINAE diagnostics that have been trapped.
unsigned NumSFINAEErrors;
typedef llvm::DenseMap<ParmVarDecl *, SmallVector<ParmVarDecl *, 1> >
UnparsedDefaultArgInstantiationsMap;
/// \brief A mapping from parameters with unparsed default arguments to the
/// set of instantiations of each parameter.
///
/// This mapping is a temporary data structure used when parsing
/// nested class templates or nested classes of class templates,
/// where we might end up instantiating an inner class before the
/// default arguments of its methods have been parsed.
UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations;
// Contains the locations of the beginning of unparsed default
// argument locations.
llvm::DenseMap<ParmVarDecl *,SourceLocation> UnparsedDefaultArgLocs;
/// UndefinedInternals - all the used, undefined objects with
/// internal linkage in this translation unit.
llvm::DenseMap<NamedDecl*, SourceLocation> UndefinedInternals;
typedef std::pair<ObjCMethodList, ObjCMethodList> GlobalMethods;
typedef llvm::DenseMap<Selector, GlobalMethods> GlobalMethodPool;
/// Method Pool - allows efficient lookup when typechecking messages to "id".
/// We need to maintain a list, since selectors can have differing signatures
/// across classes. In Cocoa, this happens to be extremely uncommon (only 1%
/// of selectors are "overloaded").
GlobalMethodPool MethodPool;
/// Method selectors used in a @selector expression. Used for implementation
/// of -Wselector.
llvm::DenseMap<Selector, SourceLocation> ReferencedSelectors;
GlobalMethodPool::iterator ReadMethodPool(Selector Sel);
/// Private Helper predicate to check for 'self'.
bool isSelfExpr(Expr *RExpr);
public:
Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
TranslationUnitKind TUKind = TU_Complete,
CodeCompleteConsumer *CompletionConsumer = 0);
~Sema();
/// \brief Perform initialization that occurs after the parser has been
/// initialized but before it parses anything.
void Initialize();
const LangOptions &getLangOptions() const { return LangOpts; }
OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; }
FPOptions &getFPOptions() { return FPFeatures; }
DiagnosticsEngine &getDiagnostics() const { return Diags; }
SourceManager &getSourceManager() const { return SourceMgr; }
const TargetAttributesSema &getTargetAttributesSema() const;
Preprocessor &getPreprocessor() const { return PP; }
ASTContext &getASTContext() const { return Context; }
ASTConsumer &getASTConsumer() const { return Consumer; }
ASTMutationListener *getASTMutationListener() const;
void PrintStats() const;
/// \brief Helper class that creates diagnostics with optional
/// template instantiation stacks.
///
/// This class provides a wrapper around the basic DiagnosticBuilder
/// class that emits diagnostics. SemaDiagnosticBuilder is
/// responsible for emitting the diagnostic (as DiagnosticBuilder
/// does) and, if the diagnostic comes from inside a template
/// instantiation, printing the template instantiation stack as
/// well.
class SemaDiagnosticBuilder : public DiagnosticBuilder {
Sema &SemaRef;
unsigned DiagID;
public:
SemaDiagnosticBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID)
: DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) { }
explicit SemaDiagnosticBuilder(Sema &SemaRef)
: DiagnosticBuilder(DiagnosticBuilder::Suppress), SemaRef(SemaRef) { }
~SemaDiagnosticBuilder();
};
/// \brief Emit a diagnostic.
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
/// \brief Emit a partial diagnostic.
SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic& PD);
/// \brief Build a partial diagnostic.
PartialDiagnostic PDiag(unsigned DiagID = 0); // in SemaInternal.h
bool findMacroSpelling(SourceLocation &loc, StringRef name);
/// \brief Get a string to suggest for zero-initialization of a type.
const char *getFixItZeroInitializerForType(QualType T) const;
ExprResult Owned(Expr* E) { return E; }
ExprResult Owned(ExprResult R) { return R; }
StmtResult Owned(Stmt* S) { return S; }
void ActOnEndOfTranslationUnit();
void CheckDelegatingCtorCycles();
Scope *getScopeForContext(DeclContext *Ctx);
void PushFunctionScope();
void PushBlockScope(Scope *BlockScope, BlockDecl *Block);
void PushLambdaScope(CXXRecordDecl *Lambda);
void PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP =0,
const Decl *D = 0, const BlockExpr *blkExpr = 0);
sema::FunctionScopeInfo *getCurFunction() const {
return FunctionScopes.back();
}
bool hasAnyUnrecoverableErrorsInThisFunction() const;
/// \brief Retrieve the current block, if any.
sema::BlockScopeInfo *getCurBlock();
/// \brief Retrieve the current lambda expression, if any.
sema::LambdaScopeInfo *getCurLambda();
/// WeakTopLevelDeclDecls - access to #pragma weak-generated Decls
SmallVector<Decl*,2> &WeakTopLevelDecls() { return WeakTopLevelDecl; }
//===--------------------------------------------------------------------===//
// Type Analysis / Processing: SemaType.cpp.
//
QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs);
QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVR) {
return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR));
}
QualType BuildPointerType(QualType T,
SourceLocation Loc, DeclarationName Entity);
QualType BuildReferenceType(QualType T, bool LValueRef,
SourceLocation Loc, DeclarationName Entity);
QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
Expr *ArraySize, unsigned Quals,
SourceRange Brackets, DeclarationName Entity);
QualType BuildExtVectorType(QualType T, Expr *ArraySize,
SourceLocation AttrLoc);
QualType BuildFunctionType(QualType T,
QualType *ParamTypes, unsigned NumParamTypes,
bool Variadic, unsigned Quals,
RefQualifierKind RefQualifier,
SourceLocation Loc, DeclarationName Entity,
FunctionType::ExtInfo Info);
QualType BuildMemberPointerType(QualType T, QualType Class,
SourceLocation Loc,
DeclarationName Entity);
QualType BuildBlockPointerType(QualType T,
SourceLocation Loc, DeclarationName Entity);
QualType BuildParenType(QualType T);
QualType BuildAtomicType(QualType T, SourceLocation Loc);
TypeSourceInfo *GetTypeForDeclarator(Declarator &D, Scope *S);
TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy);
TypeSourceInfo *GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
TypeSourceInfo *ReturnTypeInfo);
/// \brief Package the given type and TSI into a ParsedType.
ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo);
DeclarationNameInfo GetNameForDeclarator(Declarator &D);
DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name);
static QualType GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo = 0);
bool CheckSpecifiedExceptionType(QualType T, const SourceRange &Range);
bool CheckDistantExceptionSpec(QualType T);
bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New);
bool CheckEquivalentExceptionSpec(
const FunctionProtoType *Old, SourceLocation OldLoc,
const FunctionProtoType *New, SourceLocation NewLoc);
bool CheckEquivalentExceptionSpec(
const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
const FunctionProtoType *Old, SourceLocation OldLoc,
const FunctionProtoType *New, SourceLocation NewLoc,
bool *MissingExceptionSpecification = 0,
bool *MissingEmptyExceptionSpecification = 0,
bool AllowNoexceptAllMatchWithNoSpec = false,
bool IsOperatorNew = false);
bool CheckExceptionSpecSubset(
const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
const FunctionProtoType *Superset, SourceLocation SuperLoc,
const FunctionProtoType *Subset, SourceLocation SubLoc);
bool CheckParamExceptionSpec(const PartialDiagnostic & NoteID,
const FunctionProtoType *Target, SourceLocation TargetLoc,
const FunctionProtoType *Source, SourceLocation SourceLoc);
TypeResult ActOnTypeName(Scope *S, Declarator &D);
/// \brief The parser has parsed the context-sensitive type 'instancetype'
/// in an Objective-C message declaration. Return the appropriate type.
ParsedType ActOnObjCInstanceType(SourceLocation Loc);
bool RequireCompleteType(SourceLocation Loc, QualType T,
const PartialDiagnostic &PD,
std::pair<SourceLocation, PartialDiagnostic> Note);
bool RequireCompleteType(SourceLocation Loc, QualType T,
const PartialDiagnostic &PD);
bool RequireCompleteType(SourceLocation Loc, QualType T,
unsigned DiagID);
bool RequireCompleteExprType(Expr *E, const PartialDiagnostic &PD,
std::pair<SourceLocation,
PartialDiagnostic> Note);
bool RequireLiteralType(SourceLocation Loc, QualType T,
const PartialDiagnostic &PD,
bool AllowIncompleteType = false);
QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
const CXXScopeSpec &SS, QualType T);
QualType BuildTypeofExprType(Expr *E, SourceLocation Loc);
QualType BuildDecltypeType(Expr *E, SourceLocation Loc);
QualType BuildUnaryTransformType(QualType BaseType,
UnaryTransformType::UTTKind UKind,
SourceLocation Loc);
//===--------------------------------------------------------------------===//
// Symbol table / Decl tracking callbacks: SemaDecl.cpp.
//
DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = 0);
void DiagnoseUseOfUnimplementedSelectors();
ParsedType getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
Scope *S, CXXScopeSpec *SS = 0,
bool isClassName = false,
bool HasTrailingDot = false,
ParsedType ObjectType = ParsedType(),
bool WantNontrivialTypeSourceInfo = false,
IdentifierInfo **CorrectedII = 0);
TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S);
bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S);
bool DiagnoseUnknownTypeName(const IdentifierInfo &II,
SourceLocation IILoc,
Scope *S,
CXXScopeSpec *SS,
ParsedType &SuggestedType);
/// \brief Describes the result of the name lookup and resolution performed
/// by \c ClassifyName().
enum NameClassificationKind {
NC_Unknown,
NC_Error,
NC_Keyword,
NC_Type,
NC_Expression,
NC_NestedNameSpecifier,
NC_TypeTemplate,
NC_FunctionTemplate
};
class NameClassification {
NameClassificationKind Kind;
ExprResult Expr;
TemplateName Template;
ParsedType Type;
const IdentifierInfo *Keyword;
explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {}
public:
NameClassification(ExprResult Expr) : Kind(NC_Expression), Expr(Expr) {}
NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {}
NameClassification(const IdentifierInfo *Keyword)
: Kind(NC_Keyword), Keyword(Keyword) { }
static NameClassification Error() {
return NameClassification(NC_Error);
}
static NameClassification Unknown() {
return NameClassification(NC_Unknown);
}
static NameClassification NestedNameSpecifier() {
return NameClassification(NC_NestedNameSpecifier);
}
static NameClassification TypeTemplate(TemplateName Name) {
NameClassification Result(NC_TypeTemplate);
Result.Template = Name;
return Result;
}
static NameClassification FunctionTemplate(TemplateName Name) {
NameClassification Result(NC_FunctionTemplate);
Result.Template = Name;
return Result;
}
NameClassificationKind getKind() const { return Kind; }
ParsedType getType() const {
assert(Kind == NC_Type);
return Type;
}
ExprResult getExpression() const {
assert(Kind == NC_Expression);
return Expr;
}
TemplateName getTemplateName() const {
assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate);
return Template;
}
TemplateNameKind getTemplateNameKind() const {
assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate);
return Kind == NC_TypeTemplate? TNK_Type_template : TNK_Function_template;
}
};
/// \brief Perform name lookup on the given name, classifying it based on
/// the results of name lookup and the following token.
///
/// This routine is used by the parser to resolve identifiers and help direct
/// parsing. When the identifier cannot be found, this routine will attempt
/// to correct the typo and classify based on the resulting name.
///
/// \param S The scope in which we're performing name lookup.
///
/// \param SS The nested-name-specifier that precedes the name.
///
/// \param Name The identifier. If typo correction finds an alternative name,
/// this pointer parameter will be updated accordingly.
///
/// \param NameLoc The location of the identifier.
///
/// \param NextToken The token following the identifier. Used to help
/// disambiguate the name.
NameClassification ClassifyName(Scope *S,
CXXScopeSpec &SS,
IdentifierInfo *&Name,
SourceLocation NameLoc,
const Token &NextToken);
Decl *ActOnDeclarator(Scope *S, Declarator &D);
Decl *HandleDeclarator(Scope *S, Declarator &D,
MultiTemplateParamsArg TemplateParameterLists);
void RegisterLocallyScopedExternCDecl(NamedDecl *ND,
const LookupResult &Previous,
Scope *S);
bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info);
void DiagnoseFunctionSpecifiers(Declarator& D);
void CheckShadow(Scope *S, VarDecl *D, const LookupResult& R);
void CheckShadow(Scope *S, VarDecl *D);
void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange);
void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D);
NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
TypeSourceInfo *TInfo,
LookupResult &Previous);
NamedDecl* ActOnTypedefNameDecl(Scope* S, DeclContext* DC, TypedefNameDecl *D,
LookupResult &Previous, bool &Redeclaration);
NamedDecl* ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
TypeSourceInfo *TInfo,
LookupResult &Previous,
MultiTemplateParamsArg TemplateParamLists);
// Returns true if the variable declaration is a redeclaration
bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous);
void CheckCompleteVariableDeclaration(VarDecl *var);
NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
TypeSourceInfo *TInfo,
LookupResult &Previous,
MultiTemplateParamsArg TemplateParamLists,
bool &AddToScope);
bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD);
/// \brief The kind of constexpr declaration checking we are performing.
///
/// The kind affects which diagnostics (if any) are emitted if the function
/// does not satisfy the requirements of a constexpr function declaration.
enum CheckConstexprKind {
/// \brief Check a constexpr function declaration, and produce errors if it
/// does not satisfy the requirements.
CCK_Declaration,
/// \brief Check a constexpr function template instantiation.
CCK_Instantiation,
/// \brief Produce notes explaining why an instantiation was not constexpr.
CCK_NoteNonConstexprInstantiation
};
bool CheckConstexprFunctionDecl(const FunctionDecl *FD,
CheckConstexprKind CCK);
bool CheckConstexprFunctionBody(const FunctionDecl *FD, Stmt *Body);
void DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD);
// Returns true if the function declaration is a redeclaration
bool CheckFunctionDeclaration(Scope *S,
FunctionDecl *NewFD, LookupResult &Previous,
bool IsExplicitSpecialization);
void CheckMain(FunctionDecl *FD, const DeclSpec &D);
Decl *ActOnParamDeclarator(Scope *S, Declarator &D);
ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC,
SourceLocation Loc,
QualType T);
ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc,
SourceLocation NameLoc, IdentifierInfo *Name,
QualType T, TypeSourceInfo *TSInfo,
StorageClass SC, StorageClass SCAsWritten);
void ActOnParamDefaultArgument(Decl *param,
SourceLocation EqualLoc,
Expr *defarg);
void ActOnParamUnparsedDefaultArgument(Decl *param,
SourceLocation EqualLoc,
SourceLocation ArgLoc);
void ActOnParamDefaultArgumentError(Decl *param);
bool SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
SourceLocation EqualLoc);
void CheckSelfReference(Decl *OrigDecl, Expr *E);
void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit,
bool TypeMayContainAuto);
void ActOnUninitializedDecl(Decl *dcl, bool TypeMayContainAuto);
void ActOnInitializerError(Decl *Dcl);
void ActOnCXXForRangeDecl(Decl *D);
void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc);
void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc);
void FinalizeDeclaration(Decl *D);
DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
Decl **Group,
unsigned NumDecls);
DeclGroupPtrTy BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
bool TypeMayContainAuto = true);
void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
SourceLocation LocAfterDecls);
void CheckForFunctionRedefinition(FunctionDecl *FD);
Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D);
Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D);
void ActOnStartOfObjCMethodDef(Scope *S, Decl *D);
void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope);
Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body);
Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation);
/// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an
/// attribute for which parsing is delayed.
void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs);
/// \brief Diagnose any unused parameters in the given sequence of
/// ParmVarDecl pointers.
void DiagnoseUnusedParameters(ParmVarDecl * const *Begin,
ParmVarDecl * const *End);
/// \brief Diagnose whether the size of parameters or return value of a
/// function or obj-c method definition is pass-by-value and larger than a
/// specified threshold.
void DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Begin,
ParmVarDecl * const *End,
QualType ReturnTy,
NamedDecl *D);
void DiagnoseInvalidJumps(Stmt *Body);
Decl *ActOnFileScopeAsmDecl(Expr *expr,
SourceLocation AsmLoc,
SourceLocation RParenLoc);
/// \brief The parser has processed a module import declaration.
///
/// \param AtLoc The location of the '@' symbol, if any.
///
/// \param ImportLoc The location of the 'import' keyword.
///
/// \param Path The module access path.
DeclResult ActOnModuleImport(SourceLocation AtLoc, SourceLocation ImportLoc,
ModuleIdPath Path);
/// \brief Retrieve a suitable printing policy.
PrintingPolicy getPrintingPolicy() const;
/// Scope actions.
void ActOnPopScope(SourceLocation Loc, Scope *S);
void ActOnTranslationUnitScope(Scope *S);
Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
DeclSpec &DS);
Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
DeclSpec &DS,
MultiTemplateParamsArg TemplateParams);
Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
AccessSpecifier AS,
RecordDecl *Record);
Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
RecordDecl *Record);
bool isAcceptableTagRedeclaration(const TagDecl *Previous,
TagTypeKind NewTag, bool isDefinition,
SourceLocation NewTagLoc,
const IdentifierInfo &Name);
enum TagUseKind {
TUK_Reference, // Reference to a tag: 'struct foo *X;'
TUK_Declaration, // Fwd decl of a tag: 'struct foo;'
TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;'
TUK_Friend // Friend declaration: 'friend struct foo;'
};
Decl *ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
SourceLocation KWLoc, CXXScopeSpec &SS,
IdentifierInfo *Name, SourceLocation NameLoc,
AttributeList *Attr, AccessSpecifier AS,
SourceLocation ModulePrivateLoc,
MultiTemplateParamsArg TemplateParameterLists,
bool &OwnedDecl, bool &IsDependent,
SourceLocation ScopedEnumKWLoc,
bool ScopedEnumUsesClassTag, TypeResult UnderlyingType);
Decl *ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
unsigned TagSpec, SourceLocation TagLoc,
CXXScopeSpec &SS,
IdentifierInfo *Name, SourceLocation NameLoc,
AttributeList *Attr,
MultiTemplateParamsArg TempParamLists);
TypeResult ActOnDependentTag(Scope *S,
unsigned TagSpec,
TagUseKind TUK,
const CXXScopeSpec &SS,
IdentifierInfo *Name,
SourceLocation TagLoc,
SourceLocation NameLoc);
void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
IdentifierInfo *ClassName,
SmallVectorImpl<Decl *> &Decls);
Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
Declarator &D, Expr *BitfieldWidth);
FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart,
Declarator &D, Expr *BitfieldWidth, bool HasInit,
AccessSpecifier AS);
FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T,
TypeSourceInfo *TInfo,
RecordDecl *Record, SourceLocation Loc,
bool Mutable, Expr *BitfieldWidth, bool HasInit,
SourceLocation TSSL,
AccessSpecifier AS, NamedDecl *PrevDecl,
Declarator *D = 0);
enum CXXSpecialMember {
CXXDefaultConstructor,
CXXCopyConstructor,
CXXMoveConstructor,
CXXCopyAssignment,
CXXMoveAssignment,
CXXDestructor,
CXXInvalid
};
bool CheckNontrivialField(FieldDecl *FD);
void DiagnoseNontrivial(const RecordType* Record, CXXSpecialMember mem);
CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD);
void ActOnLastBitfield(SourceLocation DeclStart,
SmallVectorImpl<Decl *> &AllIvarDecls);
Decl *ActOnIvar(Scope *S, SourceLocation DeclStart,
Declarator &D, Expr *BitfieldWidth,
tok::ObjCKeywordKind visibility);
// This is used for both record definitions and ObjC interface declarations.
void ActOnFields(Scope* S, SourceLocation RecLoc, Decl *TagDecl,
llvm::ArrayRef<Decl *> Fields,
SourceLocation LBrac, SourceLocation RBrac,
AttributeList *AttrList);
/// ActOnTagStartDefinition - Invoked when we have entered the
/// scope of a tag's definition (e.g., for an enumeration, class,
/// struct, or union).
void ActOnTagStartDefinition(Scope *S, Decl *TagDecl);
Decl *ActOnObjCContainerStartDefinition(Decl *IDecl);
/// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a
/// C++ record definition's base-specifiers clause and are starting its
/// member declarations.
void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl,
SourceLocation FinalLoc,
SourceLocation LBraceLoc);
/// ActOnTagFinishDefinition - Invoked once we have finished parsing
/// the definition of a tag (enumeration, class, struct, or union).
void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl,
SourceLocation RBraceLoc);
void ActOnObjCContainerFinishDefinition();
/// \brief Invoked when we must temporarily exit the objective-c container
/// scope for parsing/looking-up C constructs.
///
/// Must be followed by a call to \see ActOnObjCReenterContainerContext
void ActOnObjCTemporaryExitContainerContext(DeclContext *DC);
void ActOnObjCReenterContainerContext(DeclContext *DC);
/// ActOnTagDefinitionError - Invoked when there was an unrecoverable
/// error parsing the definition of a tag.
void ActOnTagDefinitionError(Scope *S, Decl *TagDecl);
EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum,
EnumConstantDecl *LastEnumConst,
SourceLocation IdLoc,
IdentifierInfo *Id,
Expr *val);
Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant,
SourceLocation IdLoc, IdentifierInfo *Id,
AttributeList *Attrs,
SourceLocation EqualLoc, Expr *Val);
void ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
SourceLocation RBraceLoc, Decl *EnumDecl,
Decl **Elements, unsigned NumElements,
Scope *S, AttributeList *Attr);
DeclContext *getContainingDC(DeclContext *DC);
/// Set the current declaration context until it gets popped.
void PushDeclContext(Scope *S, DeclContext *DC);
void PopDeclContext();
/// EnterDeclaratorContext - Used when we must lookup names in the context
/// of a declarator's nested name specifier.
void EnterDeclaratorContext(Scope *S, DeclContext *DC);
void ExitDeclaratorContext(Scope *S);
/// Push the parameters of D, which must be a function, into scope.
void ActOnReenterFunctionContext(Scope* S, Decl* D);
void ActOnExitFunctionContext() { PopDeclContext(); }
DeclContext *getFunctionLevelDeclContext();
/// getCurFunctionDecl - If inside of a function body, this returns a pointer
/// to the function decl for the function being parsed. If we're currently
/// in a 'block', this returns the containing context.
