зеркало из https://github.com/microsoft/clang-1.git
5634 строки
207 KiB
C++
5634 строки
207 KiB
C++
//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the ASTContext interface.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExternalASTSource.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "CXXABI.h"
|
|
|
|
using namespace clang;
|
|
|
|
unsigned ASTContext::NumImplicitDefaultConstructors;
|
|
unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
|
|
unsigned ASTContext::NumImplicitCopyConstructors;
|
|
unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
|
|
unsigned ASTContext::NumImplicitCopyAssignmentOperators;
|
|
unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
|
|
unsigned ASTContext::NumImplicitDestructors;
|
|
unsigned ASTContext::NumImplicitDestructorsDeclared;
|
|
|
|
enum FloatingRank {
|
|
FloatRank, DoubleRank, LongDoubleRank
|
|
};
|
|
|
|
void
|
|
ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
|
|
TemplateTemplateParmDecl *Parm) {
|
|
ID.AddInteger(Parm->getDepth());
|
|
ID.AddInteger(Parm->getPosition());
|
|
// FIXME: Parameter pack
|
|
|
|
TemplateParameterList *Params = Parm->getTemplateParameters();
|
|
ID.AddInteger(Params->size());
|
|
for (TemplateParameterList::const_iterator P = Params->begin(),
|
|
PEnd = Params->end();
|
|
P != PEnd; ++P) {
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
|
|
ID.AddInteger(0);
|
|
ID.AddBoolean(TTP->isParameterPack());
|
|
continue;
|
|
}
|
|
|
|
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
|
|
ID.AddInteger(1);
|
|
// FIXME: Parameter pack
|
|
ID.AddPointer(NTTP->getType().getAsOpaquePtr());
|
|
continue;
|
|
}
|
|
|
|
TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
|
|
ID.AddInteger(2);
|
|
Profile(ID, TTP);
|
|
}
|
|
}
|
|
|
|
TemplateTemplateParmDecl *
|
|
ASTContext::getCanonicalTemplateTemplateParmDecl(
|
|
TemplateTemplateParmDecl *TTP) {
|
|
// Check if we already have a canonical template template parameter.
|
|
llvm::FoldingSetNodeID ID;
|
|
CanonicalTemplateTemplateParm::Profile(ID, TTP);
|
|
void *InsertPos = 0;
|
|
CanonicalTemplateTemplateParm *Canonical
|
|
= CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (Canonical)
|
|
return Canonical->getParam();
|
|
|
|
// Build a canonical template parameter list.
|
|
TemplateParameterList *Params = TTP->getTemplateParameters();
|
|
llvm::SmallVector<NamedDecl *, 4> CanonParams;
|
|
CanonParams.reserve(Params->size());
|
|
for (TemplateParameterList::const_iterator P = Params->begin(),
|
|
PEnd = Params->end();
|
|
P != PEnd; ++P) {
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
|
|
CanonParams.push_back(
|
|
TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
|
|
SourceLocation(), TTP->getDepth(),
|
|
TTP->getIndex(), 0, false,
|
|
TTP->isParameterPack()));
|
|
else if (NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(*P))
|
|
CanonParams.push_back(
|
|
NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
|
|
SourceLocation(), NTTP->getDepth(),
|
|
NTTP->getPosition(), 0,
|
|
getCanonicalType(NTTP->getType()),
|
|
0));
|
|
else
|
|
CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
|
|
cast<TemplateTemplateParmDecl>(*P)));
|
|
}
|
|
|
|
TemplateTemplateParmDecl *CanonTTP
|
|
= TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
|
|
SourceLocation(), TTP->getDepth(),
|
|
TTP->getPosition(), 0,
|
|
TemplateParameterList::Create(*this, SourceLocation(),
|
|
SourceLocation(),
|
|
CanonParams.data(),
|
|
CanonParams.size(),
|
|
SourceLocation()));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(Canonical == 0 && "Shouldn't be in the map!");
|
|
(void)Canonical;
|
|
|
|
// Create the canonical template template parameter entry.
