зеркало из https://github.com/microsoft/clang-1.git
572 строки
22 KiB
C++
572 строки
22 KiB
C++
//===--- JumpDiagnostics.cpp - Analyze Jump Targets for VLA issues --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the JumpScopeChecker class, which is used to diagnose
|
|
// jumps that enter a VLA scope in an invalid way.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
using namespace clang;
|
|
|
|
namespace {
|
|
|
|
/// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps
|
|
/// into VLA and other protected scopes. For example, this rejects:
|
|
/// goto L;
|
|
/// int a[n];
|
|
/// L:
|
|
///
|
|
class JumpScopeChecker {
|
|
Sema &S;
|
|
|
|
/// GotoScope - This is a record that we use to keep track of all of the
|
|
/// scopes that are introduced by VLAs and other things that scope jumps like
|
|
/// gotos. This scope tree has nothing to do with the source scope tree,
|
|
/// because you can have multiple VLA scopes per compound statement, and most
|
|
/// compound statements don't introduce any scopes.
|
|
struct GotoScope {
|
|
/// ParentScope - The index in ScopeMap of the parent scope. This is 0 for
|
|
/// the parent scope is the function body.
|
|
unsigned ParentScope;
|
|
|
|
/// InDiag - The diagnostic to emit if there is a jump into this scope.
|
|
unsigned InDiag;
|
|
|
|
/// OutDiag - The diagnostic to emit if there is an indirect jump out
|
|
/// of this scope. Direct jumps always clean up their current scope
|
|
/// in an orderly way.
|
|
unsigned OutDiag;
|
|
|
|
/// Loc - Location to emit the diagnostic.
|
|
SourceLocation Loc;
|
|
|
|
GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag,
|
|
SourceLocation L)
|
|
: ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {}
|
|
};
|
|
|
|
llvm::SmallVector<GotoScope, 48> Scopes;
|
|
llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes;
|
|
llvm::SmallVector<Stmt*, 16> Jumps;
|
|
|
|
llvm::SmallVector<IndirectGotoStmt*, 4> IndirectJumps;
|
|
llvm::SmallVector<LabelStmt*, 4> IndirectJumpTargets;
|
|
public:
|
|
JumpScopeChecker(Stmt *Body, Sema &S);
|
|
private:
|
|
void BuildScopeInformation(Decl *D, unsigned &ParentScope);
|
|
void BuildScopeInformation(Stmt *S, unsigned ParentScope);
|
|
void VerifyJumps();
|
|
void VerifyIndirectJumps();
|
|
void DiagnoseIndirectJump(IndirectGotoStmt *IG, unsigned IGScope,
|
|
LabelStmt *Target, unsigned TargetScope);
|
|
void CheckJump(Stmt *From, Stmt *To,
|
|
SourceLocation DiagLoc, unsigned JumpDiag);
|
|
|
|
unsigned GetDeepestCommonScope(unsigned A, unsigned B);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s) : S(s) {
|
|
// Add a scope entry for function scope.
|
|
Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation()));
|
|
|
|
// Build information for the top level compound statement, so that we have a
|
|
// defined scope record for every "goto" and label.
|
|
BuildScopeInformation(Body, 0);
|
|
|
|
// Check that all jumps we saw are kosher.
|
|
VerifyJumps();
|
|
VerifyIndirectJumps();
|
|
}
|
|
|
|
/// GetDeepestCommonScope - Finds the innermost scope enclosing the
|
|
/// two scopes.
|
|
unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) {
|
|
while (A != B) {
|
|
// Inner scopes are created after outer scopes and therefore have
|
|
// higher indices.
|
|
if (A < B) {
|
|
assert(Scopes[B].ParentScope < B);
|
|
B = Scopes[B].ParentScope;
|
|
} else {
|
|
assert(Scopes[A].ParentScope < A);
|
|
A = Scopes[A].ParentScope;
|
|
}
|
|
}
|
|
return A;
|
|
}
|
|
|
|
/// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a
|
|
/// diagnostic that should be emitted if control goes over it. If not, return 0.