FunctionDecl *getCurFunctionDecl();
/// getCurMethodDecl - If inside of a method body, this returns a pointer to
/// the method decl for the method being parsed. If we're currently
/// in a 'block', this returns the containing context.
ObjCMethodDecl *getCurMethodDecl();
/// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method
/// or C function we're in, otherwise return null. If we're currently
/// in a 'block', this returns the containing context.
NamedDecl *getCurFunctionOrMethodDecl();
/// Add this decl to the scope shadowed decl chains.
void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true);
/// \brief Make the given externally-produced declaration visible at the
/// top level scope.
///
/// \param D The externally-produced declaration to push.
///
/// \param Name The name of the externally-produced declaration.
void pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name);
/// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true
/// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns
/// true if 'D' belongs to the given declaration context.
///
/// \param ExplicitInstantiationOrSpecialization When true, we are checking
/// whether the declaration is in scope for the purposes of explicit template
/// instantiation or specialization. The default is false.
bool isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S = 0,
bool ExplicitInstantiationOrSpecialization = false);
/// Finds the scope corresponding to the given decl context, if it
/// happens to be an enclosing scope. Otherwise return NULL.
static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC);
/// Subroutines of ActOnDeclarator().
TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
TypeSourceInfo *TInfo);
bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New);
void mergeDeclAttributes(Decl *New, Decl *Old, bool MergeDeprecation = true);
void MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls);
bool MergeFunctionDecl(FunctionDecl *New, Decl *Old);
bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old);
void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old);
void MergeVarDecl(VarDecl *New, LookupResult &OldDecls);
void MergeVarDeclTypes(VarDecl *New, VarDecl *Old);
void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old);
bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old);
// AssignmentAction - This is used by all the assignment diagnostic functions
// to represent what is actually causing the operation
enum AssignmentAction {
AA_Assigning,
AA_Passing,
AA_Returning,
AA_Converting,
AA_Initializing,
AA_Sending,
AA_Casting
};
/// C++ Overloading.
enum OverloadKind {
/// This is a legitimate overload: the existing declarations are
/// functions or function templates with different signatures.
Ovl_Overload,
/// This is not an overload because the signature exactly matches
/// an existing declaration.
Ovl_Match,
/// This is not an overload because the lookup results contain a
/// non-function.
Ovl_NonFunction
};
OverloadKind CheckOverload(Scope *S,
FunctionDecl *New,
const LookupResult &OldDecls,
NamedDecl *&OldDecl,
bool IsForUsingDecl);
bool IsOverload(FunctionDecl *New, FunctionDecl *Old, bool IsForUsingDecl);
/// \brief Checks availability of the function depending on the current
/// function context.Inside an unavailable function,unavailability is ignored.
///
/// \returns true if \arg FD is unavailable and current context is inside
/// an available function, false otherwise.
bool isFunctionConsideredUnavailable(FunctionDecl *FD);
ImplicitConversionSequence
TryImplicitConversion(Expr *From, QualType ToType,
bool SuppressUserConversions,
bool AllowExplicit,
bool InOverloadResolution,
bool CStyle,
bool AllowObjCWritebackConversion);
bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType);
bool IsFloatingPointPromotion(QualType FromType, QualType ToType);
bool IsComplexPromotion(QualType FromType, QualType ToType);
bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
bool InOverloadResolution,
QualType& ConvertedType, bool &IncompatibleObjC);
bool isObjCPointerConversion(QualType FromType, QualType ToType,
QualType& ConvertedType, bool &IncompatibleObjC);
bool isObjCWritebackConversion(QualType FromType, QualType ToType,
QualType &ConvertedType);
bool IsBlockPointerConversion(QualType FromType, QualType ToType,
QualType& ConvertedType);
bool FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
const FunctionProtoType *NewType,
unsigned *ArgPos = 0);
void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
QualType FromType, QualType ToType);
CastKind PrepareCastToObjCObjectPointer(ExprResult &E);
bool CheckPointerConversion(Expr *From, QualType ToType,
CastKind &Kind,
CXXCastPath& BasePath,
bool IgnoreBaseAccess);
bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType,
bool InOverloadResolution,
QualType &ConvertedType);
bool CheckMemberPointerConversion(Expr *From, QualType ToType,
CastKind &Kind,
CXXCastPath &BasePath,
bool IgnoreBaseAccess);
bool IsQualificationConversion(QualType FromType, QualType ToType,
bool CStyle, bool &ObjCLifetimeConversion);
bool IsNoReturnConversion(QualType FromType, QualType ToType,
QualType &ResultTy);
bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType);
ExprResult PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
const VarDecl *NRVOCandidate,
QualType ResultType,
Expr *Value,
bool AllowNRVO = true);
bool CanPerformCopyInitialization(const InitializedEntity &Entity,
ExprResult Init);
ExprResult PerformCopyInitialization(const InitializedEntity &Entity,
SourceLocation EqualLoc,
ExprResult Init,
bool TopLevelOfInitList = false);
ExprResult PerformObjectArgumentInitialization(Expr *From,
NestedNameSpecifier *Qualifier,
NamedDecl *FoundDecl,
CXXMethodDecl *Method);
ExprResult PerformContextuallyConvertToBool(Expr *From);
ExprResult PerformContextuallyConvertToObjCPointer(Expr *From);
ExprResult
ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *FromE,
const PartialDiagnostic &NotIntDiag,
const PartialDiagnostic &IncompleteDiag,
const PartialDiagnostic &ExplicitConvDiag,
const PartialDiagnostic &ExplicitConvNote,
const PartialDiagnostic &AmbigDiag,
const PartialDiagnostic &AmbigNote,
const PartialDiagnostic &ConvDiag);
ExprResult PerformObjectMemberConversion(Expr *From,
NestedNameSpecifier *Qualifier,
NamedDecl *FoundDecl,
NamedDecl *Member);
// Members have to be NamespaceDecl* or TranslationUnitDecl*.
// TODO: make this is a typesafe union.
typedef llvm::SmallPtrSet<DeclContext *, 16> AssociatedNamespaceSet;
typedef llvm::SmallPtrSet<CXXRecordDecl *, 16> AssociatedClassSet;
void AddOverloadCandidate(NamedDecl *Function,
DeclAccessPair FoundDecl,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet &CandidateSet);
void AddOverloadCandidate(FunctionDecl *Function,
DeclAccessPair FoundDecl,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false,
bool PartialOverloading = false);
void AddFunctionCandidates(const UnresolvedSetImpl &Functions,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false);
void AddMethodCandidate(DeclAccessPair FoundDecl,
QualType ObjectType,
Expr::Classification ObjectClassification,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversion = false);
void AddMethodCandidate(CXXMethodDecl *Method,
DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext, QualType ObjectType,
Expr::Classification ObjectClassification,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false);
void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext,
TemplateArgumentListInfo *ExplicitTemplateArgs,
QualType ObjectType,
Expr::Classification ObjectClassification,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false);
void AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
DeclAccessPair FoundDecl,
TemplateArgumentListInfo *ExplicitTemplateArgs,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false);
void AddConversionCandidate(CXXConversionDecl *Conversion,
DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext,
Expr *From, QualType ToType,
OverloadCandidateSet& CandidateSet);
void AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext,
Expr *From, QualType ToType,
OverloadCandidateSet &CandidateSet);
void AddSurrogateCandidate(CXXConversionDecl *Conversion,
DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext,
const FunctionProtoType *Proto,
Expr *Object, Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet);
void AddMemberOperatorCandidates(OverloadedOperatorKind Op,
SourceLocation OpLoc,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
SourceRange OpRange = SourceRange());
void AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
bool IsAssignmentOperator = false,
unsigned NumContextualBoolArguments = 0);
void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
SourceLocation OpLoc,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet);
void AddArgumentDependentLookupCandidates(DeclarationName Name,
bool Operator,
Expr **Args, unsigned NumArgs,
TemplateArgumentListInfo *ExplicitTemplateArgs,
OverloadCandidateSet& CandidateSet,
bool PartialOverloading = false,
bool StdNamespaceIsAssociated = false);
// Emit as a 'note' the specific overload candidate
void NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType = QualType());
// Emit as a series of 'note's all template and non-templates
// identified by the expression Expr
void NoteAllOverloadCandidates(Expr* E, QualType DestType = QualType());
// [PossiblyAFunctionType] --> [Return]
// NonFunctionType --> NonFunctionType
// R (A) --> R(A)
// R (*)(A) --> R (A)
// R (&)(A) --> R (A)
// R (S::*)(A) --> R (A)
QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType);
FunctionDecl *
ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
QualType TargetType,
bool Complain,
DeclAccessPair &Found,
bool *pHadMultipleCandidates = 0);
FunctionDecl *ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
bool Complain = false,
DeclAccessPair* Found = 0);
bool ResolveAndFixSingleFunctionTemplateSpecialization(
ExprResult &SrcExpr,
bool DoFunctionPointerConverion = false,
bool Complain = false,
const SourceRange& OpRangeForComplaining = SourceRange(),
QualType DestTypeForComplaining = QualType(),
unsigned DiagIDForComplaining = 0);
Expr *FixOverloadedFunctionReference(Expr *E,
DeclAccessPair FoundDecl,
FunctionDecl *Fn);
ExprResult FixOverloadedFunctionReference(ExprResult,
DeclAccessPair FoundDecl,
FunctionDecl *Fn);
void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet &CandidateSet,
bool PartialOverloading = false);
ExprResult BuildOverloadedCallExpr(Scope *S, Expr *Fn,
UnresolvedLookupExpr *ULE,
SourceLocation LParenLoc,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc,
Expr *ExecConfig);
ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc,
unsigned Opc,
const UnresolvedSetImpl &Fns,
Expr *input);
ExprResult CreateOverloadedBinOp(SourceLocation OpLoc,
unsigned Opc,
const UnresolvedSetImpl &Fns,
Expr *LHS, Expr *RHS);
ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
SourceLocation RLoc,
Expr *Base,Expr *Idx);
ExprResult
BuildCallToMemberFunction(Scope *S, Expr *MemExpr,
SourceLocation LParenLoc, Expr **Args,
unsigned NumArgs, SourceLocation RParenLoc);
ExprResult
BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc);
ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base,
SourceLocation OpLoc);
/// CheckCallReturnType - Checks that a call expression's return type is
/// complete. Returns true on failure. The location passed in is the location
/// that best represents the call.
bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
CallExpr *CE, FunctionDecl *FD);
/// Helpers for dealing with blocks and functions.
bool CheckParmsForFunctionDef(ParmVarDecl **Param, ParmVarDecl **ParamEnd,
bool CheckParameterNames);
void CheckCXXDefaultArguments(FunctionDecl *FD);
void CheckExtraCXXDefaultArguments(Declarator &D);
Scope *getNonFieldDeclScope(Scope *S);
/// \name Name lookup
///
/// These routines provide name lookup that is used during semantic
/// analysis to resolve the various kinds of names (identifiers,
/// overloaded operator names, constructor names, etc.) into zero or
/// more declarations within a particular scope. The major entry
/// points are LookupName, which performs unqualified name lookup,
/// and LookupQualifiedName, which performs qualified name lookup.
///
/// All name lookup is performed based on some specific criteria,
/// which specify what names will be visible to name lookup and how
/// far name lookup should work. These criteria are important both
/// for capturing language semantics (certain lookups will ignore
/// certain names, for example) and for performance, since name
/// lookup is often a bottleneck in the compilation of C++. Name
/// lookup criteria is specified via the LookupCriteria enumeration.
///
/// The results of name lookup can vary based on the kind of name
/// lookup performed, the current language, and the translation
/// unit. In C, for example, name lookup will either return nothing
/// (no entity found) or a single declaration. In C++, name lookup
/// can additionally refer to a set of overloaded functions or
/// result in an ambiguity. All of the possible results of name
/// lookup are captured by the LookupResult class, which provides
/// the ability to distinguish among them.
//@{
/// @brief Describes the kind of name lookup to perform.
enum LookupNameKind {
/// Ordinary name lookup, which finds ordinary names (functions,
/// variables, typedefs, etc.) in C and most kinds of names
/// (functions, variables, members, types, etc.) in C++.
LookupOrdinaryName = 0,
/// Tag name lookup, which finds the names of enums, classes,
/// structs, and unions.
LookupTagName,
/// Label name lookup.
LookupLabel,
/// Member name lookup, which finds the names of
/// class/struct/union members.
LookupMemberName,
/// Look up of an operator name (e.g., operator+) for use with
/// operator overloading. This lookup is similar to ordinary name
/// lookup, but will ignore any declarations that are class members.
LookupOperatorName,
/// Look up of a name that precedes the '::' scope resolution
/// operator in C++. This lookup completely ignores operator, object,
/// function, and enumerator names (C++ [basic.lookup.qual]p1).
LookupNestedNameSpecifierName,
/// Look up a namespace name within a C++ using directive or
/// namespace alias definition, ignoring non-namespace names (C++
/// [basic.lookup.udir]p1).
LookupNamespaceName,
/// Look up all declarations in a scope with the given name,
/// including resolved using declarations. This is appropriate
/// for checking redeclarations for a using declaration.
LookupUsingDeclName,
/// Look up an ordinary name that is going to be redeclared as a
/// name with linkage. This lookup ignores any declarations that
/// are outside of the current scope unless they have linkage. See
/// C99 6.2.2p4-5 and C++ [basic.link]p6.
LookupRedeclarationWithLinkage,
/// Look up the name of an Objective-C protocol.
LookupObjCProtocolName,
/// Look up implicit 'self' parameter of an objective-c method.
LookupObjCImplicitSelfParam,
/// \brief Look up any declaration with any name.
LookupAnyName
};
/// \brief Specifies whether (or how) name lookup is being performed for a
/// redeclaration (vs. a reference).
enum RedeclarationKind {
/// \brief The lookup is a reference to this name that is not for the
/// purpose of redeclaring the name.
NotForRedeclaration = 0,
/// \brief The lookup results will be used for redeclaration of a name,
/// if an entity by that name already exists.
ForRedeclaration
};
private:
bool CppLookupName(LookupResult &R, Scope *S);
SpecialMemberOverloadResult *LookupSpecialMember(CXXRecordDecl *D,
CXXSpecialMember SM,
bool ConstArg,
bool VolatileArg,
bool RValueThis,
bool ConstThis,
bool VolatileThis);
// \brief The set of known/encountered (unique, canonicalized) NamespaceDecls.
//
// The boolean value will be true to indicate that the namespace was loaded
// from an AST/PCH file, or false otherwise.
llvm::DenseMap<NamespaceDecl*, bool> KnownNamespaces;
/// \brief Whether we have already loaded known namespaces from an extenal
/// source.
bool LoadedExternalKnownNamespaces;
public:
/// \brief Look up a name, looking for a single declaration. Return
/// null if the results were absent, ambiguous, or overloaded.
///
/// It is preferable to use the elaborated form and explicitly handle
/// ambiguity and overloaded.
NamedDecl *LookupSingleName(Scope *S, DeclarationName Name,
SourceLocation Loc,
LookupNameKind NameKind,
RedeclarationKind Redecl
= NotForRedeclaration);
bool LookupName(LookupResult &R, Scope *S,
bool AllowBuiltinCreation = false);
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
bool InUnqualifiedLookup = false);
bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
bool AllowBuiltinCreation = false,
bool EnteringContext = false);
ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc,
RedeclarationKind Redecl
= NotForRedeclaration);
void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
QualType T1, QualType T2,
UnresolvedSetImpl &Functions);
LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc,
SourceLocation GnuLabelLoc = SourceLocation());
DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class);
CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class);
CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class,
unsigned Quals,
bool *ConstParam = 0);
CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals,
bool RValueThis, unsigned ThisQuals,
bool *ConstParam = 0);
CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class);
CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, bool RValueThis,
unsigned ThisQuals);
CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class);
void ArgumentDependentLookup(DeclarationName Name, bool Operator,
Expr **Args, unsigned NumArgs,
ADLResult &Functions,
bool StdNamespaceIsAssociated = false);
void LookupVisibleDecls(Scope *S, LookupNameKind Kind,
VisibleDeclConsumer &Consumer,
bool IncludeGlobalScope = true);
void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
VisibleDeclConsumer &Consumer,
bool IncludeGlobalScope = true);
/// \brief The context in which typo-correction occurs.
///
/// The typo-correction context affects which keywords (if any) are
/// considered when trying to correct for typos.
enum CorrectTypoContext {
/// \brief An unknown context, where any keyword might be valid.
CTC_Unknown,
/// \brief A context where no keywords are used (e.g. we expect an actual
/// name).
CTC_NoKeywords,
/// \brief A context where we're correcting a type name.
CTC_Type,
/// \brief An expression context.
CTC_Expression,
/// \brief A type cast, or anything else that can be followed by a '<'.
CTC_CXXCasts,
/// \brief A member lookup context.
CTC_MemberLookup,
/// \brief An Objective-C ivar lookup context (e.g., self->ivar).
CTC_ObjCIvarLookup,
/// \brief An Objective-C property lookup context (e.g., self.prop).
CTC_ObjCPropertyLookup,
/// \brief The receiver of an Objective-C message send within an
/// Objective-C method where 'super' is a valid keyword.
CTC_ObjCMessageReceiver
};
TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo,
Sema::LookupNameKind LookupKind,
Scope *S, CXXScopeSpec *SS,
DeclContext *MemberContext = 0,
bool EnteringContext = false,
CorrectTypoContext CTC = CTC_Unknown,
const ObjCObjectPointerType *OPT = 0);
TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo,
Sema::LookupNameKind LookupKind,
Scope *S, CXXScopeSpec *SS,
CorrectionCandidateCallback *CCC,
DeclContext *MemberContext = 0,
bool EnteringContext = false,
const ObjCObjectPointerType *OPT = 0);
void FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
AssociatedNamespaceSet &AssociatedNamespaces,
AssociatedClassSet &AssociatedClasses);
void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
bool ConsiderLinkage,
bool ExplicitInstantiationOrSpecialization);
bool DiagnoseAmbiguousLookup(LookupResult &Result);
//@}
ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *&Id,
SourceLocation IdLoc,
bool TypoCorrection = false);
NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
Scope *S, bool ForRedeclaration,
SourceLocation Loc);
NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
Scope *S);
void AddKnownFunctionAttributes(FunctionDecl *FD);
// More parsing and symbol table subroutines.
// Decl attributes - this routine is the top level dispatcher.
void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD,
bool NonInheritable = true, bool Inheritable = true);
void ProcessDeclAttributeList(Scope *S, Decl *D, const AttributeList *AL,
bool NonInheritable = true, bool Inheritable = true);
bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
const AttributeList *AttrList);
void checkUnusedDeclAttributes(Declarator &D);
bool CheckRegparmAttr(const AttributeList &attr, unsigned &value);
bool CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC);
bool CheckNoReturnAttr(const AttributeList &attr);
void WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
bool &IncompleteImpl, unsigned DiagID);
void WarnConflictingTypedMethods(ObjCMethodDecl *Method,
ObjCMethodDecl *MethodDecl,
bool IsProtocolMethodDecl);
void CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
ObjCMethodDecl *Overridden,
bool IsProtocolMethodDecl);
/// WarnExactTypedMethods - This routine issues a warning if method
/// implementation declaration matches exactly that of its declaration.
void WarnExactTypedMethods(ObjCMethodDecl *Method,
ObjCMethodDecl *MethodDecl,
bool IsProtocolMethodDecl);
bool isPropertyReadonly(ObjCPropertyDecl *PropertyDecl,
ObjCInterfaceDecl *IDecl);
typedef llvm::DenseSet<Selector, llvm::DenseMapInfo<Selector> > SelectorSet;
typedef llvm::DenseMap<Selector, ObjCMethodDecl*> ProtocolsMethodsMap;
/// CheckProtocolMethodDefs - This routine checks unimplemented
/// methods declared in protocol, and those referenced by it.
/// \param IDecl - Used for checking for methods which may have been
/// inherited.
void CheckProtocolMethodDefs(SourceLocation ImpLoc,
ObjCProtocolDecl *PDecl,
bool& IncompleteImpl,
const SelectorSet &InsMap,
const SelectorSet &ClsMap,
ObjCContainerDecl *CDecl);
/// CheckImplementationIvars - This routine checks if the instance variables
/// listed in the implelementation match those listed in the interface.
void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
ObjCIvarDecl **Fields, unsigned nIvars,
SourceLocation Loc);
/// ImplMethodsVsClassMethods - This is main routine to warn if any method
/// remains unimplemented in the class or category @implementation.
void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
ObjCContainerDecl* IDecl,
bool IncompleteImpl = false);
/// DiagnoseUnimplementedProperties - This routine warns on those properties
/// which must be implemented by this implementation.
void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl,
ObjCContainerDecl *CDecl,
const SelectorSet &InsMap);
/// DefaultSynthesizeProperties - This routine default synthesizes all
/// properties which must be synthesized in class's @implementation.
void DefaultSynthesizeProperties (Scope *S, ObjCImplDecl* IMPDecl,
ObjCInterfaceDecl *IDecl);
void DefaultSynthesizeProperties(Scope *S, Decl *D);
/// CollectImmediateProperties - This routine collects all properties in
/// the class and its conforming protocols; but not those it its super class.
void CollectImmediateProperties(ObjCContainerDecl *CDecl,
llvm::DenseMap<IdentifierInfo *, ObjCPropertyDecl*>& PropMap,
llvm::DenseMap<IdentifierInfo *, ObjCPropertyDecl*>& SuperPropMap);
/// LookupPropertyDecl - Looks up a property in the current class and all
/// its protocols.
ObjCPropertyDecl *LookupPropertyDecl(const ObjCContainerDecl *CDecl,
IdentifierInfo *II);
/// Called by ActOnProperty to handle @property declarations in
//// class extensions.
Decl *HandlePropertyInClassExtension(Scope *S,
SourceLocation AtLoc,
FieldDeclarator &FD,
Selector GetterSel,
Selector SetterSel,
const bool isAssign,
const bool isReadWrite,
const unsigned Attributes,
const unsigned AttributesAsWritten,
bool *isOverridingProperty,
TypeSourceInfo *T,
tok::ObjCKeywordKind MethodImplKind);
/// Called by ActOnProperty and HandlePropertyInClassExtension to
/// handle creating the ObjcPropertyDecl for a category or @interface.