|
|
Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
|
|
CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
|
|
return CanonTTP;
|
|
}
|
|
|
|
CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
|
|
if (!LangOpts.CPlusPlus) return 0;
|
|
|
|
switch (T.getCXXABI()) {
|
|
case CXXABI_ARM:
|
|
return CreateARMCXXABI(*this);
|
|
case CXXABI_Itanium:
|
|
return CreateItaniumCXXABI(*this);
|
|
case CXXABI_Microsoft:
|
|
return CreateMicrosoftCXXABI(*this);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
|
|
const TargetInfo &t,
|
|
IdentifierTable &idents, SelectorTable &sels,
|
|
Builtin::Context &builtins,
|
|
unsigned size_reserve) :
|
|
TemplateSpecializationTypes(this_()),
|
|
DependentTemplateSpecializationTypes(this_()),
|
|
GlobalNestedNameSpecifier(0), IsInt128Installed(false),
|
|
CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
|
|
ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
|
|
sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
|
|
NullTypeSourceInfo(QualType()),
|
|
SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)), Target(t),
|
|
Idents(idents), Selectors(sels),
|
|
BuiltinInfo(builtins),
|
|
DeclarationNames(*this),
|
|
ExternalSource(0), PrintingPolicy(LOpts),
|
|
LastSDM(0, 0),
|
|
UniqueBlockByRefTypeID(0), UniqueBlockParmTypeID(0) {
|
|
ObjCIdRedefinitionType = QualType();
|
|
ObjCClassRedefinitionType = QualType();
|
|
ObjCSelRedefinitionType = QualType();
|
|
if (size_reserve > 0) Types.reserve(size_reserve);
|
|
TUDecl = TranslationUnitDecl::Create(*this);
|
|
InitBuiltinTypes();
|
|
}
|
|
|
|
ASTContext::~ASTContext() {
|
|
// Release the DenseMaps associated with DeclContext objects.
|
|
// FIXME: Is this the ideal solution?
|
|
ReleaseDeclContextMaps();
|
|
|
|
// Call all of the deallocation functions.
|
|
for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
|
|
Deallocations[I].first(Deallocations[I].second);
|
|
|
|
// Release all of the memory associated with overridden C++ methods.
|
|
for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
|
|
OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
|
|
OM != OMEnd; ++OM)
|
|
OM->second.Destroy();
|
|
|
|
// ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
|
|
// because they can contain DenseMaps.
|
|
for (llvm::DenseMap<const ObjCContainerDecl*,
|
|
const ASTRecordLayout*>::iterator
|
|
I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
|
|
// Increment in loop to prevent using deallocated memory.
|
|
if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
|
|
R->Destroy(*this);
|
|
|
|
for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
|
|
I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
|
|
// Increment in loop to prevent using deallocated memory.
|
|
if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
|
|
R->Destroy(*this);
|
|
}
|
|
}
|
|
|
|
void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
|
|
Deallocations.push_back(std::make_pair(Callback, Data));
|
|
}
|
|
|
|
void
|
|
ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
|
|
ExternalSource.reset(Source.take());
|
|
}
|
|
|
|
void ASTContext::PrintStats() const {
|
|
fprintf(stderr, "*** AST Context Stats:\n");
|
|
fprintf(stderr, " %d types total.\n", (int)Types.size());
|
|
|
|
unsigned counts[] = {
|
|
#define TYPE(Name, Parent) 0,
|
|
#define ABSTRACT_TYPE(Name, Parent)
|
|
#include "clang/AST/TypeNodes.def"
|
|
0 // Extra
|
|
};
|
|
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
|
|
Type *T = Types[i];
|
|
counts[(unsigned)T->getTypeClass()]++;
|
|
}
|
|
|
|
unsigned Idx = 0;
|
|
unsigned TotalBytes = 0;
|
|
#define TYPE(Name, Parent) \
|
|
if (counts[Idx]) \
|
|
fprintf(stderr, " %d %s types\n", (int)counts[Idx], #Name); \
|
|
TotalBytes += counts[Idx] * sizeof(Name##Type); \
|
|
++Idx;
|
|
#define ABSTRACT_TYPE(Name, Parent)
|
|
#include "clang/AST/TypeNodes.def"
|
|
|
|
fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
|
|
|
|
// Implicit special member functions.