|
|
static std::pair<unsigned,unsigned>
|
|
GetDiagForGotoScopeDecl(const Decl *D, bool isCPlusPlus) {
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
unsigned InDiag = 0, OutDiag = 0;
|
|
if (VD->getType()->isVariablyModifiedType())
|
|
InDiag = diag::note_protected_by_vla;
|
|
|
|
if (VD->hasAttr<BlocksAttr>()) {
|
|
InDiag = diag::note_protected_by___block;
|
|
OutDiag = diag::note_exits___block;
|
|
} else if (VD->hasAttr<CleanupAttr>()) {
|
|
InDiag = diag::note_protected_by_cleanup;
|
|
OutDiag = diag::note_exits_cleanup;
|
|
} else if (isCPlusPlus) {
|
|
// FIXME: In C++0x, we have to check more conditions than "did we
|
|
// just give it an initializer?". See 6.7p3.
|
|
if (VD->hasLocalStorage() && VD->hasInit())
|
|
InDiag = diag::note_protected_by_variable_init;
|
|
|
|
CanQualType T = VD->getType()->getCanonicalTypeUnqualified();
|
|
if (!T->isDependentType()) {
|
|
while (CanQual<ArrayType> AT = T->getAs<ArrayType>())
|
|
T = AT->getElementType();
|
|
if (CanQual<RecordType> RT = T->getAs<RecordType>())
|
|
if (!cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor())
|
|
OutDiag = diag::note_exits_dtor;
|
|
}
|
|
}
|
|
|
|
return std::make_pair(InDiag, OutDiag);
|
|
}
|
|
|
|
if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
|
|
if (TD->getUnderlyingType()->isVariablyModifiedType())
|
|
return std::make_pair((unsigned) diag::note_protected_by_vla_typedef, 0);
|
|
}
|
|
|
|
return std::make_pair(0U, 0U);
|
|
}
|
|
|
|
/// \brief Build scope information for a declaration that is part of a DeclStmt.
|
|
void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) {
|
|
bool isCPlusPlus = this->S.getLangOptions().CPlusPlus;
|
|
|
|
// If this decl causes a new scope, push and switch to it.
|
|
std::pair<unsigned,unsigned> Diags
|
|
= GetDiagForGotoScopeDecl(D, isCPlusPlus);
|
|
if (Diags.first || Diags.second) {
|
|
Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second,
|
|
D->getLocation()));
|
|
ParentScope = Scopes.size()-1;
|
|
}
|
|
|
|
// If the decl has an initializer, walk it with the potentially new
|
|
// scope we just installed.
|
|
if (VarDecl *VD = dyn_cast<VarDecl>(D))
|
|
if (Expr *Init = VD->getInit())
|
|
BuildScopeInformation(Init, ParentScope);
|
|
}
|
|
|
|
/// BuildScopeInformation - The statements from CI to CE are known to form a
|
|
/// coherent VLA scope with a specified parent node. Walk through the
|
|
/// statements, adding any labels or gotos to LabelAndGotoScopes and recursively
|
|
/// walking the AST as needed.
|
|
void JumpScopeChecker::BuildScopeInformation(Stmt *S, unsigned ParentScope) {
|
|
bool SkipFirstSubStmt = false;
|
|
|
|
// If we found a label, remember that it is in ParentScope scope.
|
|
switch (S->getStmtClass()) {
|
|
case Stmt::AddrLabelExprClass:
|
|
IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel());
|
|
break;
|
|
|
|
case Stmt::IndirectGotoStmtClass:
|
|
// "goto *&&lbl;" is a special case which we treat as equivalent
|
|
// to a normal goto. In addition, we don't calculate scope in the
|
|
// operand (to avoid recording the address-of-label use), which
|
|
// works only because of the restricted set of expressions which
|
|
// we detect as constant targets.
|
|
if (cast<IndirectGotoStmt>(S)->getConstantTarget()) {
|
|
LabelAndGotoScopes[S] = ParentScope;
|
|
Jumps.push_back(S);
|
|
return;
|
|
}
|
|
|
|
LabelAndGotoScopes[S] = ParentScope;
|
|
IndirectJumps.push_back(cast<IndirectGotoStmt>(S));
|
|
break;
|
|
|
|
case Stmt::SwitchStmtClass:
|
|
// Evaluate the condition variable before entering the scope of the switch
|
|
// statement.