ObjCPropertyDecl *CreatePropertyDecl(Scope *S,
ObjCContainerDecl *CDecl,
SourceLocation AtLoc,
FieldDeclarator &FD,
Selector GetterSel,
Selector SetterSel,
const bool isAssign,
const bool isReadWrite,
const unsigned Attributes,
const unsigned AttributesAsWritten,
TypeSourceInfo *T,
tok::ObjCKeywordKind MethodImplKind,
DeclContext *lexicalDC = 0);
/// AtomicPropertySetterGetterRules - This routine enforces the rule (via
/// warning) when atomic property has one but not the other user-declared
/// setter or getter.
void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl,
ObjCContainerDecl* IDecl);
void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D);
void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID);
enum MethodMatchStrategy {
MMS_loose,
MMS_strict
};
/// MatchTwoMethodDeclarations - Checks if two methods' type match and returns
/// true, or false, accordingly.
bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
const ObjCMethodDecl *PrevMethod,
MethodMatchStrategy strategy = MMS_strict);
/// MatchAllMethodDeclarations - Check methods declaraed in interface or
/// or protocol against those declared in their implementations.
void MatchAllMethodDeclarations(const SelectorSet &InsMap,
const SelectorSet &ClsMap,
SelectorSet &InsMapSeen,
SelectorSet &ClsMapSeen,
ObjCImplDecl* IMPDecl,
ObjCContainerDecl* IDecl,
bool &IncompleteImpl,
bool ImmediateClass,
bool WarnExactMatch=false);
/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
/// category matches with those implemented in its primary class and
/// warns each time an exact match is found.
void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP);
private:
/// AddMethodToGlobalPool - Add an instance or factory method to the global
/// pool. See descriptoin of AddInstanceMethodToGlobalPool.
void AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance);
/// LookupMethodInGlobalPool - Returns the instance or factory method and
/// optionally warns if there are multiple signatures.
ObjCMethodDecl *LookupMethodInGlobalPool(Selector Sel, SourceRange R,
bool receiverIdOrClass,
bool warn, bool instance);
public:
/// AddInstanceMethodToGlobalPool - All instance methods in a translation
/// unit are added to a global pool. This allows us to efficiently associate
/// a selector with a method declaraation for purposes of typechecking
/// messages sent to "id" (where the class of the object is unknown).
void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
AddMethodToGlobalPool(Method, impl, /*instance*/true);
}
/// AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
AddMethodToGlobalPool(Method, impl, /*instance*/false);
}
/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
/// pool.
void AddAnyMethodToGlobalPool(Decl *D);
/// LookupInstanceMethodInGlobalPool - Returns the method and warns if
/// there are multiple signatures.
ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R,
bool receiverIdOrClass=false,
bool warn=true) {
return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
warn, /*instance*/true);
}
/// LookupFactoryMethodInGlobalPool - Returns the method and warns if
/// there are multiple signatures.
ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R,
bool receiverIdOrClass=false,
bool warn=true) {
return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
warn, /*instance*/false);
}
/// LookupImplementedMethodInGlobalPool - Returns the method which has an
/// implementation.
ObjCMethodDecl *LookupImplementedMethodInGlobalPool(Selector Sel);
/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
/// initialization.
void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
SmallVectorImpl<ObjCIvarDecl*> &Ivars);
//===--------------------------------------------------------------------===//
// Statement Parsing Callbacks: SemaStmt.cpp.
public:
class FullExprArg {
public:
FullExprArg(Sema &actions) : E(0) { }
// FIXME: The const_cast here is ugly. RValue references would make this
// much nicer (or we could duplicate a bunch of the move semantics
// emulation code from Ownership.h).
FullExprArg(const FullExprArg& Other) : E(Other.E) {}
ExprResult release() {
return move(E);
}
Expr *get() const { return E; }
Expr *operator->() {
return E;
}
private:
// FIXME: No need to make the entire Sema class a friend when it's just
// Sema::MakeFullExpr that needs access to the constructor below.
friend class Sema;
explicit FullExprArg(Expr *expr) : E(expr) {}
Expr *E;
};
FullExprArg MakeFullExpr(Expr *Arg) {
return FullExprArg(ActOnFinishFullExpr(Arg).release());
}
StmtResult ActOnExprStmt(FullExprArg Expr);
StmtResult ActOnNullStmt(SourceLocation SemiLoc,
bool HasLeadingEmptyMacro = false);
StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
MultiStmtArg Elts,
bool isStmtExpr);
StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl,
SourceLocation StartLoc,
SourceLocation EndLoc);
void ActOnForEachDeclStmt(DeclGroupPtrTy Decl);
StmtResult ActOnForEachLValueExpr(Expr *E);
StmtResult ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
SourceLocation DotDotDotLoc, Expr *RHSVal,
SourceLocation ColonLoc);
void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt);
StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
SourceLocation ColonLoc,
Stmt *SubStmt, Scope *CurScope);
StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
SourceLocation ColonLoc, Stmt *SubStmt);
StmtResult ActOnIfStmt(SourceLocation IfLoc,
FullExprArg CondVal, Decl *CondVar,
Stmt *ThenVal,
SourceLocation ElseLoc, Stmt *ElseVal);
StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
Expr *Cond,
Decl *CondVar);
StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc,
Stmt *Switch, Stmt *Body);
StmtResult ActOnWhileStmt(SourceLocation WhileLoc,
FullExprArg Cond,
Decl *CondVar, Stmt *Body);
StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
SourceLocation WhileLoc,
SourceLocation CondLParen, Expr *Cond,
SourceLocation CondRParen);
StmtResult ActOnForStmt(SourceLocation ForLoc,
SourceLocation LParenLoc,
Stmt *First, FullExprArg Second,
Decl *SecondVar,
FullExprArg Third,
SourceLocation RParenLoc,
Stmt *Body);
ExprResult ActOnObjCForCollectionOperand(SourceLocation forLoc,
Expr *collection);
StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc,
SourceLocation LParenLoc,
Stmt *First, Expr *Second,
SourceLocation RParenLoc, Stmt *Body);
StmtResult ActOnCXXForRangeStmt(SourceLocation ForLoc,
SourceLocation LParenLoc, Stmt *LoopVar,
SourceLocation ColonLoc, Expr *Collection,
SourceLocation RParenLoc);
StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc,
SourceLocation ColonLoc,
Stmt *RangeDecl, Stmt *BeginEndDecl,
Expr *Cond, Expr *Inc,
Stmt *LoopVarDecl,
SourceLocation RParenLoc);
StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body);
StmtResult ActOnGotoStmt(SourceLocation GotoLoc,
SourceLocation LabelLoc,
LabelDecl *TheDecl);
StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
SourceLocation StarLoc,
Expr *DestExp);
StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope);
StmtResult ActOnBreakStmt(SourceLocation GotoLoc, Scope *CurScope);
const VarDecl *getCopyElisionCandidate(QualType ReturnType, Expr *E,
bool AllowFunctionParameters);
StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp);
StmtResult ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp);
StmtResult ActOnAsmStmt(SourceLocation AsmLoc,
bool IsSimple, bool IsVolatile,
unsigned NumOutputs, unsigned NumInputs,
IdentifierInfo **Names,
MultiExprArg Constraints,
MultiExprArg Exprs,
Expr *AsmString,
MultiExprArg Clobbers,
SourceLocation RParenLoc,
bool MSAsm = false);
VarDecl *BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType,
SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
bool Invalid = false);
Decl *ActOnObjCExceptionDecl(Scope *S, Declarator &D);
StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen,
Decl *Parm, Stmt *Body);
StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body);
StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
MultiStmtArg Catch, Stmt *Finally);
StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw);
StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
Scope *CurScope);
ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,
Expr *operand);
StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,
Expr *SynchExpr,
Stmt *SynchBody);
StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body);
VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo,
SourceLocation StartLoc,
SourceLocation IdLoc,
IdentifierInfo *Id);
Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D);
StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc,
Decl *ExDecl, Stmt *HandlerBlock);
StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
MultiStmtArg Handlers);
StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ?
SourceLocation TryLoc,
Stmt *TryBlock,
Stmt *Handler);
StmtResult ActOnSEHExceptBlock(SourceLocation Loc,
Expr *FilterExpr,
Stmt *Block);
StmtResult ActOnSEHFinallyBlock(SourceLocation Loc,
Stmt *Block);
void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock);
bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const;
/// \brief If it's a file scoped decl that must warn if not used, keep track
/// of it.
void MarkUnusedFileScopedDecl(const DeclaratorDecl *D);
/// DiagnoseUnusedExprResult - If the statement passed in is an expression
/// whose result is unused, warn.
void DiagnoseUnusedExprResult(const Stmt *S);
void DiagnoseUnusedDecl(const NamedDecl *ND);
ParsingDeclState PushParsingDeclaration() {
return DelayedDiagnostics.pushParsingDecl();
}
void PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
DelayedDiagnostics::popParsingDecl(*this, state, decl);
}
typedef ProcessingContextState ParsingClassState;
ParsingClassState PushParsingClass() {
return DelayedDiagnostics.pushContext();
}
void PopParsingClass(ParsingClassState state) {
DelayedDiagnostics.popContext(state);
}
void EmitDeprecationWarning(NamedDecl *D, StringRef Message,
SourceLocation Loc,
const ObjCInterfaceDecl *UnknownObjCClass=0);
void HandleDelayedDeprecationCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
bool makeUnavailableInSystemHeader(SourceLocation loc,
StringRef message);
//===--------------------------------------------------------------------===//
// Expression Parsing Callbacks: SemaExpr.cpp.
bool CanUseDecl(NamedDecl *D);
bool DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
const ObjCInterfaceDecl *UnknownObjCClass=0);
AvailabilityResult DiagnoseAvailabilityOfDecl(NamedDecl *D,
SourceLocation Loc,
const ObjCInterfaceDecl *UnknownObjCClass);
std::string getDeletedOrUnavailableSuffix(const FunctionDecl *FD);
bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD,
ObjCMethodDecl *Getter,
SourceLocation Loc);
void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
Expr **Args, unsigned NumArgs);
void PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext);
void PopExpressionEvaluationContext();
void DiscardCleanupsInEvaluationContext();
void MarkDeclarationReferenced(SourceLocation Loc, Decl *D);
void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T);
void MarkDeclarationsReferencedInExpr(Expr *E);
/// \brief Try to recover by turning the given expression into a
/// call. Returns true if recovery was attempted or an error was
/// emitted; this may also leave the ExprResult invalid.
bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
bool ForceComplain = false,
bool (*IsPlausibleResult)(QualType) = 0);
/// \brief Figure out if an expression could be turned into a call.
bool isExprCallable(const Expr &E, QualType &ZeroArgCallReturnTy,
UnresolvedSetImpl &NonTemplateOverloads);
/// \brief Conditionally issue a diagnostic based on the current
/// evaluation context.
///
/// \param stmt - If stmt is non-null, delay reporting the diagnostic until
/// the function body is parsed, and then do a basic reachability analysis to
/// determine if the statement is reachable. If it is unreachable, the
/// diagnostic will not be emitted.
bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
const PartialDiagnostic &PD);
// Primary Expressions.
SourceRange getExprRange(Expr *E) const;
ExprResult ActOnIdExpression(Scope *S, CXXScopeSpec &SS, UnqualifiedId &Id,
bool HasTrailingLParen, bool IsAddressOfOperand);
void DecomposeUnqualifiedId(const UnqualifiedId &Id,
TemplateArgumentListInfo &Buffer,
DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *&TemplateArgs);
bool DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
CorrectTypoContext CTC = CTC_Unknown,
TemplateArgumentListInfo *ExplicitTemplateArgs = 0,
Expr **Args = 0, unsigned NumArgs = 0);
ExprResult LookupInObjCMethod(LookupResult &LookUp, Scope *S,
IdentifierInfo *II,
bool AllowBuiltinCreation=false);
ExprResult ActOnDependentIdExpression(const CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
bool isAddressOfOperand,
const TemplateArgumentListInfo *TemplateArgs);
ExprResult BuildDeclRefExpr(ValueDecl *D, QualType Ty,
ExprValueKind VK,
SourceLocation Loc,
const CXXScopeSpec *SS = 0);
ExprResult BuildDeclRefExpr(ValueDecl *D, QualType Ty,
ExprValueKind VK,
const DeclarationNameInfo &NameInfo,
const CXXScopeSpec *SS = 0);
ExprResult
BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
SourceLocation nameLoc,
IndirectFieldDecl *indirectField,
Expr *baseObjectExpr = 0,
SourceLocation opLoc = SourceLocation());
ExprResult BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs);
ExprResult BuildImplicitMemberExpr(const CXXScopeSpec &SS,
LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs,
bool IsDefiniteInstance);
bool UseArgumentDependentLookup(const CXXScopeSpec &SS,
const LookupResult &R,
bool HasTrailingLParen);
ExprResult BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo);
ExprResult BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs);
ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS,
LookupResult &R,
bool NeedsADL);
ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
NamedDecl *D);
ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind);
ExprResult ActOnNumericConstant(const Token &Tok);
ExprResult ActOnCharacterConstant(const Token &Tok);
ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E);
ExprResult ActOnParenOrParenListExpr(SourceLocation L,
SourceLocation R,
MultiExprArg Val);
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz").
ExprResult ActOnStringLiteral(const Token *StringToks,
unsigned NumStringToks);
ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
Expr *ControllingExpr,
MultiTypeArg ArgTypes,
MultiExprArg ArgExprs);
ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
Expr *ControllingExpr,
TypeSourceInfo **Types,
Expr **Exprs,
unsigned NumAssocs);
// Binary/Unary Operators. 'Tok' is the token for the operator.
ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
Expr *InputExpr);
ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc,
UnaryOperatorKind Opc, Expr *Input);
ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, Expr *Input);
ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind,
SourceRange R);
ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind);
ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind,
bool IsType, void *TyOrEx,
const SourceRange &ArgRange);
ExprResult CheckPlaceholderExpr(Expr *E);
bool CheckVecStepExpr(Expr *E);
bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind);
bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc,
SourceRange ExprRange,
UnaryExprOrTypeTrait ExprKind);
ExprResult ActOnSizeofParameterPackExpr(Scope *S,
SourceLocation OpLoc,
IdentifierInfo &Name,
SourceLocation NameLoc,
SourceLocation RParenLoc);
ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind, Expr *Input);
ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
Expr *Idx, SourceLocation RLoc);
ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
Expr *Idx, SourceLocation RLoc);
ExprResult BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
SourceLocation OpLoc, bool IsArrow,
CXXScopeSpec &SS,
NamedDecl *FirstQualifierInScope,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs);
ExprResult BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
SourceLocation OpLoc, bool IsArrow,
const CXXScopeSpec &SS,
NamedDecl *FirstQualifierInScope,
LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs,
bool SuppressQualifierCheck = false);
ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow);
ExprResult LookupMemberExpr(LookupResult &R, ExprResult &Base,
bool &IsArrow, SourceLocation OpLoc,
CXXScopeSpec &SS,
Decl *ObjCImpDecl,
bool HasTemplateArgs);
bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType,
const CXXScopeSpec &SS,
const LookupResult &R);
ExprResult ActOnDependentMemberExpr(Expr *Base, QualType BaseType,
bool IsArrow, SourceLocation OpLoc,
const CXXScopeSpec &SS,
NamedDecl *FirstQualifierInScope,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs);
ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
CXXScopeSpec &SS,
UnqualifiedId &Member,
Decl *ObjCImpDecl,
bool HasTrailingLParen);
void ActOnDefaultCtorInitializers(Decl *CDtorDecl);
bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
FunctionDecl *FDecl,
const FunctionProtoType *Proto,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc,
bool ExecConfig = false);
void CheckStaticArrayArgument(SourceLocation CallLoc,
ParmVarDecl *Param,
const Expr *ArgExpr);
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
MultiExprArg ArgExprs, SourceLocation RParenLoc,
Expr *ExecConfig = 0, bool IsExecConfig = false);
ExprResult BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
SourceLocation LParenLoc,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc,
Expr *Config = 0,
bool IsExecConfig = false);
ExprResult ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
MultiExprArg ExecConfig,
SourceLocation GGGLoc);
ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
Declarator &D, ParsedType &Ty,
SourceLocation RParenLoc, Expr *CastExpr);
ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc,
TypeSourceInfo *Ty,
SourceLocation RParenLoc,
Expr *Op);
CastKind PrepareScalarCast(ExprResult &src, QualType destType);
/// \brief Build an altivec or OpenCL literal.
ExprResult BuildVectorLiteral(SourceLocation LParenLoc,
SourceLocation RParenLoc, Expr *E,
TypeSourceInfo *TInfo);
ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME);
ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc,
ParsedType Ty,
SourceLocation RParenLoc,
Expr *InitExpr);
ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc,
TypeSourceInfo *TInfo,
SourceLocation RParenLoc,
Expr *LiteralExpr);
ExprResult ActOnInitList(SourceLocation LBraceLoc,
MultiExprArg InitArgList,
SourceLocation RBraceLoc);
ExprResult ActOnDesignatedInitializer(Designation &Desig,
SourceLocation Loc,
bool GNUSyntax,
ExprResult Init);
ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc,
tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr);
ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc,
BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr);
ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc,
Expr *LHSExpr, Expr *RHSExpr);
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
ExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
SourceLocation ColonLoc,
Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr);
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
LabelDecl *TheDecl);
ExprResult ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
SourceLocation RPLoc); // "({..})"
// __builtin_offsetof(type, identifier(.identifier|[expr])*)
struct OffsetOfComponent {
SourceLocation LocStart, LocEnd;
bool isBrackets; // true if [expr], false if .ident
union {
IdentifierInfo *IdentInfo;
Expr *E;
} U;
};
/// __builtin_offsetof(type, a.b[123][456].c)
ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
TypeSourceInfo *TInfo,
OffsetOfComponent *CompPtr,
unsigned NumComponents,
SourceLocation RParenLoc);
ExprResult ActOnBuiltinOffsetOf(Scope *S,
SourceLocation BuiltinLoc,
SourceLocation TypeLoc,
ParsedType ParsedArgTy,
OffsetOfComponent *CompPtr,
unsigned NumComponents,
SourceLocation RParenLoc);
// __builtin_choose_expr(constExpr, expr1, expr2)
ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc,
Expr *CondExpr, Expr *LHSExpr,
Expr *RHSExpr, SourceLocation RPLoc);
// __builtin_va_arg(expr, type)
ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
SourceLocation RPLoc);
ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E,
TypeSourceInfo *TInfo, SourceLocation RPLoc);
// __null
ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc);
bool CheckCaseExpression(Expr *E);
/// \brief Describes the result of an "if-exists" condition check.
enum IfExistsResult {
/// \brief The symbol exists.
IER_Exists,
/// \brief The symbol does not exist.
IER_DoesNotExist,
/// \brief The name is a dependent name, so the results will differ
/// from one instantiation to the next.
IER_Dependent,
/// \brief An error occurred.
IER_Error
};
IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS,
const DeclarationNameInfo &TargetNameInfo);
IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
bool IsIfExists, CXXScopeSpec &SS,
UnqualifiedId &Name);
StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
bool IsIfExists,
NestedNameSpecifierLoc QualifierLoc,
DeclarationNameInfo NameInfo,
Stmt *Nested);
StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
bool IsIfExists,
CXXScopeSpec &SS, UnqualifiedId &Name,
Stmt *Nested);
//===------------------------- "Block" Extension ------------------------===//
/// ActOnBlockStart - This callback is invoked when a block literal is
/// started.
void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope);
/// ActOnBlockArguments - This callback allows processing of block arguments.
/// If there are no arguments, this is still invoked.
void ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope);
/// ActOnBlockError - If there is an error parsing a block, this callback
/// is invoked to pop the information about the block from the action impl.
void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope);
/// ActOnBlockStmtExpr - This is called when the body of a block statement
/// literal was successfully completed. ^(int x){...}
ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body,
Scope *CurScope);
//===---------------------------- OpenCL Features -----------------------===//
/// __builtin_astype(...)
ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc);
//===---------------------------- C++ Features --------------------------===//
// Act on C++ namespaces
Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc,
SourceLocation NamespaceLoc,
SourceLocation IdentLoc,
IdentifierInfo *Ident,
SourceLocation LBrace,
AttributeList *AttrList);
void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace);
NamespaceDecl *getStdNamespace() const;
NamespaceDecl *getOrCreateStdNamespace();
CXXRecordDecl *getStdBadAlloc() const;
Decl *ActOnUsingDirective(Scope *CurScope,
SourceLocation UsingLoc,
SourceLocation NamespcLoc,
CXXScopeSpec &SS,
SourceLocation IdentLoc,
IdentifierInfo *NamespcName,
AttributeList *AttrList);
void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir);
Decl *ActOnNamespaceAliasDef(Scope *CurScope,
SourceLocation NamespaceLoc,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
CXXScopeSpec &SS,
SourceLocation IdentLoc,
IdentifierInfo *Ident);
void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow);
bool CheckUsingShadowDecl(UsingDecl *UD, NamedDecl *Target,
const LookupResult &PreviousDecls);
UsingShadowDecl *BuildUsingShadowDecl(Scope *S, UsingDecl *UD,
NamedDecl *Target);
bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
bool isTypeName,
const CXXScopeSpec &SS,
SourceLocation NameLoc,
const LookupResult &Previous);
bool CheckUsingDeclQualifier(SourceLocation UsingLoc,
const CXXScopeSpec &SS,
SourceLocation NameLoc);
NamedDecl *BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
SourceLocation UsingLoc,
CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
AttributeList *AttrList,
bool IsInstantiation,
bool IsTypeName,
SourceLocation TypenameLoc);
bool CheckInheritedConstructorUsingDecl(UsingDecl *UD);
Decl *ActOnUsingDeclaration(Scope *CurScope,
AccessSpecifier AS,
bool HasUsingKeyword,
SourceLocation UsingLoc,
CXXScopeSpec &SS,
UnqualifiedId &Name,
AttributeList *AttrList,
bool IsTypeName,
SourceLocation TypenameLoc);
Decl *ActOnAliasDeclaration(Scope *CurScope,
AccessSpecifier AS,
MultiTemplateParamsArg TemplateParams,
SourceLocation UsingLoc,
UnqualifiedId &Name,
TypeResult Type);
/// AddCXXDirectInitializerToDecl - This action is called immediately after
/// ActOnDeclarator, when a C++ direct initializer is present.
/// e.g: "int x(1);"
void AddCXXDirectInitializerToDecl(Decl *Dcl,
SourceLocation LParenLoc,
MultiExprArg Exprs,
SourceLocation RParenLoc,
bool TypeMayContainAuto);
/// InitializeVarWithConstructor - Creates an CXXConstructExpr
/// and sets it as the initializer for the the passed in VarDecl.
bool InitializeVarWithConstructor(VarDecl *VD,
CXXConstructorDecl *Constructor,
MultiExprArg Exprs,
bool HadMultipleCandidates);
/// BuildCXXConstructExpr - Creates a complete call to a constructor,
/// including handling of its default argument expressions.
///
/// \param ConstructKind - a CXXConstructExpr::ConstructionKind
ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
CXXConstructorDecl *Constructor, MultiExprArg Exprs,
bool HadMultipleCandidates, bool RequiresZeroInit,
unsigned ConstructKind, SourceRange ParenRange);
// FIXME: Can re remove this and have the above BuildCXXConstructExpr check if
// the constructor can be elidable?
ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
CXXConstructorDecl *Constructor, bool Elidable,
MultiExprArg Exprs, bool HadMultipleCandidates,
bool RequiresZeroInit, unsigned ConstructKind,
SourceRange ParenRange);
/// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating
/// the default expr if needed.
ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc,
FunctionDecl *FD,
ParmVarDecl *Param);
/// FinalizeVarWithDestructor - Prepare for calling destructor on the
/// constructed variable.
void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType);
/// \brief Helper class that collects exception specifications for
/// implicitly-declared special member functions.
class ImplicitExceptionSpecification {
// Pointer to allow copying
ASTContext *Context;
// We order exception specifications thus:
// noexcept is the most restrictive, but is only used in C++0x.
// throw() comes next.
// Then a throw(collected exceptions)
// Finally no specification.
// throw(...) is used instead if any called function uses it.
//
// If this exception specification cannot be known yet (for instance,
// because this is the exception specification for a defaulted default
// constructor and we haven't finished parsing the deferred parts of the
// class yet), the C++0x standard does not specify how to behave. We
// record this as an 'unknown' exception specification, which overrules
// any other specification (even 'none', to keep this rule simple).
ExceptionSpecificationType ComputedEST;
llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
SmallVector<QualType, 4> Exceptions;
void ClearExceptions() {
ExceptionsSeen.clear();
Exceptions.clear();
}
public:
explicit ImplicitExceptionSpecification(ASTContext &Context)
: Context(&Context), ComputedEST(EST_BasicNoexcept) {
if (!Context.getLangOptions().CPlusPlus0x)
ComputedEST = EST_DynamicNone;
}
/// \brief Get the computed exception specification type.
ExceptionSpecificationType getExceptionSpecType() const {
assert(ComputedEST != EST_ComputedNoexcept &&
"noexcept(expr) should not be a possible result");
return ComputedEST;
}
/// \brief The number of exceptions in the exception specification.
unsigned size() const { return Exceptions.size(); }
/// \brief The set of exceptions in the exception specification.
const QualType *data() const { return Exceptions.data(); }
/// \brief Integrate another called method into the collected data.
void CalledDecl(CXXMethodDecl *Method);
/// \brief Integrate an invoked expression into the collected data.
void CalledExpr(Expr *E);
/// \brief Specify that the exception specification can't be detemined yet.
void SetDelayed() {
ClearExceptions();
ComputedEST = EST_Delayed;
}
FunctionProtoType::ExtProtoInfo getEPI() const {
FunctionProtoType::ExtProtoInfo EPI;
EPI.ExceptionSpecType = getExceptionSpecType();
EPI.NumExceptions = size();
EPI.Exceptions = data();
return EPI;
}
};
/// \brief Determine what sort of exception specification a defaulted
/// copy constructor of a class will have.
ImplicitExceptionSpecification
ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl);
/// \brief Determine what sort of exception specification a defaulted
/// default constructor of a class will have, and whether the parameter
/// will be const.
std::pair<ImplicitExceptionSpecification, bool>
ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl);
/// \brief Determine what sort of exception specification a defautled
/// copy assignment operator of a class will have, and whether the
/// parameter will be const.
std::pair<ImplicitExceptionSpecification, bool>
ComputeDefaultedCopyAssignmentExceptionSpecAndConst(CXXRecordDecl *ClassDecl);
/// \brief Determine what sort of exception specification a defaulted move
/// constructor of a class will have.
ImplicitExceptionSpecification
ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl);
/// \brief Determine what sort of exception specification a defaulted move
/// assignment operator of a class will have.
ImplicitExceptionSpecification
ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl);
/// \brief Determine what sort of exception specification a defaulted
/// destructor of a class will have.
ImplicitExceptionSpecification
ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl);
/// \brief Determine if a special member function should have a deleted
/// definition when it is defaulted.
bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM);
/// \brief Determine if a defaulted copy assignment operator ought to be
/// deleted.
bool ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD);
/// \brief Determine if a defaulted move assignment operator ought to be
/// deleted.
bool ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD);
/// \brief Determine if a defaulted destructor ought to be deleted.
bool ShouldDeleteDestructor(CXXDestructorDecl *DD);
/// \brief Declare the implicit default constructor for the given class.
///
/// \param ClassDecl The class declaration into which the implicit
/// default constructor will be added.
///
/// \returns The implicitly-declared default constructor.
CXXConstructorDecl *DeclareImplicitDefaultConstructor(
CXXRecordDecl *ClassDecl);
/// DefineImplicitDefaultConstructor - Checks for feasibility of
/// defining this constructor as the default constructor.
void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
CXXConstructorDecl *Constructor);
/// \brief Declare the implicit destructor for the given class.
///
/// \param ClassDecl The class declaration into which the implicit
/// destructor will be added.
///
/// \returns The implicitly-declared destructor.
CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl);
/// DefineImplicitDestructor - Checks for feasibility of
/// defining this destructor as the default destructor.
void DefineImplicitDestructor(SourceLocation CurrentLocation,
CXXDestructorDecl *Destructor);
/// \brief Build an exception spec for destructors that don't have one.
///
/// C++11 says that user-defined destructors with no exception spec get one
/// that looks as if the destructor was implicitly declared.
void AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
CXXDestructorDecl *Destructor);
/// \brief Declare all inherited constructors for the given class.
///
/// \param ClassDecl The class declaration into which the inherited
/// constructors will be added.
void DeclareInheritedConstructors(CXXRecordDecl *ClassDecl);
/// \brief Declare the implicit copy constructor for the given class.
///
/// \param ClassDecl The class declaration into which the implicit
/// copy constructor will be added.
///
/// \returns The implicitly-declared copy constructor.
CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl);
/// DefineImplicitCopyConstructor - Checks for feasibility of
/// defining this constructor as the copy constructor.
void DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
CXXConstructorDecl *Constructor);
/// \brief Declare the implicit move constructor for the given class.
///
/// \param ClassDecl The Class declaration into which the implicit
/// move constructor will be added.
///
/// \returns The implicitly-declared move constructor, or NULL if it wasn't
/// declared.
CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl);
/// DefineImplicitMoveConstructor - Checks for feasibility of
/// defining this constructor as the move constructor.
void DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
CXXConstructorDecl *Constructor);
/// \brief Declare the implicit copy assignment operator for the given class.
///
/// \param ClassDecl The class declaration into which the implicit
/// copy assignment operator will be added.
///
/// \returns The implicitly-declared copy assignment operator.
CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl);
/// \brief Defines an implicitly-declared copy assignment operator.
void DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
CXXMethodDecl *MethodDecl);
/// \brief Declare the implicit move assignment operator for the given class.
///
/// \param ClassDecl The Class declaration into which the implicit
/// move assignment operator will be added.
///
/// \returns The implicitly-declared move assignment operator, or NULL if it
/// wasn't declared.
CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl);
/// \brief Defines an implicitly-declared move assignment operator.
void DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
CXXMethodDecl *MethodDecl);
/// \brief Force the declaration of any implicitly-declared members of this
/// class.
void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class);
/// MaybeBindToTemporary - If the passed in expression has a record type with
/// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise
/// it simply returns the passed in expression.
ExprResult MaybeBindToTemporary(Expr *E);
bool CompleteConstructorCall(CXXConstructorDecl *Constructor,
MultiExprArg ArgsPtr,
SourceLocation Loc,
ASTOwningVector<Expr*> &ConvertedArgs);
ParsedType getDestructorName(SourceLocation TildeLoc,
IdentifierInfo &II, SourceLocation NameLoc,
Scope *S, CXXScopeSpec &SS,
ParsedType ObjectType,
bool EnteringContext);
ParsedType getDestructorType(const DeclSpec& DS, ParsedType ObjectType);
// Checks that reinterpret casts don't have undefined behavior.
void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
bool IsDereference, SourceRange Range);
/// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's.
ExprResult ActOnCXXNamedCast(SourceLocation OpLoc,
tok::TokenKind Kind,
SourceLocation LAngleBracketLoc,
Declarator &D,
SourceLocation RAngleBracketLoc,
SourceLocation LParenLoc,
Expr *E,
SourceLocation RParenLoc);
ExprResult BuildCXXNamedCast(SourceLocation OpLoc,
tok::TokenKind Kind,
TypeSourceInfo *Ty,
Expr *E,
SourceRange AngleBrackets,
SourceRange Parens);
ExprResult BuildCXXTypeId(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc);
ExprResult BuildCXXTypeId(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *Operand,
SourceLocation RParenLoc);
/// ActOnCXXTypeid - Parse typeid( something ).
ExprResult ActOnCXXTypeid(SourceLocation OpLoc,
SourceLocation LParenLoc, bool isType,
void *TyOrExpr,
SourceLocation RParenLoc);
ExprResult BuildCXXUuidof(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc);
ExprResult BuildCXXUuidof(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *Operand,
SourceLocation RParenLoc);
/// ActOnCXXUuidof - Parse __uuidof( something ).
ExprResult ActOnCXXUuidof(SourceLocation OpLoc,
SourceLocation LParenLoc, bool isType,
void *TyOrExpr,
SourceLocation RParenLoc);
//// ActOnCXXThis - Parse 'this' pointer.
ExprResult ActOnCXXThis(SourceLocation loc);
/// \brief Try to retrieve the type of the 'this' pointer.
///
/// \param Capture If true, capture 'this' in this context.
///
/// \returns The type of 'this', if possible. Otherwise, returns a NULL type.
QualType getCurrentThisType();
/// \brief Make sure the value of 'this' is actually available in the current
/// context, if it is a potentially evaluated context. This check can be
/// delayed in PotentiallyPotentiallyEvaluated contexts.
void CheckCXXThisCapture(SourceLocation Loc);
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc);
//// ActOnCXXThrow - Parse throw expressions.
ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr);
ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
bool IsThrownVarInScope);
ExprResult CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
bool IsThrownVarInScope);
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep,
SourceLocation LParenLoc,
MultiExprArg Exprs,
SourceLocation RParenLoc);
ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type,
SourceLocation LParenLoc,
MultiExprArg Exprs,
SourceLocation RParenLoc);
/// ActOnCXXNew - Parsed a C++ 'new' expression.
ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen,
MultiExprArg PlacementArgs,
SourceLocation PlacementRParen,
SourceRange TypeIdParens, Declarator &D,
SourceLocation ConstructorLParen,
MultiExprArg ConstructorArgs,
SourceLocation ConstructorRParen);
ExprResult BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen,
MultiExprArg PlacementArgs,
SourceLocation PlacementRParen,
SourceRange TypeIdParens,
QualType AllocType,
TypeSourceInfo *AllocTypeInfo,
Expr *ArraySize,
SourceLocation ConstructorLParen,
MultiExprArg ConstructorArgs,
SourceLocation ConstructorRParen,
bool TypeMayContainAuto = true);
bool CheckAllocatedType(QualType AllocType, SourceLocation Loc,
SourceRange R);
bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
bool UseGlobal, QualType AllocType, bool IsArray,
Expr **PlaceArgs, unsigned NumPlaceArgs,
FunctionDecl *&OperatorNew,
FunctionDecl *&OperatorDelete);
bool FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
DeclarationName Name, Expr** Args,
unsigned NumArgs, DeclContext *Ctx,
bool AllowMissing, FunctionDecl *&Operator,
bool Diagnose = true);
void DeclareGlobalNewDelete();
void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return,
QualType Argument,
bool addMallocAttr = false);
bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
DeclarationName Name, FunctionDecl* &Operator,
bool Diagnose = true);
/// ActOnCXXDelete - Parsed a C++ 'delete' expression
ExprResult ActOnCXXDelete(SourceLocation StartLoc,
bool UseGlobal, bool ArrayForm,
Expr *Operand);
DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D);
ExprResult CheckConditionVariable(VarDecl *ConditionVar,
SourceLocation StmtLoc,
bool ConvertToBoolean);
ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen,
Expr *Operand, SourceLocation RParen);
ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
SourceLocation RParen);
/// ActOnUnaryTypeTrait - Parsed one of the unary type trait support
/// pseudo-functions.
ExprResult ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
SourceLocation KWLoc,
ParsedType Ty,
SourceLocation RParen);
ExprResult BuildUnaryTypeTrait(UnaryTypeTrait OTT,
SourceLocation KWLoc,
TypeSourceInfo *T,
SourceLocation RParen);
/// ActOnBinaryTypeTrait - Parsed one of the bianry type trait support
/// pseudo-functions.
ExprResult ActOnBinaryTypeTrait(BinaryTypeTrait OTT,
SourceLocation KWLoc,
ParsedType LhsTy,
ParsedType RhsTy,
SourceLocation RParen);
ExprResult BuildBinaryTypeTrait(BinaryTypeTrait BTT,
SourceLocation KWLoc,
TypeSourceInfo *LhsT,
TypeSourceInfo *RhsT,
SourceLocation RParen);
/// ActOnArrayTypeTrait - Parsed one of the bianry type trait support
/// pseudo-functions.
ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT,
SourceLocation KWLoc,
ParsedType LhsTy,
Expr *DimExpr,
SourceLocation RParen);
ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT,
SourceLocation KWLoc,
TypeSourceInfo *TSInfo,
Expr *DimExpr,
SourceLocation RParen);
/// ActOnExpressionTrait - Parsed one of the unary type trait support
/// pseudo-functions.
ExprResult ActOnExpressionTrait(ExpressionTrait OET,
SourceLocation KWLoc,
Expr *Queried,
SourceLocation RParen);
ExprResult BuildExpressionTrait(ExpressionTrait OET,
SourceLocation KWLoc,
Expr *Queried,
SourceLocation RParen);
ExprResult ActOnStartCXXMemberReference(Scope *S,
Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
ParsedType &ObjectType,
bool &MayBePseudoDestructor);
ExprResult DiagnoseDtorReference(SourceLocation NameLoc, Expr *MemExpr);
ExprResult BuildPseudoDestructorExpr(Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
const CXXScopeSpec &SS,
TypeSourceInfo *ScopeType,
SourceLocation CCLoc,
SourceLocation TildeLoc,
PseudoDestructorTypeStorage DestroyedType,
bool HasTrailingLParen);
ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
CXXScopeSpec &SS,
UnqualifiedId &FirstTypeName,
SourceLocation CCLoc,
SourceLocation TildeLoc,
UnqualifiedId &SecondTypeName,
bool HasTrailingLParen);
ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
SourceLocation TildeLoc,
const DeclSpec& DS,
bool HasTrailingLParen);
/// MaybeCreateExprWithCleanups - If the current full-expression
/// requires any cleanups, surround it with a ExprWithCleanups node.
/// Otherwise, just returns the passed-in expression.
Expr *MaybeCreateExprWithCleanups(Expr *SubExpr);
Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt);
ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr);
ExprResult ActOnFinishFullExpr(Expr *Expr);
StmtResult ActOnFinishFullStmt(Stmt *Stmt);
// Marks SS invalid if it represents an incomplete type.
bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC);
DeclContext *computeDeclContext(QualType T);
DeclContext *computeDeclContext(const CXXScopeSpec &SS,
bool EnteringContext = false);
bool isDependentScopeSpecifier(const CXXScopeSpec &SS);
CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS);
bool isUnknownSpecialization(const CXXScopeSpec &SS);
/// \brief The parser has parsed a global nested-name-specifier '::'.
///
/// \param S The scope in which this nested-name-specifier occurs.
///
/// \param CCLoc The location of the '::'.
///
/// \param SS The nested-name-specifier, which will be updated in-place
/// to reflect the parsed nested-name-specifier.
///
/// \returns true if an error occurred, false otherwise.
bool ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
CXXScopeSpec &SS);
bool isAcceptableNestedNameSpecifier(NamedDecl *SD);
NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS);
bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
SourceLocation IdLoc,
IdentifierInfo &II,
ParsedType ObjectType);
bool BuildCXXNestedNameSpecifier(Scope *S,
IdentifierInfo &Identifier,
SourceLocation IdentifierLoc,
SourceLocation CCLoc,
QualType ObjectType,
bool EnteringContext,
CXXScopeSpec &SS,
NamedDecl *ScopeLookupResult,
bool ErrorRecoveryLookup);
/// \brief The parser has parsed a nested-name-specifier 'identifier::'.
///
/// \param S The scope in which this nested-name-specifier occurs.
///
/// \param Identifier The identifier preceding the '::'.
///
/// \param IdentifierLoc The location of the identifier.
///
/// \param CCLoc The location of the '::'.
///
/// \param ObjectType The type of the object, if we're parsing
/// nested-name-specifier in a member access expression.
///
/// \param EnteringContext Whether we're entering the context nominated by
/// this nested-name-specifier.
///
/// \param SS The nested-name-specifier, which is both an input
/// parameter (the nested-name-specifier before this type) and an
/// output parameter (containing the full nested-name-specifier,
/// including this new type).
///
/// \returns true if an error occurred, false otherwise.
bool ActOnCXXNestedNameSpecifier(Scope *S,
IdentifierInfo &Identifier,
SourceLocation IdentifierLoc,
SourceLocation CCLoc,
ParsedType ObjectType,
bool EnteringContext,
CXXScopeSpec &SS);
bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
const DeclSpec &DS,
SourceLocation ColonColonLoc);
bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
IdentifierInfo &Identifier,
SourceLocation IdentifierLoc,
SourceLocation ColonLoc,
ParsedType ObjectType,
bool EnteringContext);
/// \brief The parser has parsed a nested-name-specifier
/// 'template[opt] template-name < template-args >::'.
///
/// \param S The scope in which this nested-name-specifier occurs.
///
/// \param TemplateLoc The location of the 'template' keyword, if any.
///
/// \param SS The nested-name-specifier, which is both an input
/// parameter (the nested-name-specifier before this type) and an
/// output parameter (containing the full nested-name-specifier,
/// including this new type).
///
/// \param TemplateLoc the location of the 'template' keyword, if any.
/// \param TemplateName The template name.
/// \param TemplateNameLoc The location of the template name.
/// \param LAngleLoc The location of the opening angle bracket ('<').
/// \param TemplateArgs The template arguments.
/// \param RAngleLoc The location of the closing angle bracket ('>').
/// \param CCLoc The location of the '::'.
/// \param EnteringContext Whether we're entering the context of the
/// nested-name-specifier.
///
///
/// \returns true if an error occurred, false otherwise.
bool ActOnCXXNestedNameSpecifier(Scope *S,
SourceLocation TemplateLoc,
CXXScopeSpec &SS,
TemplateTy Template,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc,
SourceLocation CCLoc,
bool EnteringContext);
/// \brief Given a C++ nested-name-specifier, produce an annotation value
/// that the parser can use later to reconstruct the given
/// nested-name-specifier.
///
/// \param SS A nested-name-specifier.
///
/// \returns A pointer containing all of the information in the
/// nested-name-specifier \p SS.
void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS);
/// \brief Given an annotation pointer for a nested-name-specifier, restore
/// the nested-name-specifier structure.
///
/// \param Annotation The annotation pointer, produced by
/// \c SaveNestedNameSpecifierAnnotation().
///
/// \param AnnotationRange The source range corresponding to the annotation.
///
/// \param SS The nested-name-specifier that will be updated with the contents
/// of the annotation pointer.
void RestoreNestedNameSpecifierAnnotation(void *Annotation,
SourceRange AnnotationRange,
CXXScopeSpec &SS);
bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
/// scope or nested-name-specifier) is parsed, part of a declarator-id.
/// After this method is called, according to [C++ 3.4.3p3], names should be
/// looked up in the declarator-id's scope, until the declarator is parsed and
/// ActOnCXXExitDeclaratorScope is called.
/// The 'SS' should be a non-empty valid CXXScopeSpec.
bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS);
/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
/// Used to indicate that names should revert to being looked up in the
/// defining scope.
void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
/// initializer for the declaration 'Dcl'.
/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
/// static data member of class X, names should be looked up in the scope of
/// class X.
void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl);
/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
/// initializer for the declaration 'Dcl'.
void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl);
/// ActOnStartOfLambdaDefinition - This is called just before we start
/// parsing the body of a lambda; it analyzes the explicit captures and
/// arguments, and sets up various data-structures for the body of the
/// lambda.
void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
Declarator &ParamInfo, Scope *CurScope);
/// ActOnLambdaError - If there is an error parsing a lambda, this callback
/// is invoked to pop the information about the lambda.
void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope);
/// ActOnLambdaExpr - This is called when the body of a lambda expression
/// was successfully completed.
ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
Scope *CurScope);
// ParseObjCStringLiteral - Parse Objective-C string literals.
ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs,
Expr **Strings,
unsigned NumStrings);
ExprResult BuildObjCEncodeExpression(SourceLocation AtLoc,
TypeSourceInfo *EncodedTypeInfo,
SourceLocation RParenLoc);
ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
CXXMethodDecl *Method,
bool HadMultipleCandidates);
ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc,
SourceLocation EncodeLoc,
SourceLocation LParenLoc,
ParsedType Ty,
SourceLocation RParenLoc);
// ParseObjCSelectorExpression - Build selector expression for @selector
ExprResult ParseObjCSelectorExpression(Selector Sel,
SourceLocation AtLoc,
SourceLocation SelLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc);
// ParseObjCProtocolExpression - Build protocol expression for @protocol
ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName,
SourceLocation AtLoc,
SourceLocation ProtoLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc);
//===--------------------------------------------------------------------===//
// C++ Declarations
//
Decl *ActOnStartLinkageSpecification(Scope *S,
SourceLocation ExternLoc,
SourceLocation LangLoc,
StringRef Lang,
SourceLocation LBraceLoc);
Decl *ActOnFinishLinkageSpecification(Scope *S,
Decl *LinkageSpec,
SourceLocation RBraceLoc);
//===--------------------------------------------------------------------===//
// C++ Classes
//
bool isCurrentClassName(const IdentifierInfo &II, Scope *S,
const CXXScopeSpec *SS = 0);
bool ActOnAccessSpecifier(AccessSpecifier Access,
SourceLocation ASLoc,
SourceLocation ColonLoc,
AttributeList *Attrs = 0);
Decl *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS,
Declarator &D,
MultiTemplateParamsArg TemplateParameterLists,
Expr *BitfieldWidth, const VirtSpecifiers &VS,
bool HasDeferredInit);
void ActOnCXXInClassMemberInitializer(Decl *VarDecl, SourceLocation EqualLoc,
Expr *Init);
MemInitResult ActOnMemInitializer(Decl *ConstructorD,
Scope *S,
CXXScopeSpec &SS,
IdentifierInfo *MemberOrBase,
ParsedType TemplateTypeTy,
SourceLocation IdLoc,
SourceLocation LParenLoc,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc,
SourceLocation EllipsisLoc);
MemInitResult ActOnMemInitializer(Decl *ConstructorD,
Scope *S,
CXXScopeSpec &SS,
IdentifierInfo *MemberOrBase,
ParsedType TemplateTypeTy,
SourceLocation IdLoc,
Expr *InitList,
SourceLocation EllipsisLoc);
MemInitResult BuildMemInitializer(Decl *ConstructorD,
Scope *S,
CXXScopeSpec &SS,
IdentifierInfo *MemberOrBase,
ParsedType TemplateTypeTy,
SourceLocation IdLoc,
const MultiInitializer &Init,
SourceLocation EllipsisLoc);
MemInitResult BuildMemberInitializer(ValueDecl *Member,
const MultiInitializer &Args,
SourceLocation IdLoc);
MemInitResult BuildBaseInitializer(QualType BaseType,
TypeSourceInfo *BaseTInfo,
const MultiInitializer &Args,
CXXRecordDecl *ClassDecl,
SourceLocation EllipsisLoc);
MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo,
const MultiInitializer &Args,
CXXRecordDecl *ClassDecl);
bool SetDelegatingInitializer(CXXConstructorDecl *Constructor,
CXXCtorInitializer *Initializer);
bool SetCtorInitializers(CXXConstructorDecl *Constructor,
CXXCtorInitializer **Initializers,
unsigned NumInitializers, bool AnyErrors);
void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation);
/// MarkBaseAndMemberDestructorsReferenced - Given a record decl,
/// mark all the non-trivial destructors of its members and bases as
/// referenced.
void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc,
CXXRecordDecl *Record);
/// \brief The list of classes whose vtables have been used within
/// this translation unit, and the source locations at which the
/// first use occurred.
typedef std::pair<CXXRecordDecl*, SourceLocation> VTableUse;
/// \brief The list of vtables that are required but have not yet been
/// materialized.
SmallVector<VTableUse, 16> VTableUses;
/// \brief The set of classes whose vtables have been used within
/// this translation unit, and a bit that will be true if the vtable is
/// required to be emitted (otherwise, it should be emitted only if needed
/// by code generation).
llvm::DenseMap<CXXRecordDecl *, bool> VTablesUsed;
/// \brief Load any externally-stored vtable uses.
void LoadExternalVTableUses();
typedef LazyVector<CXXRecordDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadDynamicClasses, 2, 2>
DynamicClassesType;
/// \brief A list of all of the dynamic classes in this translation
/// unit.
DynamicClassesType DynamicClasses;
/// \brief Note that the vtable for the given class was used at the
/// given location.
void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
bool DefinitionRequired = false);
/// MarkVirtualMembersReferenced - Will mark all members of the given
/// CXXRecordDecl referenced.
void MarkVirtualMembersReferenced(SourceLocation Loc,
const CXXRecordDecl *RD);
/// \brief Define all of the vtables that have been used in this
/// translation unit and reference any virtual members used by those
/// vtables.
///
/// \returns true if any work was done, false otherwise.
bool DefineUsedVTables();
void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl);
void ActOnMemInitializers(Decl *ConstructorDecl,
SourceLocation ColonLoc,
CXXCtorInitializer **MemInits,
unsigned NumMemInits,
bool AnyErrors);
void CheckCompletedCXXClass(CXXRecordDecl *Record);
void ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
Decl *TagDecl,
SourceLocation LBrac,
SourceLocation RBrac,
AttributeList *AttrList);
void ActOnReenterTemplateScope(Scope *S, Decl *Template);
void ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D);
void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record);
void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param);
void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record);
void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
void ActOnFinishDelayedMemberInitializers(Decl *Record);
void MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag = true);
bool IsInsideALocalClassWithinATemplateFunction();
Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
Expr *AssertExpr,
Expr *AssertMessageExpr,
SourceLocation RParenLoc);
FriendDecl *CheckFriendTypeDecl(SourceLocation Loc,
SourceLocation FriendLoc,
TypeSourceInfo *TSInfo);
Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
MultiTemplateParamsArg TemplateParams);
Decl *ActOnFriendFunctionDecl(Scope *S, Declarator &D,
MultiTemplateParamsArg TemplateParams);
QualType CheckConstructorDeclarator(Declarator &D, QualType R,
StorageClass& SC);
void CheckConstructor(CXXConstructorDecl *Constructor);
QualType CheckDestructorDeclarator(Declarator &D, QualType R,
StorageClass& SC);
bool CheckDestructor(CXXDestructorDecl *Destructor);
void CheckConversionDeclarator(Declarator &D, QualType &R,
StorageClass& SC);
Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion);
void CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record);
void CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *Ctor);
void CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *Ctor);
void CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *Method);
void CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *Ctor);
void CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *Method);
void CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *Dtor);
//===--------------------------------------------------------------------===//
// C++ Derived Classes
//
/// ActOnBaseSpecifier - Parsed a base specifier
CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class,
SourceRange SpecifierRange,
bool Virtual, AccessSpecifier Access,
TypeSourceInfo *TInfo,
SourceLocation EllipsisLoc);
BaseResult ActOnBaseSpecifier(Decl *classdecl,
SourceRange SpecifierRange,
bool Virtual, AccessSpecifier Access,
ParsedType basetype,
SourceLocation BaseLoc,
SourceLocation EllipsisLoc);
bool AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
unsigned NumBases);
void ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
unsigned NumBases);
bool IsDerivedFrom(QualType Derived, QualType Base);
bool IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths);
// FIXME: I don't like this name.
void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath);
bool BasePathInvolvesVirtualBase(const CXXCastPath &BasePath);
bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
SourceLocation Loc, SourceRange Range,
CXXCastPath *BasePath = 0,
bool IgnoreAccess = false);
bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
unsigned InaccessibleBaseID,
unsigned AmbigiousBaseConvID,
SourceLocation Loc, SourceRange Range,
DeclarationName Name,
CXXCastPath *BasePath);
std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths);
/// CheckOverridingFunctionReturnType - Checks whether the return types are
/// covariant, according to C++ [class.virtual]p5.
bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
const CXXMethodDecl *Old);
/// CheckOverridingFunctionExceptionSpec - Checks whether the exception
/// spec is a subset of base spec.
bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
const CXXMethodDecl *Old);
bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange);
/// CheckOverrideControl - Check C++0x override control semantics.
void CheckOverrideControl(const Decl *D);
/// CheckForFunctionMarkedFinal - Checks whether a virtual member function
/// overrides a virtual member function marked 'final', according to
/// C++0x [class.virtual]p3.
bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
const CXXMethodDecl *Old);
//===--------------------------------------------------------------------===//
// C++ Access Control
//
enum AccessResult {
AR_accessible,
AR_inaccessible,
AR_dependent,
AR_delayed
};
bool SetMemberAccessSpecifier(NamedDecl *MemberDecl,
NamedDecl *PrevMemberDecl,
AccessSpecifier LexicalAS);
AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
DeclAccessPair FoundDecl);
AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
DeclAccessPair FoundDecl);
AccessResult CheckAllocationAccess(SourceLocation OperatorLoc,
SourceRange PlacementRange,
CXXRecordDecl *NamingClass,
DeclAccessPair FoundDecl,
bool Diagnose = true);
AccessResult CheckConstructorAccess(SourceLocation Loc,
CXXConstructorDecl *D,
const InitializedEntity &Entity,
AccessSpecifier Access,
bool IsCopyBindingRefToTemp = false);
AccessResult CheckConstructorAccess(SourceLocation Loc,
CXXConstructorDecl *D,
AccessSpecifier Access,
PartialDiagnostic PD);
AccessResult CheckDestructorAccess(SourceLocation Loc,
CXXDestructorDecl *Dtor,
const PartialDiagnostic &PDiag);
AccessResult CheckDirectMemberAccess(SourceLocation Loc,
NamedDecl *D,
const PartialDiagnostic &PDiag);
AccessResult CheckMemberOperatorAccess(SourceLocation Loc,
Expr *ObjectExpr,
Expr *ArgExpr,
DeclAccessPair FoundDecl);
AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr,
DeclAccessPair FoundDecl);
AccessResult CheckBaseClassAccess(SourceLocation AccessLoc,
QualType Base, QualType Derived,
const CXXBasePath &Path,
unsigned DiagID,
bool ForceCheck = false,
bool ForceUnprivileged = false);
void CheckLookupAccess(const LookupResult &R);
bool IsSimplyAccessible(NamedDecl *decl, DeclContext *Ctx);
void HandleDependentAccessCheck(const DependentDiagnostic &DD,
const MultiLevelTemplateArgumentList &TemplateArgs);
void PerformDependentDiagnostics(const DeclContext *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs);
void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
/// A flag to suppress access checking.
bool SuppressAccessChecking;
/// \brief When true, access checking violations are treated as SFINAE
/// failures rather than hard errors.
bool AccessCheckingSFINAE;
void ActOnStartSuppressingAccessChecks();
void ActOnStopSuppressingAccessChecks();
enum AbstractDiagSelID {
AbstractNone = -1,
AbstractReturnType,
AbstractParamType,
AbstractVariableType,
AbstractFieldType,
AbstractArrayType
};
bool RequireNonAbstractType(SourceLocation Loc, QualType T,
const PartialDiagnostic &PD);
void DiagnoseAbstractType(const CXXRecordDecl *RD);
bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID,
AbstractDiagSelID SelID = AbstractNone);
//===--------------------------------------------------------------------===//
// C++ Overloaded Operators [C++ 13.5]
//
bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl);
bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl);
//===--------------------------------------------------------------------===//
// C++ Templates [C++ 14]
//
void FilterAcceptableTemplateNames(LookupResult &R);
bool hasAnyAcceptableTemplateNames(LookupResult &R);
void LookupTemplateName(LookupResult &R, Scope *S, CXXScopeSpec &SS,
QualType ObjectType, bool EnteringContext,
bool &MemberOfUnknownSpecialization);
TemplateNameKind isTemplateName(Scope *S,
CXXScopeSpec &SS,
bool hasTemplateKeyword,
UnqualifiedId &Name,
ParsedType ObjectType,
bool EnteringContext,
TemplateTy &Template,
bool &MemberOfUnknownSpecialization);
bool DiagnoseUnknownTemplateName(const IdentifierInfo &II,
SourceLocation IILoc,
Scope *S,
const CXXScopeSpec *SS,
TemplateTy &SuggestedTemplate,
TemplateNameKind &SuggestedKind);
void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl);
TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl);
Decl *ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
SourceLocation EllipsisLoc,
SourceLocation KeyLoc,
IdentifierInfo *ParamName,
SourceLocation ParamNameLoc,
unsigned Depth, unsigned Position,
SourceLocation EqualLoc,
ParsedType DefaultArg);
QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc);
Decl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
unsigned Depth,
unsigned Position,
SourceLocation EqualLoc,
Expr *DefaultArg);
Decl *ActOnTemplateTemplateParameter(Scope *S,
SourceLocation TmpLoc,
TemplateParameterList *Params,
SourceLocation EllipsisLoc,
IdentifierInfo *ParamName,
SourceLocation ParamNameLoc,
unsigned Depth,
unsigned Position,
SourceLocation EqualLoc,
ParsedTemplateArgument DefaultArg);
TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,
SourceLocation ExportLoc,
SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
Decl **Params, unsigned NumParams,
SourceLocation RAngleLoc);
/// \brief The context in which we are checking a template parameter
/// list.
enum TemplateParamListContext {
TPC_ClassTemplate,
TPC_FunctionTemplate,
TPC_ClassTemplateMember,
TPC_FriendFunctionTemplate,
TPC_FriendFunctionTemplateDefinition,
TPC_TypeAliasTemplate
};
bool CheckTemplateParameterList(TemplateParameterList *NewParams,
TemplateParameterList *OldParams,
TemplateParamListContext TPC);
TemplateParameterList *
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
SourceLocation DeclLoc,
const CXXScopeSpec &SS,
TemplateParameterList **ParamLists,
unsigned NumParamLists,
bool IsFriend,
bool &IsExplicitSpecialization,
bool &Invalid);
DeclResult CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
SourceLocation KWLoc, CXXScopeSpec &SS,
IdentifierInfo *Name, SourceLocation NameLoc,
AttributeList *Attr,
TemplateParameterList *TemplateParams,
AccessSpecifier AS,
SourceLocation ModulePrivateLoc,
unsigned NumOuterTemplateParamLists,
TemplateParameterList **OuterTemplateParamLists);
void translateTemplateArguments(const ASTTemplateArgsPtr &In,
TemplateArgumentListInfo &Out);
void NoteAllFoundTemplates(TemplateName Name);
QualType CheckTemplateIdType(TemplateName Template,
SourceLocation TemplateLoc,
TemplateArgumentListInfo &TemplateArgs);
TypeResult
ActOnTemplateIdType(CXXScopeSpec &SS,
TemplateTy Template, SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc);
/// \brief Parsed an elaborated-type-specifier that refers to a template-id,
/// such as \c class T::template apply<U>.
///
/// \param TUK
TypeResult ActOnTagTemplateIdType(TagUseKind TUK,
TypeSpecifierType TagSpec,
SourceLocation TagLoc,
CXXScopeSpec &SS,
TemplateTy TemplateD,
SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgsIn,
SourceLocation RAngleLoc);
ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS,
LookupResult &R,
bool RequiresADL,
const TemplateArgumentListInfo &TemplateArgs);
ExprResult BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo &TemplateArgs);
TemplateNameKind ActOnDependentTemplateName(Scope *S,
SourceLocation TemplateKWLoc,
CXXScopeSpec &SS,
UnqualifiedId &Name,
ParsedType ObjectType,
bool EnteringContext,
TemplateTy &Template);
DeclResult
ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, TagUseKind TUK,
SourceLocation KWLoc,
SourceLocation ModulePrivateLoc,
CXXScopeSpec &SS,
TemplateTy Template,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc,
AttributeList *Attr,
MultiTemplateParamsArg TemplateParameterLists);
Decl *ActOnTemplateDeclarator(Scope *S,
MultiTemplateParamsArg TemplateParameterLists,
Declarator &D);
Decl *ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
MultiTemplateParamsArg TemplateParameterLists,
Declarator &D);
bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
TemplateSpecializationKind NewTSK,
NamedDecl *PrevDecl,
TemplateSpecializationKind PrevTSK,
SourceLocation PrevPtOfInstantiation,
bool &SuppressNew);
bool CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
const TemplateArgumentListInfo &ExplicitTemplateArgs,
LookupResult &Previous);
bool CheckFunctionTemplateSpecialization(FunctionDecl *FD,
TemplateArgumentListInfo *ExplicitTemplateArgs,
LookupResult &Previous);
bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
DeclResult
ActOnExplicitInstantiation(Scope *S,
SourceLocation ExternLoc,
SourceLocation TemplateLoc,
unsigned TagSpec,
SourceLocation KWLoc,
const CXXScopeSpec &SS,
TemplateTy Template,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc,
AttributeList *Attr);
DeclResult
ActOnExplicitInstantiation(Scope *S,
SourceLocation ExternLoc,
SourceLocation TemplateLoc,
unsigned TagSpec,
SourceLocation KWLoc,
CXXScopeSpec &SS,
IdentifierInfo *Name,
SourceLocation NameLoc,
AttributeList *Attr);
DeclResult ActOnExplicitInstantiation(Scope *S,
SourceLocation ExternLoc,
SourceLocation TemplateLoc,
Declarator &D);
TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
SourceLocation TemplateLoc,
SourceLocation RAngleLoc,
Decl *Param,
SmallVectorImpl<TemplateArgument> &Converted);
/// \brief Specifies the context in which a particular template
/// argument is being checked.
enum CheckTemplateArgumentKind {
/// \brief The template argument was specified in the code or was
/// instantiated with some deduced template arguments.
CTAK_Specified,
/// \brief The template argument was deduced via template argument
/// deduction.
CTAK_Deduced,
/// \brief The template argument was deduced from an array bound
/// via template argument deduction.
CTAK_DeducedFromArrayBound
};
bool CheckTemplateArgument(NamedDecl *Param,
const TemplateArgumentLoc &Arg,
NamedDecl *Template,
SourceLocation TemplateLoc,
SourceLocation RAngleLoc,
unsigned ArgumentPackIndex,
SmallVectorImpl<TemplateArgument> &Converted,
CheckTemplateArgumentKind CTAK = CTAK_Specified);
/// \brief Check that the given template arguments can be be provided to
/// the given template, converting the arguments along the way.
///
/// \param Template The template to which the template arguments are being
/// provided.
///
/// \param TemplateLoc The location of the template name in the source.
///
/// \param TemplateArgs The list of template arguments. If the template is
/// a template template parameter, this function may extend the set of
/// template arguments to also include substituted, defaulted template
/// arguments.
///
/// \param PartialTemplateArgs True if the list of template arguments is
/// intentionally partial, e.g., because we're checking just the initial
/// set of template arguments.
///
/// \param Converted Will receive the converted, canonicalized template
/// arguments.
///
/// \returns True if an error occurred, false otherwise.
bool CheckTemplateArgumentList(TemplateDecl *Template,
SourceLocation TemplateLoc,
TemplateArgumentListInfo &TemplateArgs,
bool PartialTemplateArgs,
SmallVectorImpl<TemplateArgument> &Converted);
bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
const TemplateArgumentLoc &Arg,
SmallVectorImpl<TemplateArgument> &Converted);
bool CheckTemplateArgument(TemplateTypeParmDecl *Param,
TypeSourceInfo *Arg);
bool CheckTemplateArgumentPointerToMember(Expr *Arg,
TemplateArgument &Converted);
ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
QualType InstantiatedParamType, Expr *Arg,
TemplateArgument &Converted,
CheckTemplateArgumentKind CTAK = CTAK_Specified);
bool CheckTemplateArgument(TemplateTemplateParmDecl *Param,
const TemplateArgumentLoc &Arg);
ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
QualType ParamType,
SourceLocation Loc);
ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
SourceLocation Loc);
/// \brief Enumeration describing how template parameter lists are compared
/// for equality.
enum TemplateParameterListEqualKind {
/// \brief We are matching the template parameter lists of two templates
/// that might be redeclarations.
///
/// \code
/// template<typename T> struct X;
/// template<typename T> struct X;
/// \endcode
TPL_TemplateMatch,
/// \brief We are matching the template parameter lists of two template
/// template parameters as part of matching the template parameter lists
/// of two templates that might be redeclarations.
///
/// \code
/// template<template<int I> class TT> struct X;
/// template<template<int Value> class Other> struct X;
/// \endcode
TPL_TemplateTemplateParmMatch,
/// \brief We are matching the template parameter lists of a template
/// template argument against the template parameter lists of a template
/// template parameter.
///
/// \code
/// template<template<int Value> class Metafun> struct X;
/// template<int Value> struct integer_c;
/// X<integer_c> xic;
/// \endcode
TPL_TemplateTemplateArgumentMatch
};
bool TemplateParameterListsAreEqual(TemplateParameterList *New,
TemplateParameterList *Old,
bool Complain,
TemplateParameterListEqualKind Kind,
SourceLocation TemplateArgLoc
= SourceLocation());
bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams);
/// \brief Called when the parser has parsed a C++ typename
/// specifier, e.g., "typename T::type".
///
/// \param S The scope in which this typename type occurs.
/// \param TypenameLoc the location of the 'typename' keyword
/// \param SS the nested-name-specifier following the typename (e.g., 'T::').
/// \param II the identifier we're retrieving (e.g., 'type' in the example).
/// \param IdLoc the location of the identifier.
TypeResult
ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
const CXXScopeSpec &SS, const IdentifierInfo &II,
SourceLocation IdLoc);
/// \brief Called when the parser has parsed a C++ typename
/// specifier that ends in a template-id, e.g.,
/// "typename MetaFun::template apply<T1, T2>".
///
/// \param S The scope in which this typename type occurs.
/// \param TypenameLoc the location of the 'typename' keyword
/// \param SS the nested-name-specifier following the typename (e.g., 'T::').
/// \param TemplateLoc the location of the 'template' keyword, if any.
/// \param TemplateName The template name.
/// \param TemplateNameLoc The location of the template name.
/// \param LAngleLoc The location of the opening angle bracket ('<').
/// \param TemplateArgs The template arguments.
/// \param RAngleLoc The location of the closing angle bracket ('>').
TypeResult
ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
const CXXScopeSpec &SS,
SourceLocation TemplateLoc,
TemplateTy Template,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc);
QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
SourceLocation KeywordLoc,
NestedNameSpecifierLoc QualifierLoc,
const IdentifierInfo &II,
SourceLocation IILoc);
TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
SourceLocation Loc,
DeclarationName Name);
bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS);
ExprResult RebuildExprInCurrentInstantiation(Expr *E);
bool RebuildTemplateParamsInCurrentInstantiation(
TemplateParameterList *Params);
std::string
getTemplateArgumentBindingsText(const TemplateParameterList *Params,
const TemplateArgumentList &Args);
std::string
getTemplateArgumentBindingsText(const TemplateParameterList *Params,
const TemplateArgument *Args,
unsigned NumArgs);
//===--------------------------------------------------------------------===//
// C++ Variadic Templates (C++0x [temp.variadic])
//===--------------------------------------------------------------------===//
/// \brief The context in which an unexpanded parameter pack is
/// being diagnosed.