|
|
if (VarDecl *Var = cast<SwitchStmt>(S)->getConditionVariable()) {
|
|
BuildScopeInformation(Var, ParentScope);
|
|
SkipFirstSubStmt = true;
|
|
}
|
|
// Fall through
|
|
|
|
case Stmt::GotoStmtClass:
|
|
// Remember both what scope a goto is in as well as the fact that we have
|
|
// it. This makes the second scan not have to walk the AST again.
|
|
LabelAndGotoScopes[S] = ParentScope;
|
|
Jumps.push_back(S);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
|
|
++CI) {
|
|
if (SkipFirstSubStmt) {
|
|
SkipFirstSubStmt = false;
|
|
continue;
|
|
}
|
|
|
|
Stmt *SubStmt = *CI;
|
|
if (SubStmt == 0) continue;
|
|
|
|
// Cases, labels, and defaults aren't "scope parents". It's also
|
|
// important to handle these iteratively instead of recursively in
|
|
// order to avoid blowing out the stack.
|
|
while (true) {
|
|
Stmt *Next;
|
|
if (isa<CaseStmt>(SubStmt))
|
|
Next = cast<CaseStmt>(SubStmt)->getSubStmt();
|
|
else if (isa<DefaultStmt>(SubStmt))
|
|
Next = cast<DefaultStmt>(SubStmt)->getSubStmt();
|
|
else if (isa<LabelStmt>(SubStmt))
|
|
Next = cast<LabelStmt>(SubStmt)->getSubStmt();
|
|
else
|
|
break;
|
|
|
|
LabelAndGotoScopes[SubStmt] = ParentScope;
|
|
SubStmt = Next;
|
|
}
|
|
|
|
// If this is a declstmt with a VLA definition, it defines a scope from here
|
|
// to the end of the containing context.
|
|
if (DeclStmt *DS = dyn_cast<DeclStmt>(SubStmt)) {
|
|
// The decl statement creates a scope if any of the decls in it are VLAs
|
|
// or have the cleanup attribute.
|
|
for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
|
|
I != E; ++I)
|
|
BuildScopeInformation(*I, ParentScope);
|
|
continue;
|
|
}
|
|
|
|
// Disallow jumps into any part of an @try statement by pushing a scope and
|
|
// walking all sub-stmts in that scope.
|
|
if (ObjCAtTryStmt *AT = dyn_cast<ObjCAtTryStmt>(SubStmt)) {
|
|
// Recursively walk the AST for the @try part.
|
|
Scopes.push_back(GotoScope(ParentScope,
|
|
diag::note_protected_by_objc_try,
|
|
diag::note_exits_objc_try,
|
|
AT->getAtTryLoc()));
|
|
if (Stmt *TryPart = AT->getTryBody())
|
|
BuildScopeInformation(TryPart, Scopes.size()-1);
|
|
|
|
// Jump from the catch to the finally or try is not valid.
|
|
for (unsigned I = 0, N = AT->getNumCatchStmts(); I != N; ++I) {
|
|
ObjCAtCatchStmt *AC = AT->getCatchStmt(I);
|
|
Scopes.push_back(GotoScope(ParentScope,
|
|
diag::note_protected_by_objc_catch,
|
|
diag::note_exits_objc_catch,
|
|
AC->getAtCatchLoc()));
|
|
// @catches are nested and it isn't
|
|
BuildScopeInformation(AC->getCatchBody(), Scopes.size()-1);
|
|
}
|
|
|
|
// Jump from the finally to the try or catch is not valid.
|
|
if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) {
|
|
Scopes.push_back(GotoScope(ParentScope,
|
|
diag::note_protected_by_objc_finally,
|
|
diag::note_exits_objc_finally,
|
|
AF->getAtFinallyLoc()));
|
|
BuildScopeInformation(AF, Scopes.size()-1);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// Disallow jumps into the protected statement of an @synchronized, but
|
|
// allow jumps into the object expression it protects.
|
|
if (ObjCAtSynchronizedStmt *AS = dyn_cast<ObjCAtSynchronizedStmt>(SubStmt)){
|
|
// Recursively walk the AST for the @synchronized object expr, it is
|
|
// evaluated in the normal scope.
|
|
BuildScopeInformation(AS->getSynchExpr(), ParentScope);
|
|
|
|
// Recursively walk the AST for the @synchronized part, protected by a new
|
|
// scope.