///
/// Note that the values of this enumeration line up with the first
/// argument to the \c err_unexpanded_parameter_pack diagnostic.
enum UnexpandedParameterPackContext {
/// \brief An arbitrary expression.
UPPC_Expression = 0,
/// \brief The base type of a class type.
UPPC_BaseType,
/// \brief The type of an arbitrary declaration.
UPPC_DeclarationType,
/// \brief The type of a data member.
UPPC_DataMemberType,
/// \brief The size of a bit-field.
UPPC_BitFieldWidth,
/// \brief The expression in a static assertion.
UPPC_StaticAssertExpression,
/// \brief The fixed underlying type of an enumeration.
UPPC_FixedUnderlyingType,
/// \brief The enumerator value.
UPPC_EnumeratorValue,
/// \brief A using declaration.
UPPC_UsingDeclaration,
/// \brief A friend declaration.
UPPC_FriendDeclaration,
/// \brief A declaration qualifier.
UPPC_DeclarationQualifier,
/// \brief An initializer.
UPPC_Initializer,
/// \brief A default argument.
UPPC_DefaultArgument,
/// \brief The type of a non-type template parameter.
UPPC_NonTypeTemplateParameterType,
/// \brief The type of an exception.
UPPC_ExceptionType,
/// \brief Partial specialization.
UPPC_PartialSpecialization,
/// \brief Microsoft __if_exists.
UPPC_IfExists,
/// \brief Microsoft __if_not_exists.
UPPC_IfNotExists
};
/// \brief Diagnose unexpanded parameter packs.
///
/// \param Loc The location at which we should emit the diagnostic.
///
/// \param UPPC The context in which we are diagnosing unexpanded
/// parameter packs.
///
/// \param Unexpanded the set of unexpanded parameter packs.
void DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
UnexpandedParameterPackContext UPPC,
const SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// \brief If the given type contains an unexpanded parameter pack,
/// diagnose the error.
///
/// \param Loc The source location where a diagnostc should be emitted.
///
/// \param T The type that is being checked for unexpanded parameter
/// packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T,
UnexpandedParameterPackContext UPPC);
/// \brief If the given expression contains an unexpanded parameter
/// pack, diagnose the error.
///
/// \param E The expression that is being checked for unexpanded
/// parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(Expr *E,
UnexpandedParameterPackContext UPPC = UPPC_Expression);
/// \brief If the given nested-name-specifier contains an unexpanded
/// parameter pack, diagnose the error.
///
/// \param SS The nested-name-specifier that is being checked for
/// unexpanded parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
UnexpandedParameterPackContext UPPC);
/// \brief If the given name contains an unexpanded parameter pack,
/// diagnose the error.
///
/// \param NameInfo The name (with source location information) that
/// is being checked for unexpanded parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
UnexpandedParameterPackContext UPPC);
/// \brief If the given template name contains an unexpanded parameter pack,
/// diagnose the error.
///
/// \param Loc The location of the template name.
///
/// \param Template The template name that is being checked for unexpanded
/// parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(SourceLocation Loc,
TemplateName Template,
UnexpandedParameterPackContext UPPC);
/// \brief If the given template argument contains an unexpanded parameter
/// pack, diagnose the error.
///
/// \param Arg The template argument that is being checked for unexpanded
/// parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
UnexpandedParameterPackContext UPPC);
/// \brief Collect the set of unexpanded parameter packs within the given
/// template argument.
///
/// \param Arg The template argument that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(TemplateArgument Arg,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// \brief Collect the set of unexpanded parameter packs within the given
/// template argument.
///
/// \param Arg The template argument that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// \brief Collect the set of unexpanded parameter packs within the given
/// type.
///
/// \param T The type that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(QualType T,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// \brief Collect the set of unexpanded parameter packs within the given
/// type.
///
/// \param TL The type that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(TypeLoc TL,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// \brief Collect the set of unexpanded parameter packs within the given
/// nested-name-specifier.
///
/// \param SS The nested-name-specifier that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(CXXScopeSpec &SS,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// \brief Collect the set of unexpanded parameter packs within the given
/// name.
///
/// \param NameInfo The name that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// \brief Invoked when parsing a template argument followed by an
/// ellipsis, which creates a pack expansion.
///
/// \param Arg The template argument preceding the ellipsis, which
/// may already be invalid.
///
/// \param EllipsisLoc The location of the ellipsis.
ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg,
SourceLocation EllipsisLoc);
/// \brief Invoked when parsing a type followed by an ellipsis, which
/// creates a pack expansion.
///
/// \param Type The type preceding the ellipsis, which will become
/// the pattern of the pack expansion.
///
/// \param EllipsisLoc The location of the ellipsis.
TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc);
/// \brief Construct a pack expansion type from the pattern of the pack
/// expansion.
TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern,
SourceLocation EllipsisLoc,
llvm::Optional<unsigned> NumExpansions);
/// \brief Construct a pack expansion type from the pattern of the pack
/// expansion.
QualType CheckPackExpansion(QualType Pattern,
SourceRange PatternRange,
SourceLocation EllipsisLoc,
llvm::Optional<unsigned> NumExpansions);
/// \brief Invoked when parsing an expression followed by an ellipsis, which
/// creates a pack expansion.
///
/// \param Pattern The expression preceding the ellipsis, which will become
/// the pattern of the pack expansion.
///
/// \param EllipsisLoc The location of the ellipsis.
ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc);
/// \brief Invoked when parsing an expression followed by an ellipsis, which
/// creates a pack expansion.
///
/// \param Pattern The expression preceding the ellipsis, which will become
/// the pattern of the pack expansion.
///
/// \param EllipsisLoc The location of the ellipsis.
ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
llvm::Optional<unsigned> NumExpansions);
/// \brief Determine whether we could expand a pack expansion with the
/// given set of parameter packs into separate arguments by repeatedly
/// transforming the pattern.
///
/// \param EllipsisLoc The location of the ellipsis that identifies the
/// pack expansion.
///
/// \param PatternRange The source range that covers the entire pattern of
/// the pack expansion.
///
/// \param Unexpanded The set of unexpanded parameter packs within the
/// pattern.
///
/// \param NumUnexpanded The number of unexpanded parameter packs in
/// \p Unexpanded.
///
/// \param ShouldExpand Will be set to \c true if the transformer should
/// expand the corresponding pack expansions into separate arguments. When
/// set, \c NumExpansions must also be set.
///
/// \param RetainExpansion Whether the caller should add an unexpanded
/// pack expansion after all of the expanded arguments. This is used
/// when extending explicitly-specified template argument packs per
/// C++0x [temp.arg.explicit]p9.
///
/// \param NumExpansions The number of separate arguments that will be in
/// the expanded form of the corresponding pack expansion. This is both an
/// input and an output parameter, which can be set by the caller if the
/// number of expansions is known a priori (e.g., due to a prior substitution)
/// and will be set by the callee when the number of expansions is known.
/// The callee must set this value when \c ShouldExpand is \c true; it may
/// set this value in other cases.
///
/// \returns true if an error occurred (e.g., because the parameter packs
/// are to be instantiated with arguments of different lengths), false
/// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
/// must be set.
bool CheckParameterPacksForExpansion(SourceLocation EllipsisLoc,
SourceRange PatternRange,
llvm::ArrayRef<UnexpandedParameterPack> Unexpanded,
const MultiLevelTemplateArgumentList &TemplateArgs,
bool &ShouldExpand,
bool &RetainExpansion,
llvm::Optional<unsigned> &NumExpansions);
/// \brief Determine the number of arguments in the given pack expansion
/// type.
///
/// This routine already assumes that the pack expansion type can be
/// expanded and that the number of arguments in the expansion is
/// consistent across all of the unexpanded parameter packs in its pattern.
unsigned getNumArgumentsInExpansion(QualType T,
const MultiLevelTemplateArgumentList &TemplateArgs);
/// \brief Determine whether the given declarator contains any unexpanded
/// parameter packs.
///
/// This routine is used by the parser to disambiguate function declarators
/// with an ellipsis prior to the ')', e.g.,
///
/// \code
/// void f(T...);
/// \endcode
///
/// To determine whether we have an (unnamed) function parameter pack or
/// a variadic function.
///
/// \returns true if the declarator contains any unexpanded parameter packs,
/// false otherwise.
bool containsUnexpandedParameterPacks(Declarator &D);
//===--------------------------------------------------------------------===//
// C++ Template Argument Deduction (C++ [temp.deduct])
//===--------------------------------------------------------------------===//
/// \brief Describes the result of template argument deduction.
///
/// The TemplateDeductionResult enumeration describes the result of
/// template argument deduction, as returned from
/// DeduceTemplateArguments(). The separate TemplateDeductionInfo
/// structure provides additional information about the results of
/// template argument deduction, e.g., the deduced template argument
/// list (if successful) or the specific template parameters or
/// deduced arguments that were involved in the failure.
enum TemplateDeductionResult {
/// \brief Template argument deduction was successful.
TDK_Success = 0,
/// \brief Template argument deduction exceeded the maximum template
/// instantiation depth (which has already been diagnosed).
TDK_InstantiationDepth,
/// \brief Template argument deduction did not deduce a value
/// for every template parameter.
TDK_Incomplete,
/// \brief Template argument deduction produced inconsistent
/// deduced values for the given template parameter.
TDK_Inconsistent,
/// \brief Template argument deduction failed due to inconsistent
/// cv-qualifiers on a template parameter type that would
/// otherwise be deduced, e.g., we tried to deduce T in "const T"
/// but were given a non-const "X".
TDK_Underqualified,
/// \brief Substitution of the deduced template argument values
/// resulted in an error.
TDK_SubstitutionFailure,
/// \brief Substitution of the deduced template argument values
/// into a non-deduced context produced a type or value that
/// produces a type that does not match the original template
/// arguments provided.
TDK_NonDeducedMismatch,
/// \brief When performing template argument deduction for a function
/// template, there were too many call arguments.
TDK_TooManyArguments,
/// \brief When performing template argument deduction for a function
/// template, there were too few call arguments.
TDK_TooFewArguments,
/// \brief The explicitly-specified template arguments were not valid
/// template arguments for the given template.
TDK_InvalidExplicitArguments,
/// \brief The arguments included an overloaded function name that could
/// not be resolved to a suitable function.
TDK_FailedOverloadResolution
};
TemplateDeductionResult
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
const TemplateArgumentList &TemplateArgs,
sema::TemplateDeductionInfo &Info);
TemplateDeductionResult
SubstituteExplicitTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo &ExplicitTemplateArgs,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
SmallVectorImpl<QualType> &ParamTypes,
QualType *FunctionType,
sema::TemplateDeductionInfo &Info);
/// brief A function argument from which we performed template argument
// deduction for a call.
struct OriginalCallArg {
OriginalCallArg(QualType OriginalParamType,
unsigned ArgIdx,
QualType OriginalArgType)
: OriginalParamType(OriginalParamType), ArgIdx(ArgIdx),
OriginalArgType(OriginalArgType) { }
QualType OriginalParamType;
unsigned ArgIdx;
QualType OriginalArgType;
};
TemplateDeductionResult
FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
unsigned NumExplicitlySpecified,
FunctionDecl *&Specialization,
sema::TemplateDeductionInfo &Info,
SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs = 0);
TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo *ExplicitTemplateArgs,
Expr **Args, unsigned NumArgs,
FunctionDecl *&Specialization,
sema::TemplateDeductionInfo &Info);
TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo *ExplicitTemplateArgs,
QualType ArgFunctionType,
FunctionDecl *&Specialization,
sema::TemplateDeductionInfo &Info);
TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
QualType ToType,
CXXConversionDecl *&Specialization,
sema::TemplateDeductionInfo &Info);
TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo *ExplicitTemplateArgs,
FunctionDecl *&Specialization,
sema::TemplateDeductionInfo &Info);
bool DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer,
TypeSourceInfo *&Result);
FunctionTemplateDecl *getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
FunctionTemplateDecl *FT2,
SourceLocation Loc,
TemplatePartialOrderingContext TPOC,
unsigned NumCallArguments);
UnresolvedSetIterator getMostSpecialized(UnresolvedSetIterator SBegin,
UnresolvedSetIterator SEnd,
TemplatePartialOrderingContext TPOC,
unsigned NumCallArguments,
SourceLocation Loc,
const PartialDiagnostic &NoneDiag,
const PartialDiagnostic &AmbigDiag,
const PartialDiagnostic &CandidateDiag,
bool Complain = true,
QualType TargetType = QualType());
ClassTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(
ClassTemplatePartialSpecializationDecl *PS1,
ClassTemplatePartialSpecializationDecl *PS2,
SourceLocation Loc);
void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
bool OnlyDeduced,
unsigned Depth,
SmallVectorImpl<bool> &Used);
void MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
SmallVectorImpl<bool> &Deduced);
//===--------------------------------------------------------------------===//
// C++ Template Instantiation
//
MultiLevelTemplateArgumentList getTemplateInstantiationArgs(NamedDecl *D,
const TemplateArgumentList *Innermost = 0,
bool RelativeToPrimary = false,
const FunctionDecl *Pattern = 0);
/// \brief A template instantiation that is currently in progress.
struct ActiveTemplateInstantiation {
/// \brief The kind of template instantiation we are performing
enum InstantiationKind {
/// We are instantiating a template declaration. The entity is
/// the declaration we're instantiating (e.g., a CXXRecordDecl).
TemplateInstantiation,
/// We are instantiating a default argument for a template
/// parameter. The Entity is the template, and
/// TemplateArgs/NumTemplateArguments provides the template
/// arguments as specified.
/// FIXME: Use a TemplateArgumentList
DefaultTemplateArgumentInstantiation,
/// We are instantiating a default argument for a function.
/// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs
/// provides the template arguments as specified.
DefaultFunctionArgumentInstantiation,
/// We are substituting explicit template arguments provided for
/// a function template. The entity is a FunctionTemplateDecl.
ExplicitTemplateArgumentSubstitution,
/// We are substituting template argument determined as part of
/// template argument deduction for either a class template
/// partial specialization or a function template. The
/// Entity is either a ClassTemplatePartialSpecializationDecl or
/// a FunctionTemplateDecl.
DeducedTemplateArgumentSubstitution,
/// We are substituting prior template arguments into a new
/// template parameter. The template parameter itself is either a
/// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl.
PriorTemplateArgumentSubstitution,
/// We are checking the validity of a default template argument that
/// has been used when naming a template-id.
DefaultTemplateArgumentChecking
} Kind;
/// \brief The point of instantiation within the source code.
SourceLocation PointOfInstantiation;
/// \brief The template (or partial specialization) in which we are
/// performing the instantiation, for substitutions of prior template
/// arguments.
NamedDecl *Template;
/// \brief The entity that is being instantiated.
uintptr_t Entity;
/// \brief The list of template arguments we are substituting, if they
/// are not part of the entity.
const TemplateArgument *TemplateArgs;
/// \brief The number of template arguments in TemplateArgs.
unsigned NumTemplateArgs;
/// \brief The template deduction info object associated with the
/// substitution or checking of explicit or deduced template arguments.
sema::TemplateDeductionInfo *DeductionInfo;
/// \brief The source range that covers the construct that cause
/// the instantiation, e.g., the template-id that causes a class
/// template instantiation.
SourceRange InstantiationRange;
ActiveTemplateInstantiation()
: Kind(TemplateInstantiation), Template(0), Entity(0), TemplateArgs(0),
NumTemplateArgs(0), DeductionInfo(0) {}
/// \brief Determines whether this template is an actual instantiation
/// that should be counted toward the maximum instantiation depth.
bool isInstantiationRecord() const;
friend bool operator==(const ActiveTemplateInstantiation &X,
const ActiveTemplateInstantiation &Y) {
if (X.Kind != Y.Kind)
return false;
if (X.Entity != Y.Entity)
return false;
switch (X.Kind) {
case TemplateInstantiation:
return true;
case PriorTemplateArgumentSubstitution:
case DefaultTemplateArgumentChecking:
if (X.Template != Y.Template)
return false;
// Fall through
case DefaultTemplateArgumentInstantiation:
case ExplicitTemplateArgumentSubstitution:
case DeducedTemplateArgumentSubstitution:
case DefaultFunctionArgumentInstantiation:
return X.TemplateArgs == Y.TemplateArgs;
}
return true;
}
friend bool operator!=(const ActiveTemplateInstantiation &X,
const ActiveTemplateInstantiation &Y) {
return !(X == Y);
}
};
/// \brief List of active template instantiations.
///
/// This vector is treated as a stack. As one template instantiation
/// requires another template instantiation, additional
/// instantiations are pushed onto the stack up to a
/// user-configurable limit LangOptions::InstantiationDepth.
SmallVector<ActiveTemplateInstantiation, 16>
ActiveTemplateInstantiations;
/// \brief Whether we are in a SFINAE context that is not associated with
/// template instantiation.
///
/// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside
/// of a template instantiation or template argument deduction.
bool InNonInstantiationSFINAEContext;
/// \brief The number of ActiveTemplateInstantiation entries in
/// \c ActiveTemplateInstantiations that are not actual instantiations and,
/// therefore, should not be counted as part of the instantiation depth.
unsigned NonInstantiationEntries;
/// \brief The last template from which a template instantiation
/// error or warning was produced.
///
/// This value is used to suppress printing of redundant template
/// instantiation backtraces when there are multiple errors in the
/// same instantiation. FIXME: Does this belong in Sema? It's tough
/// to implement it anywhere else.
ActiveTemplateInstantiation LastTemplateInstantiationErrorContext;
/// \brief The current index into pack expansion arguments that will be
/// used for substitution of parameter packs.
///
/// The pack expansion index will be -1 to indicate that parameter packs
/// should be instantiated as themselves. Otherwise, the index specifies
/// which argument within the parameter pack will be used for substitution.
int ArgumentPackSubstitutionIndex;
/// \brief RAII object used to change the argument pack substitution index
/// within a \c Sema object.
///
/// See \c ArgumentPackSubstitutionIndex for more information.
class ArgumentPackSubstitutionIndexRAII {
Sema &Self;
int OldSubstitutionIndex;
public:
ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex)
: Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) {
Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex;
}
~ArgumentPackSubstitutionIndexRAII() {
Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex;
}
};
friend class ArgumentPackSubstitutionRAII;
/// \brief The stack of calls expression undergoing template instantiation.
///
/// The top of this stack is used by a fixit instantiating unresolved
/// function calls to fix the AST to match the textual change it prints.
SmallVector<CallExpr *, 8> CallsUndergoingInstantiation;
/// \brief For each declaration that involved template argument deduction, the
/// set of diagnostics that were suppressed during that template argument
/// deduction.
///
/// FIXME: Serialize this structure to the AST file.
llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >
SuppressedDiagnostics;
/// \brief A stack object to be created when performing template
/// instantiation.
///
/// Construction of an object of type \c InstantiatingTemplate
/// pushes the current instantiation onto the stack of active
/// instantiations. If the size of this stack exceeds the maximum
/// number of recursive template instantiations, construction
/// produces an error and evaluates true.
///
/// Destruction of this object will pop the named instantiation off
/// the stack.
struct InstantiatingTemplate {
/// \brief Note that we are instantiating a class template,
/// function template, or a member thereof.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
Decl *Entity,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are instantiating a default argument in a
/// template-id.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
TemplateDecl *Template,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are instantiating a default argument in a
/// template-id.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
FunctionTemplateDecl *FunctionTemplate,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
ActiveTemplateInstantiation::InstantiationKind Kind,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are instantiating as part of template
/// argument deduction for a class template partial
/// specialization.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ClassTemplatePartialSpecializationDecl *PartialSpec,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange = SourceRange());
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ParmVarDecl *Param,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are substituting prior template arguments into a
/// non-type or template template parameter.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
NamedDecl *Template,
NonTypeTemplateParmDecl *Param,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceRange InstantiationRange);
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
NamedDecl *Template,
TemplateTemplateParmDecl *Param,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceRange InstantiationRange);
/// \brief Note that we are checking the default template argument
/// against the template parameter for a given template-id.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
TemplateDecl *Template,
NamedDecl *Param,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceRange InstantiationRange);
/// \brief Note that we have finished instantiating this template.
void Clear();
~InstantiatingTemplate() { Clear(); }
/// \brief Determines whether we have exceeded the maximum
/// recursive template instantiations.
operator bool() const { return Invalid; }
private:
Sema &SemaRef;
bool Invalid;
bool SavedInNonInstantiationSFINAEContext;
bool CheckInstantiationDepth(SourceLocation PointOfInstantiation,
SourceRange InstantiationRange);
InstantiatingTemplate(const InstantiatingTemplate&); // not implemented
InstantiatingTemplate&
operator=(const InstantiatingTemplate&); // not implemented
};
void PrintInstantiationStack();
/// \brief Determines whether we are currently in a context where
/// template argument substitution failures are not considered
/// errors.
///
/// \returns An empty \c llvm::Optional if we're not in a SFINAE context.
/// Otherwise, contains a pointer that, if non-NULL, contains the nearest
/// template-deduction context object, which can be used to capture
/// diagnostics that will be suppressed.
llvm::Optional<sema::TemplateDeductionInfo *> isSFINAEContext() const;
/// \brief RAII class used to determine whether SFINAE has
/// trapped any errors that occur during template argument
/// deduction.`
class SFINAETrap {
Sema &SemaRef;
unsigned PrevSFINAEErrors;
bool PrevInNonInstantiationSFINAEContext;
bool PrevAccessCheckingSFINAE;
public:
explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false)
: SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors),
PrevInNonInstantiationSFINAEContext(
SemaRef.InNonInstantiationSFINAEContext),
PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE)
{
if (!SemaRef.isSFINAEContext())
SemaRef.InNonInstantiationSFINAEContext = true;
SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE;
}
~SFINAETrap() {
SemaRef.NumSFINAEErrors = PrevSFINAEErrors;
SemaRef.InNonInstantiationSFINAEContext
= PrevInNonInstantiationSFINAEContext;
SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE;
}
/// \brief Determine whether any SFINAE errors have been trapped.
bool hasErrorOccurred() const {
return SemaRef.NumSFINAEErrors > PrevSFINAEErrors;
}
};
/// \brief The current instantiation scope used to store local
/// variables.
LocalInstantiationScope *CurrentInstantiationScope;
/// \brief The number of typos corrected by CorrectTypo.
unsigned TyposCorrected;
typedef llvm::DenseMap<IdentifierInfo *, TypoCorrection>
UnqualifiedTyposCorrectedMap;
/// \brief A cache containing the results of typo correction for unqualified
/// name lookup.
///
/// The string is the string that we corrected to (which may be empty, if
/// there was no correction), while the boolean will be true when the
/// string represents a keyword.
UnqualifiedTyposCorrectedMap UnqualifiedTyposCorrected;
/// \brief Worker object for performing CFG-based warnings.
sema::AnalysisBasedWarnings AnalysisWarnings;
/// \brief An entity for which implicit template instantiation is required.
///
/// The source location associated with the declaration is the first place in
/// the source code where the declaration was "used". It is not necessarily
/// the point of instantiation (which will be either before or after the
/// namespace-scope declaration that triggered this implicit instantiation),
/// However, it is the location that diagnostics should generally refer to,
/// because users will need to know what code triggered the instantiation.
typedef std::pair<ValueDecl *, SourceLocation> PendingImplicitInstantiation;
/// \brief The queue of implicit template instantiations that are required
/// but have not yet been performed.
std::deque<PendingImplicitInstantiation> PendingInstantiations;
/// \brief The queue of implicit template instantiations that are required
/// and must be performed within the current local scope.
///
/// This queue is only used for member functions of local classes in
/// templates, which must be instantiated in the same scope as their
/// enclosing function, so that they can reference function-local
/// types, static variables, enumerators, etc.
std::deque<PendingImplicitInstantiation> PendingLocalImplicitInstantiations;
void PerformPendingInstantiations(bool LocalOnly = false);
TypeSourceInfo *SubstType(TypeSourceInfo *T,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity);
QualType SubstType(QualType T,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity);
TypeSourceInfo *SubstType(TypeLoc TL,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity);
TypeSourceInfo *SubstFunctionDeclType(TypeSourceInfo *T,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc,
DeclarationName Entity);
ParmVarDecl *SubstParmVarDecl(ParmVarDecl *D,
const MultiLevelTemplateArgumentList &TemplateArgs,
int indexAdjustment,
llvm::Optional<unsigned> NumExpansions);
bool SubstParmTypes(SourceLocation Loc,
ParmVarDecl **Params, unsigned NumParams,
const MultiLevelTemplateArgumentList &TemplateArgs,
SmallVectorImpl<QualType> &ParamTypes,
SmallVectorImpl<ParmVarDecl *> *OutParams = 0);
ExprResult SubstExpr(Expr *E,
const MultiLevelTemplateArgumentList &TemplateArgs);
/// \brief Substitute the given template arguments into a list of
/// expressions, expanding pack expansions if required.
///
/// \param Exprs The list of expressions to substitute into.
///
/// \param NumExprs The number of expressions in \p Exprs.
///
/// \param IsCall Whether this is some form of call, in which case
/// default arguments will be dropped.
///
/// \param TemplateArgs The set of template arguments to substitute.
///
/// \param Outputs Will receive all of the substituted arguments.
///
/// \returns true if an error occurred, false otherwise.
bool SubstExprs(Expr **Exprs, unsigned NumExprs, bool IsCall,
const MultiLevelTemplateArgumentList &TemplateArgs,
SmallVectorImpl<Expr *> &Outputs);
StmtResult SubstStmt(Stmt *S,
const MultiLevelTemplateArgumentList &TemplateArgs);
Decl *SubstDecl(Decl *D, DeclContext *Owner,
const MultiLevelTemplateArgumentList &TemplateArgs);
bool
SubstBaseSpecifiers(CXXRecordDecl *Instantiation,
CXXRecordDecl *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs);
bool
InstantiateClass(SourceLocation PointOfInstantiation,
CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs,
TemplateSpecializationKind TSK,
bool Complain = true);
void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
const Decl *Pattern, Decl *Inst);
bool
InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation,
ClassTemplateSpecializationDecl *ClassTemplateSpec,
TemplateSpecializationKind TSK,
bool Complain = true);
void InstantiateClassMembers(SourceLocation PointOfInstantiation,
CXXRecordDecl *Instantiation,
const MultiLevelTemplateArgumentList &TemplateArgs,
TemplateSpecializationKind TSK);
void InstantiateClassTemplateSpecializationMembers(
SourceLocation PointOfInstantiation,
ClassTemplateSpecializationDecl *ClassTemplateSpec,
TemplateSpecializationKind TSK);
NestedNameSpecifierLoc
SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
const MultiLevelTemplateArgumentList &TemplateArgs);
DeclarationNameInfo
SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
const MultiLevelTemplateArgumentList &TemplateArgs);
TemplateName
SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name,
SourceLocation Loc,
const MultiLevelTemplateArgumentList &TemplateArgs);
bool Subst(const TemplateArgumentLoc *Args, unsigned NumArgs,
TemplateArgumentListInfo &Result,
const MultiLevelTemplateArgumentList &TemplateArgs);
void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
FunctionDecl *Function,
bool Recursive = false,
bool DefinitionRequired = false);
void InstantiateStaticDataMemberDefinition(
SourceLocation PointOfInstantiation,
VarDecl *Var,
bool Recursive = false,
bool DefinitionRequired = false);
void InstantiateMemInitializers(CXXConstructorDecl *New,
const CXXConstructorDecl *Tmpl,
const MultiLevelTemplateArgumentList &TemplateArgs);
bool InstantiateInitializer(Expr *Init,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation &LParenLoc,
ASTOwningVector<Expr*> &NewArgs,
SourceLocation &RParenLoc);
NamedDecl *FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
const MultiLevelTemplateArgumentList &TemplateArgs);
DeclContext *FindInstantiatedContext(SourceLocation Loc, DeclContext *DC,
const MultiLevelTemplateArgumentList &TemplateArgs);
// Objective-C declarations.
enum ObjCContainerKind {
OCK_None = -1,
OCK_Interface = 0,
OCK_Protocol,
OCK_Category,
OCK_ClassExtension,
OCK_Implementation,
OCK_CategoryImplementation
};
ObjCContainerKind getObjCContainerKind() const;
Decl *ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *SuperName,
SourceLocation SuperLoc,
Decl * const *ProtoRefs,
unsigned NumProtoRefs,
const SourceLocation *ProtoLocs,
SourceLocation EndProtoLoc,
AttributeList *AttrList);
Decl *ActOnCompatiblityAlias(
SourceLocation AtCompatibilityAliasLoc,
IdentifierInfo *AliasName, SourceLocation AliasLocation,
IdentifierInfo *ClassName, SourceLocation ClassLocation);
bool CheckForwardProtocolDeclarationForCircularDependency(
IdentifierInfo *PName,
SourceLocation &PLoc, SourceLocation PrevLoc,
const ObjCList<ObjCProtocolDecl> &PList);
Decl *ActOnStartProtocolInterface(
SourceLocation AtProtoInterfaceLoc,
IdentifierInfo *ProtocolName, SourceLocation ProtocolLoc,
Decl * const *ProtoRefNames, unsigned NumProtoRefs,
const SourceLocation *ProtoLocs,
SourceLocation EndProtoLoc,
AttributeList *AttrList);
Decl *ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *CategoryName,
SourceLocation CategoryLoc,
Decl * const *ProtoRefs,
unsigned NumProtoRefs,
const SourceLocation *ProtoLocs,
SourceLocation EndProtoLoc);
Decl *ActOnStartClassImplementation(
SourceLocation AtClassImplLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *SuperClassname,
SourceLocation SuperClassLoc);
Decl *ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *CatName,
SourceLocation CatLoc);
DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc,
IdentifierInfo **IdentList,
SourceLocation *IdentLocs,
unsigned NumElts);
DeclGroupPtrTy ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc,
const IdentifierLocPair *IdentList,
unsigned NumElts,
AttributeList *attrList);
void FindProtocolDeclaration(bool WarnOnDeclarations,
const IdentifierLocPair *ProtocolId,
unsigned NumProtocols,
SmallVectorImpl<Decl *> &Protocols);
/// Ensure attributes are consistent with type.
/// \param [in, out] Attributes The attributes to check; they will
/// be modified to be consistent with \arg PropertyTy.
void CheckObjCPropertyAttributes(Decl *PropertyPtrTy,
SourceLocation Loc,
unsigned &Attributes);
/// Process the specified property declaration and create decls for the
/// setters and getters as needed.
/// \param property The property declaration being processed
/// \param DC The semantic container for the property
/// \param redeclaredProperty Declaration for property if redeclared
/// in class extension.
/// \param lexicalDC Container for redeclaredProperty.
void ProcessPropertyDecl(ObjCPropertyDecl *property,
ObjCContainerDecl *DC,
ObjCPropertyDecl *redeclaredProperty = 0,
ObjCContainerDecl *lexicalDC = 0);
void DiagnosePropertyMismatch(ObjCPropertyDecl *Property,
ObjCPropertyDecl *SuperProperty,
const IdentifierInfo *Name);
void ComparePropertiesInBaseAndSuper(ObjCInterfaceDecl *IDecl);
void CompareMethodParamsInBaseAndSuper(Decl *IDecl,
ObjCMethodDecl *MethodDecl,
bool IsInstance);
void CompareProperties(Decl *CDecl, Decl *MergeProtocols);
void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
ObjCInterfaceDecl *ID);
void MatchOneProtocolPropertiesInClass(Decl *CDecl,
ObjCProtocolDecl *PDecl);
Decl *ActOnAtEnd(Scope *S, SourceRange AtEnd,
Decl **allMethods = 0, unsigned allNum = 0,
Decl **allProperties = 0, unsigned pNum = 0,
DeclGroupPtrTy *allTUVars = 0, unsigned tuvNum = 0);
Decl *ActOnProperty(Scope *S, SourceLocation AtLoc,
FieldDeclarator &FD, ObjCDeclSpec &ODS,
Selector GetterSel, Selector SetterSel,
bool *OverridingProperty,
tok::ObjCKeywordKind MethodImplKind,
DeclContext *lexicalDC = 0);
Decl *ActOnPropertyImplDecl(Scope *S,
SourceLocation AtLoc,
SourceLocation PropertyLoc,
bool ImplKind,
IdentifierInfo *PropertyId,
IdentifierInfo *PropertyIvar,
SourceLocation PropertyIvarLoc);
enum ObjCSpecialMethodKind {
OSMK_None,
OSMK_Alloc,
OSMK_New,
OSMK_Copy,
OSMK_RetainingInit,
OSMK_NonRetainingInit
};
struct ObjCArgInfo {
IdentifierInfo *Name;
SourceLocation NameLoc;
// The Type is null if no type was specified, and the DeclSpec is invalid
// in this case.
ParsedType Type;
ObjCDeclSpec DeclSpec;
/// ArgAttrs - Attribute list for this argument.
AttributeList *ArgAttrs;
};
Decl *ActOnMethodDeclaration(
Scope *S,
SourceLocation BeginLoc, // location of the + or -.
SourceLocation EndLoc, // location of the ; or {.
tok::TokenKind MethodType,
ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
// optional arguments. The number of types/arguments is obtained
// from the Sel.getNumArgs().
ObjCArgInfo *ArgInfo,
DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
AttributeList *AttrList, tok::ObjCKeywordKind MethodImplKind,
bool isVariadic, bool MethodDefinition);
// Helper method for ActOnClassMethod/ActOnInstanceMethod.
// Will search "local" class/category implementations for a method decl.
// Will also search in class's root looking for instance method.
// Returns 0 if no method is found.
ObjCMethodDecl *LookupPrivateClassMethod(Selector Sel,
ObjCInterfaceDecl *CDecl);
ObjCMethodDecl *LookupPrivateInstanceMethod(Selector Sel,
ObjCInterfaceDecl *ClassDecl);
ObjCMethodDecl *LookupMethodInQualifiedType(Selector Sel,
const ObjCObjectPointerType *OPT,
bool IsInstance);
ObjCMethodDecl *LookupMethodInObjectType(Selector Sel, QualType Ty,
bool IsInstance);
bool inferObjCARCLifetime(ValueDecl *decl);
ExprResult
HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
Expr *BaseExpr,
SourceLocation OpLoc,
DeclarationName MemberName,
SourceLocation MemberLoc,
SourceLocation SuperLoc, QualType SuperType,
bool Super);
ExprResult
ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
IdentifierInfo &propertyName,
SourceLocation receiverNameLoc,
SourceLocation propertyNameLoc);
ObjCMethodDecl *tryCaptureObjCSelf();
/// \brief Describes the kind of message expression indicated by a message
/// send that starts with an identifier.
enum ObjCMessageKind {
/// \brief The message is sent to 'super'.
ObjCSuperMessage,
/// \brief The message is an instance message.
ObjCInstanceMessage,
/// \brief The message is a class message, and the identifier is a type
/// name.
ObjCClassMessage
};
ObjCMessageKind getObjCMessageKind(Scope *S,
IdentifierInfo *Name,
SourceLocation NameLoc,
bool IsSuper,
bool HasTrailingDot,
ParsedType &ReceiverType);
ExprResult ActOnSuperMessage(Scope *S, SourceLocation SuperLoc,
Selector Sel,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args);
ExprResult BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
QualType ReceiverType,
SourceLocation SuperLoc,
Selector Sel,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args,
bool isImplicit = false);
ExprResult BuildClassMessageImplicit(QualType ReceiverType,
bool isSuperReceiver,
SourceLocation Loc,
Selector Sel,
ObjCMethodDecl *Method,
MultiExprArg Args);
ExprResult ActOnClassMessage(Scope *S,
ParsedType Receiver,
Selector Sel,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args);
ExprResult BuildInstanceMessage(Expr *Receiver,
QualType ReceiverType,
SourceLocation SuperLoc,
Selector Sel,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args,
bool isImplicit = false);
ExprResult BuildInstanceMessageImplicit(Expr *Receiver,
QualType ReceiverType,
SourceLocation Loc,
Selector Sel,
ObjCMethodDecl *Method,
MultiExprArg Args);
ExprResult ActOnInstanceMessage(Scope *S,
Expr *Receiver,
Selector Sel,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args);
ExprResult BuildObjCBridgedCast(SourceLocation LParenLoc,
ObjCBridgeCastKind Kind,
SourceLocation BridgeKeywordLoc,
TypeSourceInfo *TSInfo,
Expr *SubExpr);
ExprResult ActOnObjCBridgedCast(Scope *S,
SourceLocation LParenLoc,
ObjCBridgeCastKind Kind,
SourceLocation BridgeKeywordLoc,
ParsedType Type,
SourceLocation RParenLoc,
Expr *SubExpr);
bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall);
/// \brief Check whether the given new method is a valid override of the
/// given overridden method, and set any properties that should be inherited.
void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
const ObjCMethodDecl *Overridden,
bool IsImplementation);
/// \brief Check whether the given method overrides any methods in its class,
/// calling \c CheckObjCMethodOverride for each overridden method.
bool CheckObjCMethodOverrides(ObjCMethodDecl *NewMethod, DeclContext *DC);
enum PragmaOptionsAlignKind {
POAK_Native, // #pragma options align=native
POAK_Natural, // #pragma options align=natural
POAK_Packed, // #pragma options align=packed
POAK_Power, // #pragma options align=power
POAK_Mac68k, // #pragma options align=mac68k
POAK_Reset // #pragma options align=reset
};
/// ActOnPragmaOptionsAlign - Called on well formed #pragma options align.
void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind,
SourceLocation PragmaLoc,
SourceLocation KindLoc);
enum PragmaPackKind {
PPK_Default, // #pragma pack([n])
PPK_Show, // #pragma pack(show), only supported by MSVC.
PPK_Push, // #pragma pack(push, [identifier], [n])
PPK_Pop // #pragma pack(pop, [identifier], [n])
};
enum PragmaMSStructKind {
PMSST_OFF, // #pragms ms_struct off
PMSST_ON // #pragms ms_struct on
};
/// ActOnPragmaPack - Called on well formed #pragma pack(...).
void ActOnPragmaPack(PragmaPackKind Kind,
IdentifierInfo *Name,
Expr *Alignment,
SourceLocation PragmaLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc);
/// ActOnPragmaMSStruct - Called on well formed #pragms ms_struct [on|off].
void ActOnPragmaMSStruct(PragmaMSStructKind Kind);
/// ActOnPragmaUnused - Called on well-formed '#pragma unused'.
void ActOnPragmaUnused(const Token &Identifier,
Scope *curScope,
SourceLocation PragmaLoc);
/// ActOnPragmaVisibility - Called on well formed #pragma GCC visibility... .
void ActOnPragmaVisibility(bool IsPush, const IdentifierInfo* VisType,
SourceLocation PragmaLoc);
NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
SourceLocation Loc);
void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W);
/// ActOnPragmaWeakID - Called on well formed #pragma weak ident.
void ActOnPragmaWeakID(IdentifierInfo* WeakName,
SourceLocation PragmaLoc,
SourceLocation WeakNameLoc);
/// ActOnPragmaWeakAlias - Called on well formed #pragma weak ident = ident.
void ActOnPragmaWeakAlias(IdentifierInfo* WeakName,
IdentifierInfo* AliasName,
SourceLocation PragmaLoc,
SourceLocation WeakNameLoc,
SourceLocation AliasNameLoc);
/// ActOnPragmaFPContract - Called on well formed
/// #pragma {STDC,OPENCL} FP_CONTRACT
void ActOnPragmaFPContract(tok::OnOffSwitch OOS);
/// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to
/// a the record decl, to handle '#pragma pack' and '#pragma options align'.
void AddAlignmentAttributesForRecord(RecordDecl *RD);
/// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record.
void AddMsStructLayoutForRecord(RecordDecl *RD);
/// FreePackedContext - Deallocate and null out PackContext.
void FreePackedContext();
/// PushNamespaceVisibilityAttr - Note that we've entered a
/// namespace with a visibility attribute.
void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr);
/// AddPushedVisibilityAttribute - If '#pragma GCC visibility' was used,
/// add an appropriate visibility attribute.
void AddPushedVisibilityAttribute(Decl *RD);
/// PopPragmaVisibility - Pop the top element of the visibility stack; used
/// for '#pragma GCC visibility' and visibility attributes on namespaces.
void PopPragmaVisibility();
/// FreeVisContext - Deallocate and null out VisContext.
void FreeVisContext();
/// AddCFAuditedAttribute - Check whether we're currently within
/// '#pragma clang arc_cf_code_audited' and, if so, consider adding
/// the appropriate attribute.
void AddCFAuditedAttribute(Decl *D);
/// AddAlignedAttr - Adds an aligned attribute to a particular declaration.
void AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E);
void AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *T);
/// \brief The kind of conversion being performed.
enum CheckedConversionKind {
/// \brief An implicit conversion.
CCK_ImplicitConversion,
/// \brief A C-style cast.
CCK_CStyleCast,
/// \brief A functional-style cast.
CCK_FunctionalCast,
/// \brief A cast other than a C-style cast.
CCK_OtherCast
};
/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit
/// cast. If there is already an implicit cast, merge into the existing one.
/// If isLvalue, the result of the cast is an lvalue.
ExprResult ImpCastExprToType(Expr *E, QualType Type, CastKind CK,
ExprValueKind VK = VK_RValue,
const CXXCastPath *BasePath = 0,
CheckedConversionKind CCK
= CCK_ImplicitConversion);
/// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
/// to the conversion from scalar type ScalarTy to the Boolean type.
static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy);
/// IgnoredValueConversions - Given that an expression's result is
/// syntactically ignored, perform any conversions that are
/// required.
ExprResult IgnoredValueConversions(Expr *E);
// UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts
// functions and arrays to their respective pointers (C99 6.3.2.1).
ExprResult UsualUnaryConversions(Expr *E);
// DefaultFunctionArrayConversion - converts functions and arrays
// to their respective pointers (C99 6.3.2.1).
ExprResult DefaultFunctionArrayConversion(Expr *E);
// DefaultFunctionArrayLvalueConversion - converts functions and
// arrays to their respective pointers and performs the
// lvalue-to-rvalue conversion.
ExprResult DefaultFunctionArrayLvalueConversion(Expr *E);
// DefaultLvalueConversion - performs lvalue-to-rvalue conversion on
// the operand. This is DefaultFunctionArrayLvalueConversion,
// except that it assumes the operand isn't of function or array
// type.
ExprResult DefaultLvalueConversion(Expr *E);
// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
// do not have a prototype. Integer promotions are performed on each
// argument, and arguments that have type float are promoted to double.
ExprResult DefaultArgumentPromotion(Expr *E);
// Used for emitting the right warning by DefaultVariadicArgumentPromotion
enum VariadicCallType {
VariadicFunction,
VariadicBlock,
VariadicMethod,
VariadicConstructor,
VariadicDoesNotApply
};
/// GatherArgumentsForCall - Collector argument expressions for various
/// form of call prototypes.
bool GatherArgumentsForCall(SourceLocation CallLoc,
FunctionDecl *FDecl,
const FunctionProtoType *Proto,
unsigned FirstProtoArg,
Expr **Args, unsigned NumArgs,
SmallVector<Expr *, 8> &AllArgs,
VariadicCallType CallType = VariadicDoesNotApply);
// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
// will warn if the resulting type is not a POD type.
ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
FunctionDecl *FDecl);
// UsualArithmeticConversions - performs the UsualUnaryConversions on it's
// operands and then handles various conversions that are common to binary
// operators (C99 6.3.1.8). If both operands aren't arithmetic, this
// routine returns the first non-arithmetic type found. The client is
// responsible for emitting appropriate error diagnostics.
QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
bool IsCompAssign = false);
/// AssignConvertType - All of the 'assignment' semantic checks return this
/// enum to indicate whether the assignment was allowed. These checks are
/// done for simple assignments, as well as initialization, return from
/// function, argument passing, etc. The query is phrased in terms of a
/// source and destination type.
enum AssignConvertType {
/// Compatible - the types are compatible according to the standard.
Compatible,
/// PointerToInt - The assignment converts a pointer to an int, which we
/// accept as an extension.