|
|
Scopes.push_back(GotoScope(ParentScope,
|
|
diag::note_protected_by_objc_synchronized,
|
|
diag::note_exits_objc_synchronized,
|
|
AS->getAtSynchronizedLoc()));
|
|
BuildScopeInformation(AS->getSynchBody(), Scopes.size()-1);
|
|
continue;
|
|
}
|
|
|
|
// Disallow jumps into any part of a C++ try statement. This is pretty
|
|
// much the same as for Obj-C.
|
|
if (CXXTryStmt *TS = dyn_cast<CXXTryStmt>(SubStmt)) {
|
|
Scopes.push_back(GotoScope(ParentScope,
|
|
diag::note_protected_by_cxx_try,
|
|
diag::note_exits_cxx_try,
|
|
TS->getSourceRange().getBegin()));
|
|
if (Stmt *TryBlock = TS->getTryBlock())
|
|
BuildScopeInformation(TryBlock, Scopes.size()-1);
|
|
|
|
// Jump from the catch into the try is not allowed either.
|
|
for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) {
|
|
CXXCatchStmt *CS = TS->getHandler(I);
|
|
Scopes.push_back(GotoScope(ParentScope,
|
|
diag::note_protected_by_cxx_catch,
|
|
diag::note_exits_cxx_catch,
|
|
CS->getSourceRange().getBegin()));
|
|
BuildScopeInformation(CS->getHandlerBlock(), Scopes.size()-1);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// Recursively walk the AST.
|
|
BuildScopeInformation(SubStmt, ParentScope);
|
|
}
|
|
}
|
|
|
|
/// VerifyJumps - Verify each element of the Jumps array to see if they are
|
|
/// valid, emitting diagnostics if not.
|
|
void JumpScopeChecker::VerifyJumps() {
|
|
while (!Jumps.empty()) {
|
|
Stmt *Jump = Jumps.pop_back_val();
|
|
|
|
// With a goto,
|
|
if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) {
|
|
CheckJump(GS, GS->getLabel(), GS->getGotoLoc(),
|
|
diag::err_goto_into_protected_scope);
|
|
continue;
|
|
}
|
|
|
|
// We only get indirect gotos here when they have a constant target.
|
|
if (IndirectGotoStmt *IGS = dyn_cast<IndirectGotoStmt>(Jump)) {
|
|
LabelStmt *Target = IGS->getConstantTarget();
|
|
CheckJump(IGS, Target, IGS->getGotoLoc(),
|
|
diag::err_goto_into_protected_scope);
|
|
continue;
|
|
}
|
|
|
|
SwitchStmt *SS = cast<SwitchStmt>(Jump);
|
|
for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
|
|
SC = SC->getNextSwitchCase()) {
|
|
assert(LabelAndGotoScopes.count(SC) && "Case not visited?");
|
|
CheckJump(SS, SC, SC->getLocStart(),
|
|
diag::err_switch_into_protected_scope);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// VerifyIndirectJumps - Verify whether any possible indirect jump
|
|
/// might cross a protection boundary. Unlike direct jumps, indirect
|
|
/// jumps count cleanups as protection boundaries: since there's no
|
|
/// way to know where the jump is going, we can't implicitly run the
|
|
/// right cleanups the way we can with direct jumps.
|
|
///
|
|
/// Thus, an indirect jump is "trivial" if it bypasses no
|
|
/// initializations and no teardowns. More formally, an indirect jump
|
|
/// from A to B is trivial if the path out from A to DCA(A,B) is
|
|
/// trivial and the path in from DCA(A,B) to B is trivial, where
|
|
/// DCA(A,B) is the deepest common ancestor of A and B.
|
|
/// Jump-triviality is transitive but asymmetric.
|
|
///
|
|
/// A path in is trivial if none of the entered scopes have an InDiag.
|
|
/// A path out is trivial is none of the exited scopes have an OutDiag.
|
|
///
|
|
/// Under these definitions, this function checks that the indirect
|
|
/// jump between A and B is trivial for every indirect goto statement A
|
|
/// and every label B whose address was taken in the function.
|
|
void JumpScopeChecker::VerifyIndirectJumps() {
|
|
if (IndirectJumps.empty()) return;
|
|
|
|
// If there aren't any address-of-label expressions in this function,
|
|
// complain about the first indirect goto.