PointerToInt,
/// IntToPointer - The assignment converts an int to a pointer, which we
/// accept as an extension.
IntToPointer,
/// FunctionVoidPointer - The assignment is between a function pointer and
/// void*, which the standard doesn't allow, but we accept as an extension.
FunctionVoidPointer,
/// IncompatiblePointer - The assignment is between two pointers types that
/// are not compatible, but we accept them as an extension.
IncompatiblePointer,
/// IncompatiblePointer - The assignment is between two pointers types which
/// point to integers which have a different sign, but are otherwise
/// identical. This is a subset of the above, but broken out because it's by
/// far the most common case of incompatible pointers.
IncompatiblePointerSign,
/// CompatiblePointerDiscardsQualifiers - The assignment discards
/// c/v/r qualifiers, which we accept as an extension.
CompatiblePointerDiscardsQualifiers,
/// IncompatiblePointerDiscardsQualifiers - The assignment
/// discards qualifiers that we don't permit to be discarded,
/// like address spaces.
IncompatiblePointerDiscardsQualifiers,
/// IncompatibleNestedPointerQualifiers - The assignment is between two
/// nested pointer types, and the qualifiers other than the first two
/// levels differ e.g. char ** -> const char **, but we accept them as an
/// extension.
IncompatibleNestedPointerQualifiers,
/// IncompatibleVectors - The assignment is between two vector types that
/// have the same size, which we accept as an extension.
IncompatibleVectors,
/// IntToBlockPointer - The assignment converts an int to a block
/// pointer. We disallow this.
IntToBlockPointer,
/// IncompatibleBlockPointer - The assignment is between two block
/// pointers types that are not compatible.
IncompatibleBlockPointer,
/// IncompatibleObjCQualifiedId - The assignment is between a qualified
/// id type and something else (that is incompatible with it). For example,
/// "id <XXX>" = "Foo *", where "Foo *" doesn't implement the XXX protocol.
IncompatibleObjCQualifiedId,
/// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an
/// object with __weak qualifier.
IncompatibleObjCWeakRef,
/// Incompatible - We reject this conversion outright, it is invalid to
/// represent it in the AST.
Incompatible
};
/// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the
/// assignment conversion type specified by ConvTy. This returns true if the
/// conversion was invalid or false if the conversion was accepted.
bool DiagnoseAssignmentResult(AssignConvertType ConvTy,
SourceLocation Loc,
QualType DstType, QualType SrcType,
Expr *SrcExpr, AssignmentAction Action,
bool *Complained = 0);
/// CheckAssignmentConstraints - Perform type checking for assignment,
/// argument passing, variable initialization, and function return values.
/// C99 6.5.16.
AssignConvertType CheckAssignmentConstraints(SourceLocation Loc,
QualType LHSType,
QualType RHSType);
/// Check assignment constraints and prepare for a conversion of the
/// RHS to the LHS type.
AssignConvertType CheckAssignmentConstraints(QualType LHSType,
ExprResult &RHS,
CastKind &Kind);
// CheckSingleAssignmentConstraints - Currently used by
// CheckAssignmentOperands, and ActOnReturnStmt. Prior to type checking,
// this routine performs the default function/array converions.
AssignConvertType CheckSingleAssignmentConstraints(QualType LHSType,
ExprResult &RHS,
bool Diagnose = true);
// \brief If the lhs type is a transparent union, check whether we
// can initialize the transparent union with the given expression.
AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType,
ExprResult &RHS);
bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType);
bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType);
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
AssignmentAction Action,
bool AllowExplicit = false);
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
AssignmentAction Action,
bool AllowExplicit,
ImplicitConversionSequence& ICS);
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
const ImplicitConversionSequence& ICS,
AssignmentAction Action,
CheckedConversionKind CCK
= CCK_ImplicitConversion);
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
const StandardConversionSequence& SCS,
AssignmentAction Action,
CheckedConversionKind CCK);
/// the following "Check" methods will return a valid/converted QualType
/// or a null QualType (indicating an error diagnostic was issued).
/// type checking binary operators (subroutines of CreateBuiltinBinOp).
QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS,
ExprResult &RHS);
QualType CheckPointerToMemberOperands( // C++ 5.5
ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK,
SourceLocation OpLoc, bool isIndirect);
QualType CheckMultiplyDivideOperands( // C99 6.5.5
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign,
bool IsDivide);
QualType CheckRemainderOperands( // C99 6.5.5
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
bool IsCompAssign = false);
QualType CheckAdditionOperands( // C99 6.5.6
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
QualType* CompLHSTy = 0);
QualType CheckSubtractionOperands( // C99 6.5.6
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
QualType* CompLHSTy = 0);
QualType CheckShiftOperands( // C99 6.5.7
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
bool IsCompAssign = false);
QualType CheckCompareOperands( // C99 6.5.8/9
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned OpaqueOpc,
bool isRelational);
QualType CheckBitwiseOperands( // C99 6.5.[10...12]
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
bool IsCompAssign = false);
QualType CheckLogicalOperands( // C99 6.5.[13,14]
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc);
// CheckAssignmentOperands is used for both simple and compound assignment.
// For simple assignment, pass both expressions and a null converted type.
// For compound assignment, pass both expressions and the converted type.
QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType);
ExprResult checkPseudoObjectIncDec(Scope *S, SourceLocation OpLoc,
UnaryOperatorKind Opcode, Expr *Op);
ExprResult checkPseudoObjectAssignment(Scope *S, SourceLocation OpLoc,
BinaryOperatorKind Opcode,
Expr *LHS, Expr *RHS);
ExprResult checkPseudoObjectRValue(Expr *E);
Expr *recreateSyntacticForm(PseudoObjectExpr *E);
QualType CheckConditionalOperands( // C99 6.5.15
ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc);
QualType CXXCheckConditionalOperands( // C++ 5.16
ExprResult &cond, ExprResult &lhs, ExprResult &rhs,
ExprValueKind &VK, ExprObjectKind &OK, SourceLocation questionLoc);
QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2,
bool *NonStandardCompositeType = 0);
QualType FindCompositePointerType(SourceLocation Loc,
ExprResult &E1, ExprResult &E2,
bool *NonStandardCompositeType = 0) {
Expr *E1Tmp = E1.take(), *E2Tmp = E2.take();
QualType Composite = FindCompositePointerType(Loc, E1Tmp, E2Tmp,
NonStandardCompositeType);
E1 = Owned(E1Tmp);
E2 = Owned(E2Tmp);
return Composite;
}
QualType FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
SourceLocation QuestionLoc);
bool DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
SourceLocation QuestionLoc);
/// type checking for vector binary operators.
QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, bool IsCompAssign);
QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, bool isRelational);
/// type checking declaration initializers (C99 6.7.8)
bool CheckForConstantInitializer(Expr *e, QualType t);
// type checking C++ declaration initializers (C++ [dcl.init]).
/// ReferenceCompareResult - Expresses the result of comparing two
/// types (cv1 T1 and cv2 T2) to determine their compatibility for the
/// purposes of initialization by reference (C++ [dcl.init.ref]p4).
enum ReferenceCompareResult {
/// Ref_Incompatible - The two types are incompatible, so direct
/// reference binding is not possible.
Ref_Incompatible = 0,
/// Ref_Related - The two types are reference-related, which means
/// that their unqualified forms (T1 and T2) are either the same
/// or T1 is a base class of T2.
Ref_Related,
/// Ref_Compatible_With_Added_Qualification - The two types are
/// reference-compatible with added qualification, meaning that
/// they are reference-compatible and the qualifiers on T1 (cv1)
/// are greater than the qualifiers on T2 (cv2).
Ref_Compatible_With_Added_Qualification,
/// Ref_Compatible - The two types are reference-compatible and
/// have equivalent qualifiers (cv1 == cv2).
Ref_Compatible
};
ReferenceCompareResult CompareReferenceRelationship(SourceLocation Loc,
QualType T1, QualType T2,
bool &DerivedToBase,
bool &ObjCConversion,
bool &ObjCLifetimeConversion);
ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
Expr *CastExpr, CastKind &CastKind,
ExprValueKind &VK, CXXCastPath &Path);
/// \brief Force an expression with unknown-type to an expression of the
/// given type.
ExprResult forceUnknownAnyToType(Expr *E, QualType ToType);
// CheckVectorCast - check type constraints for vectors.
// Since vectors are an extension, there are no C standard reference for this.
// We allow casting between vectors and integer datatypes of the same size.
// returns true if the cast is invalid
bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
CastKind &Kind);
// CheckExtVectorCast - check type constraints for extended vectors.
// Since vectors are an extension, there are no C standard reference for this.
// We allow casting between vectors and integer datatypes of the same size,
// or vectors and the element type of that vector.
// returns the cast expr
ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr,
CastKind &Kind);
ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo,
SourceLocation LParenLoc,
Expr *CastExpr,
SourceLocation RParenLoc);
enum ARCConversionResult { ACR_okay, ACR_unbridged };
/// \brief Checks for invalid conversions and casts between
/// retainable pointers and other pointer kinds.
ARCConversionResult CheckObjCARCConversion(SourceRange castRange,
QualType castType, Expr *&op,
CheckedConversionKind CCK);
Expr *stripARCUnbridgedCast(Expr *e);
void diagnoseARCUnbridgedCast(Expr *e);
bool CheckObjCARCUnavailableWeakConversion(QualType castType,
QualType ExprType);
/// checkRetainCycles - Check whether an Objective-C message send
/// might create an obvious retain cycle.
void checkRetainCycles(ObjCMessageExpr *msg);
void checkRetainCycles(Expr *receiver, Expr *argument);
/// checkUnsafeAssigns - Check whether +1 expr is being assigned
/// to weak/__unsafe_unretained type.
bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS);
/// checkUnsafeExprAssigns - Check whether +1 expr is being assigned
/// to weak/__unsafe_unretained expression.
void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS);
/// CheckMessageArgumentTypes - Check types in an Obj-C message send.
/// \param Method - May be null.
/// \param [out] ReturnType - The return type of the send.
/// \return true iff there were any incompatible types.
bool CheckMessageArgumentTypes(QualType ReceiverType,
Expr **Args, unsigned NumArgs, Selector Sel,
ObjCMethodDecl *Method, bool isClassMessage,
bool isSuperMessage,
SourceLocation lbrac, SourceLocation rbrac,
QualType &ReturnType, ExprValueKind &VK);
/// \brief Determine the result of a message send expression based on
/// the type of the receiver, the method expected to receive the message,
/// and the form of the message send.
QualType getMessageSendResultType(QualType ReceiverType,
ObjCMethodDecl *Method,
bool isClassMessage, bool isSuperMessage);
/// \brief If the given expression involves a message send to a method
/// with a related result type, emit a note describing what happened.
void EmitRelatedResultTypeNote(const Expr *E);
/// CheckBooleanCondition - Diagnose problems involving the use of
/// the given expression as a boolean condition (e.g. in an if
/// statement). Also performs the standard function and array
/// decays, possibly changing the input variable.
///
/// \param Loc - A location associated with the condition, e.g. the
/// 'if' keyword.
/// \return true iff there were any errors
ExprResult CheckBooleanCondition(Expr *E, SourceLocation Loc);
ExprResult ActOnBooleanCondition(Scope *S, SourceLocation Loc,
Expr *SubExpr);
/// DiagnoseAssignmentAsCondition - Given that an expression is
/// being used as a boolean condition, warn if it's an assignment.
void DiagnoseAssignmentAsCondition(Expr *E);
/// \brief Redundant parentheses over an equality comparison can indicate
/// that the user intended an assignment used as condition.
void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE);
/// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid.
ExprResult CheckCXXBooleanCondition(Expr *CondExpr);
/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
/// the specified width and sign. If an overflow occurs, detect it and emit
/// the specified diagnostic.
void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal,
unsigned NewWidth, bool NewSign,
SourceLocation Loc, unsigned DiagID);
/// Checks that the Objective-C declaration is declared in the global scope.
/// Emits an error and marks the declaration as invalid if it's not declared
/// in the global scope.
bool CheckObjCDeclScope(Decl *D);
/// VerifyIntegerConstantExpression - Verifies that an expression is an ICE,
/// and reports the appropriate diagnostics. Returns false on success.
/// Can optionally return the value of the expression.
bool VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result = 0,
unsigned DiagId = 0,
bool AllowFold = true);
/// VerifyBitField - verifies that a bit field expression is an ICE and has
/// the correct width, and that the field type is valid.
/// Returns false on success.
/// Can optionally return whether the bit-field is of width 0
bool VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
QualType FieldTy, const Expr *BitWidth,
bool *ZeroWidth = 0);
enum CUDAFunctionTarget {
CFT_Device,
CFT_Global,
CFT_Host,
CFT_HostDevice
};
CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D);
bool CheckCUDATarget(CUDAFunctionTarget CallerTarget,
CUDAFunctionTarget CalleeTarget);
bool CheckCUDATarget(const FunctionDecl *Caller, const FunctionDecl *Callee) {
return CheckCUDATarget(IdentifyCUDATarget(Caller),
IdentifyCUDATarget(Callee));
}
/// \name Code completion
//@{
/// \brief Describes the context in which code completion occurs.
enum ParserCompletionContext {
/// \brief Code completion occurs at top-level or namespace context.
PCC_Namespace,
/// \brief Code completion occurs within a class, struct, or union.
PCC_Class,
/// \brief Code completion occurs within an Objective-C interface, protocol,
/// or category.
PCC_ObjCInterface,
/// \brief Code completion occurs within an Objective-C implementation or
/// category implementation
PCC_ObjCImplementation,
/// \brief Code completion occurs within the list of instance variables
/// in an Objective-C interface, protocol, category, or implementation.
PCC_ObjCInstanceVariableList,
/// \brief Code completion occurs following one or more template
/// headers.
PCC_Template,
/// \brief Code completion occurs following one or more template
/// headers within a class.
PCC_MemberTemplate,
/// \brief Code completion occurs within an expression.
PCC_Expression,
/// \brief Code completion occurs within a statement, which may
/// also be an expression or a declaration.
PCC_Statement,
/// \brief Code completion occurs at the beginning of the
/// initialization statement (or expression) in a for loop.
PCC_ForInit,
/// \brief Code completion occurs within the condition of an if,
/// while, switch, or for statement.
PCC_Condition,
/// \brief Code completion occurs within the body of a function on a
/// recovery path, where we do not have a specific handle on our position
/// in the grammar.
PCC_RecoveryInFunction,
/// \brief Code completion occurs where only a type is permitted.
PCC_Type,
/// \brief Code completion occurs in a parenthesized expression, which
/// might also be a type cast.
PCC_ParenthesizedExpression,
/// \brief Code completion occurs within a sequence of declaration
/// specifiers within a function, method, or block.
PCC_LocalDeclarationSpecifiers
};
void CodeCompleteOrdinaryName(Scope *S,
ParserCompletionContext CompletionContext);
void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS,
bool AllowNonIdentifiers,
bool AllowNestedNameSpecifiers);
struct CodeCompleteExpressionData;
void CodeCompleteExpression(Scope *S,
const CodeCompleteExpressionData &Data);
void CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
bool IsArrow);
void CodeCompletePostfixExpression(Scope *S, ExprResult LHS);
void CodeCompleteTag(Scope *S, unsigned TagSpec);
void CodeCompleteTypeQualifiers(DeclSpec &DS);
void CodeCompleteCase(Scope *S);
void CodeCompleteCall(Scope *S, Expr *Fn, Expr **Args, unsigned NumArgs);
void CodeCompleteInitializer(Scope *S, Decl *D);
void CodeCompleteReturn(Scope *S);
void CodeCompleteAfterIf(Scope *S);
void CodeCompleteAssignmentRHS(Scope *S, Expr *LHS);
void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS,
bool EnteringContext);
void CodeCompleteUsing(Scope *S);
void CodeCompleteUsingDirective(Scope *S);
void CodeCompleteNamespaceDecl(Scope *S);
void CodeCompleteNamespaceAliasDecl(Scope *S);
void CodeCompleteOperatorName(Scope *S);
void CodeCompleteConstructorInitializer(Decl *Constructor,
CXXCtorInitializer** Initializers,
unsigned NumInitializers);
void CodeCompleteObjCAtDirective(Scope *S);
void CodeCompleteObjCAtVisibility(Scope *S);
void CodeCompleteObjCAtStatement(Scope *S);
void CodeCompleteObjCAtExpression(Scope *S);
void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS);
void CodeCompleteObjCPropertyGetter(Scope *S);
void CodeCompleteObjCPropertySetter(Scope *S);
void CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS,
bool IsParameter);
void CodeCompleteObjCMessageReceiver(Scope *S);
void CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc,
IdentifierInfo **SelIdents,
unsigned NumSelIdents,
bool AtArgumentExpression);
void CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver,
IdentifierInfo **SelIdents,
unsigned NumSelIdents,
bool AtArgumentExpression,
bool IsSuper = false);
void CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver,
IdentifierInfo **SelIdents,
unsigned NumSelIdents,
bool AtArgumentExpression,
ObjCInterfaceDecl *Super = 0);
void CodeCompleteObjCForCollection(Scope *S,
DeclGroupPtrTy IterationVar);
void CodeCompleteObjCSelector(Scope *S,
IdentifierInfo **SelIdents,
unsigned NumSelIdents);
void CodeCompleteObjCProtocolReferences(IdentifierLocPair *Protocols,
unsigned NumProtocols);
void CodeCompleteObjCProtocolDecl(Scope *S);
void CodeCompleteObjCInterfaceDecl(Scope *S);
void CodeCompleteObjCSuperclass(Scope *S,
IdentifierInfo *ClassName,
SourceLocation ClassNameLoc);
void CodeCompleteObjCImplementationDecl(Scope *S);
void CodeCompleteObjCInterfaceCategory(Scope *S,
IdentifierInfo *ClassName,
SourceLocation ClassNameLoc);
void CodeCompleteObjCImplementationCategory(Scope *S,
IdentifierInfo *ClassName,
SourceLocation ClassNameLoc);
void CodeCompleteObjCPropertyDefinition(Scope *S);
void CodeCompleteObjCPropertySynthesizeIvar(Scope *S,
IdentifierInfo *PropertyName);
void CodeCompleteObjCMethodDecl(Scope *S,
bool IsInstanceMethod,
ParsedType ReturnType);
void CodeCompleteObjCMethodDeclSelector(Scope *S,
bool IsInstanceMethod,
bool AtParameterName,
ParsedType ReturnType,
IdentifierInfo **SelIdents,
unsigned NumSelIdents);
void CodeCompletePreprocessorDirective(bool InConditional);
void CodeCompleteInPreprocessorConditionalExclusion(Scope *S);
void CodeCompletePreprocessorMacroName(bool IsDefinition);
void CodeCompletePreprocessorExpression();
void CodeCompletePreprocessorMacroArgument(Scope *S,
IdentifierInfo *Macro,
MacroInfo *MacroInfo,
unsigned Argument);
void CodeCompleteNaturalLanguage();
void GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator,
SmallVectorImpl<CodeCompletionResult> &Results);
//@}
//===--------------------------------------------------------------------===//
// Extra semantic analysis beyond the C type system
public:
SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL,
unsigned ByteNo) const;
private:
void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
const ArraySubscriptExpr *ASE=0,
bool AllowOnePastEnd=true, bool IndexNegated=false);
void CheckArrayAccess(const Expr *E);
bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall);
bool CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall);
bool CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall);
bool CheckObjCString(Expr *Arg);
ExprResult CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
bool CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
bool SemaBuiltinVAStart(CallExpr *TheCall);
bool SemaBuiltinUnorderedCompare(CallExpr *TheCall);
bool SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs);
public:
// Used by C++ template instantiation.
ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall);
private:
bool SemaBuiltinPrefetch(CallExpr *TheCall);
bool SemaBuiltinObjectSize(CallExpr *TheCall);
bool SemaBuiltinLongjmp(CallExpr *TheCall);
ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult);
ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult,
AtomicExpr::AtomicOp Op);
bool SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
llvm::APSInt &Result);
bool SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
bool HasVAListArg, unsigned format_idx,
unsigned firstDataArg, bool isPrintf,
bool inFunctionCall = true);
void CheckFormatString(const StringLiteral *FExpr, const Expr *OrigFormatExpr,
const CallExpr *TheCall, bool HasVAListArg,
unsigned format_idx, unsigned firstDataArg,
bool isPrintf, bool inFunctionCall);
void CheckNonNullArguments(const NonNullAttr *NonNull,
const Expr * const *ExprArgs,
SourceLocation CallSiteLoc);
void CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
unsigned format_idx, unsigned firstDataArg,
bool isPrintf);
void CheckMemaccessArguments(const CallExpr *Call,
FunctionDecl::MemoryFunctionKind CMF,
IdentifierInfo *FnName);
void CheckStrlcpycatArguments(const CallExpr *Call,
IdentifierInfo *FnName);
void CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
SourceLocation ReturnLoc);
void CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr* RHS);
void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation());
void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field,
Expr *Init);
/// \brief The parser's current scope.
///
/// The parser maintains this state here.
Scope *CurScope;
protected:
friend class Parser;
friend class InitializationSequence;
friend class ASTReader;
friend class ASTWriter;
public:
/// \brief Retrieve the parser's current scope.
///
/// This routine must only be used when it is certain that semantic analysis
/// and the parser are in precisely the same context, which is not the case
/// when, e.g., we are performing any kind of template instantiation.
/// Therefore, the only safe places to use this scope are in the parser
/// itself and in routines directly invoked from the parser and *never* from
/// template substitution or instantiation.
Scope *getCurScope() const { return CurScope; }
Decl *getObjCDeclContext() const;
DeclContext *getCurLexicalContext() const {
return OriginalLexicalContext ? OriginalLexicalContext : CurContext;
}
AvailabilityResult getCurContextAvailability() const;
};
/// \brief RAII object that enters a new expression evaluation context.
class EnterExpressionEvaluationContext {
Sema &Actions;
public:
EnterExpressionEvaluationContext(Sema &Actions,
Sema::ExpressionEvaluationContext NewContext)
: Actions(Actions) {
Actions.PushExpressionEvaluationContext(NewContext);
}
~EnterExpressionEvaluationContext() {
Actions.PopExpressionEvaluationContext();
}
};
} // end namespace clang
#endif