|
|
if (IndirectJumpTargets.empty()) {
|
|
S.Diag(IndirectJumps[0]->getGotoLoc(),
|
|
diag::err_indirect_goto_without_addrlabel);
|
|
return;
|
|
}
|
|
|
|
// Collect a single representative of every scope containing an
|
|
// indirect goto. For most code bases, this substantially cuts
|
|
// down on the number of jump sites we'll have to consider later.
|
|
typedef std::pair<unsigned, IndirectGotoStmt*> JumpScope;
|
|
llvm::SmallVector<JumpScope, 32> JumpScopes;
|
|
{
|
|
llvm::DenseMap<unsigned, IndirectGotoStmt*> JumpScopesMap;
|
|
for (llvm::SmallVectorImpl<IndirectGotoStmt*>::iterator
|
|
I = IndirectJumps.begin(), E = IndirectJumps.end(); I != E; ++I) {
|
|
IndirectGotoStmt *IG = *I;
|
|
assert(LabelAndGotoScopes.count(IG) &&
|
|
"indirect jump didn't get added to scopes?");
|
|
unsigned IGScope = LabelAndGotoScopes[IG];
|
|
IndirectGotoStmt *&Entry = JumpScopesMap[IGScope];
|
|
if (!Entry) Entry = IG;
|
|
}
|
|
JumpScopes.reserve(JumpScopesMap.size());
|
|
for (llvm::DenseMap<unsigned, IndirectGotoStmt*>::iterator
|
|
I = JumpScopesMap.begin(), E = JumpScopesMap.end(); I != E; ++I)
|
|
JumpScopes.push_back(*I);
|
|
}
|
|
|
|
// Collect a single representative of every scope containing a
|
|
// label whose address was taken somewhere in the function.
|
|
// For most code bases, there will be only one such scope.
|
|
llvm::DenseMap<unsigned, LabelStmt*> TargetScopes;
|
|
for (llvm::SmallVectorImpl<LabelStmt*>::iterator
|
|
I = IndirectJumpTargets.begin(), E = IndirectJumpTargets.end();
|
|
I != E; ++I) {
|
|
LabelStmt *TheLabel = *I;
|
|
assert(LabelAndGotoScopes.count(TheLabel) &&
|
|
"Referenced label didn't get added to scopes?");
|
|
unsigned LabelScope = LabelAndGotoScopes[TheLabel];
|
|
LabelStmt *&Target = TargetScopes[LabelScope];
|
|
if (!Target) Target = TheLabel;
|
|
}
|
|
|
|
// For each target scope, make sure it's trivially reachable from
|
|
// every scope containing a jump site.
|
|
//
|
|
// A path between scopes always consists of exitting zero or more
|
|
// scopes, then entering zero or more scopes. We build a set of
|
|
// of scopes S from which the target scope can be trivially
|
|
// entered, then verify that every jump scope can be trivially
|
|
// exitted to reach a scope in S.
|
|
llvm::BitVector Reachable(Scopes.size(), false);
|
|
for (llvm::DenseMap<unsigned,LabelStmt*>::iterator
|
|
TI = TargetScopes.begin(), TE = TargetScopes.end(); TI != TE; ++TI) {
|
|
unsigned TargetScope = TI->first;
|
|
LabelStmt *TargetLabel = TI->second;
|
|
|
|
Reachable.reset();
|
|
|
|
// Mark all the enclosing scopes from which you can safely jump
|
|
// into the target scope. 'Min' will end up being the index of
|
|
// the shallowest such scope.
|
|
unsigned Min = TargetScope;
|
|
while (true) {
|
|
Reachable.set(Min);
|
|
|
|
// Don't go beyond the outermost scope.
|
|
if (Min == 0) break;
|
|
|
|
// Stop if we can't trivially enter the current scope.
|
|
if (Scopes[Min].InDiag) break;
|
|
|
|
Min = Scopes[Min].ParentScope;
|
|
}
|
|
|
|
// Walk through all the jump sites, checking that they can trivially
|
|
// reach this label scope.
|
|
for (llvm::SmallVectorImpl<JumpScope>::iterator
|
|
I = JumpScopes.begin(), E = JumpScopes.end(); I != E; ++I) {
|
|
unsigned Scope = I->first;
|
|
|
|
// Walk out the "scope chain" for this scope, looking for a scope
|
|
// we've marked reachable. For well-formed code this amortizes
|
|
// to O(JumpScopes.size() / Scopes.size()): we only iterate
|
|
// when we see something unmarked, and in well-formed code we
|
|
// mark everything we iterate past.
|
|
bool IsReachable = false;
|
|
while (true) {
|
|
if (Reachable.test(Scope)) {
|
|
// If we find something reachable, mark all the scopes we just
|
|
// walked through as reachable.
|
|
for (unsigned S = I->first; S != Scope; S = Scopes[S].ParentScope)
|
|
Reachable.set(S);
|
|
IsReachable = true;
|
|
break;
|
|
}
|
|
|
|
// Don't walk out if we've reached the top-level scope or we've
|
|
// gotten shallower than the shallowest reachable scope.
|
|
if (Scope == 0 || Scope < Min) break;
|
|
|
|
// Don't walk out through an out-diagnostic.
|
|
if (Scopes[Scope].OutDiag) break;
|
|
|
|
Scope = Scopes[Scope].ParentScope;
|
|
}
|
|
|
|
// Only diagnose if we didn't find something.
|
|
if (IsReachable) continue;
|
|
|
|
DiagnoseIndirectJump(I->second, I->first, TargetLabel, TargetScope);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Diagnose an indirect jump which is known to cross scopes.
|
|
void JumpScopeChecker::DiagnoseIndirectJump(IndirectGotoStmt *Jump,
|
|
unsigned JumpScope,
|
|
LabelStmt *Target,
|
|
unsigned TargetScope) {
|
|
assert(JumpScope != TargetScope);
|
|
|
|
S.Diag(Jump->getGotoLoc(), diag::err_indirect_goto_in_protected_scope);
|
|
S.Diag(Target->getIdentLoc(), diag::note_indirect_goto_target);
|
|
|
|
unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope);
|
|
|
|
// Walk out the scope chain until we reach the common ancestor.
|
|
for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope)
|
|
if (Scopes[I].OutDiag)
|
|
S.Diag(Scopes[I].Loc, Scopes[I].OutDiag);
|
|
|
|
// Now walk into the scopes containing the label whose address was taken.
|
|
for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope)
|
|
if (Scopes[I].InDiag)
|
|
S.Diag(Scopes[I].Loc, Scopes[I].InDiag);
|
|
}
|
|
|
|
/// CheckJump - Validate that the specified jump statement is valid: that it is
|
|
/// jumping within or out of its current scope, not into a deeper one.
|
|
void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To,
|
|
SourceLocation DiagLoc, unsigned JumpDiag) {
|
|
assert(LabelAndGotoScopes.count(From) && "Jump didn't get added to scopes?");
|
|
unsigned FromScope = LabelAndGotoScopes[From];
|
|
|
|
assert(LabelAndGotoScopes.count(To) && "Jump didn't get added to scopes?");
|
|
unsigned ToScope = LabelAndGotoScopes[To];
|
|
|
|
// Common case: exactly the same scope, which is fine.
|
|
if (FromScope == ToScope) return;
|
|
|
|
unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope);
|
|
|
|
// It's okay to jump out from a nested scope.
|
|
if (CommonScope == ToScope) return;
|
|
|
|
// Pull out (and reverse) any scopes we might need to diagnose skipping.
|
|
llvm::SmallVector<unsigned, 10> ToScopes;
|
|
for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope)
|
|
if (Scopes[I].InDiag)
|
|
ToScopes.push_back(I);
|
|
|
|
// If the only scopes present are cleanup scopes, we're okay.
|
|
if (ToScopes.empty()) return;
|
|
|
|
S.Diag(DiagLoc, JumpDiag);
|
|
|
|
// Emit diagnostics for whatever is left in ToScopes.
|
|
for (unsigned i = 0, e = ToScopes.size(); i != e; ++i)
|
|
S.Diag(Scopes[ToScopes[i]].Loc, Scopes[ToScopes[i]].InDiag);
|
|
}
|
|
|
|
void Sema::DiagnoseInvalidJumps(Stmt *Body) {
|
|
(void)JumpScopeChecker(Body, *this);
|
|
}
|