|
|
fprintf(stderr, " %u/%u implicit default constructors created\n",
|
|
NumImplicitDefaultConstructorsDeclared,
|
|
NumImplicitDefaultConstructors);
|
|
fprintf(stderr, " %u/%u implicit copy constructors created\n",
|
|
NumImplicitCopyConstructorsDeclared,
|
|
NumImplicitCopyConstructors);
|
|
fprintf(stderr, " %u/%u implicit copy assignment operators created\n",
|
|
NumImplicitCopyAssignmentOperatorsDeclared,
|
|
NumImplicitCopyAssignmentOperators);
|
|
fprintf(stderr, " %u/%u implicit destructors created\n",
|
|
NumImplicitDestructorsDeclared, NumImplicitDestructors);
|
|
|
|
if (ExternalSource.get()) {
|
|
fprintf(stderr, "\n");
|
|
ExternalSource->PrintStats();
|
|
}
|
|
|
|
BumpAlloc.PrintStats();
|
|
}
|
|
|
|
|
|
void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
|
|
BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
|
|
R = CanQualType::CreateUnsafe(QualType(Ty, 0));
|
|
Types.push_back(Ty);
|
|
}
|
|
|
|
void ASTContext::InitBuiltinTypes() {
|
|
assert(VoidTy.isNull() && "Context reinitialized?");
|
|
|
|
// C99 6.2.5p19.
|
|
InitBuiltinType(VoidTy, BuiltinType::Void);
|
|
|
|
// C99 6.2.5p2.
|
|
InitBuiltinType(BoolTy, BuiltinType::Bool);
|
|
// C99 6.2.5p3.
|
|
if (LangOpts.CharIsSigned)
|
|
InitBuiltinType(CharTy, BuiltinType::Char_S);
|
|
else
|
|
InitBuiltinType(CharTy, BuiltinType::Char_U);
|
|
// C99 6.2.5p4.
|
|
InitBuiltinType(SignedCharTy, BuiltinType::SChar);
|
|
InitBuiltinType(ShortTy, BuiltinType::Short);
|
|
InitBuiltinType(IntTy, BuiltinType::Int);
|
|
InitBuiltinType(LongTy, BuiltinType::Long);
|
|
InitBuiltinType(LongLongTy, BuiltinType::LongLong);
|
|
|
|
// C99 6.2.5p6.
|
|
InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
|
|
InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
|
|
InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
|
|
InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
|
|
InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
|
|
|
|
// C99 6.2.5p10.
|
|
InitBuiltinType(FloatTy, BuiltinType::Float);
|
|
InitBuiltinType(DoubleTy, BuiltinType::Double);
|
|
InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
|
|
|
|
// GNU extension, 128-bit integers.
|
|
InitBuiltinType(Int128Ty, BuiltinType::Int128);
|
|
InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
|
|
|
|
if (LangOpts.CPlusPlus) // C++ 3.9.1p5
|
|
InitBuiltinType(WCharTy, BuiltinType::WChar);
|
|
else // C99
|
|
WCharTy = getFromTargetType(Target.getWCharType());
|
|
|
|
if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
|
|
InitBuiltinType(Char16Ty, BuiltinType::Char16);
|
|
else // C99
|
|
Char16Ty = getFromTargetType(Target.getChar16Type());
|
|
|
|
if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
|
|
InitBuiltinType(Char32Ty, BuiltinType::Char32);
|
|
else // C99
|
|
Char32Ty = getFromTargetType(Target.getChar32Type());
|
|
|
|
// Placeholder type for functions.
|
|
InitBuiltinType(OverloadTy, BuiltinType::Overload);
|
|
|
|
// Placeholder type for type-dependent expressions whose type is
|
|
// completely unknown. No code should ever check a type against
|
|
// DependentTy and users should never see it; however, it is here to
|
|
// help diagnose failures to properly check for type-dependent
|
|
// expressions.
|
|
InitBuiltinType(DependentTy, BuiltinType::Dependent);
|
|
|
|
// Placeholder type for C++0x auto declarations whose real type has
|
|
// not yet been deduced.
|
|
InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
|
|
|
|
// C99 6.2.5p11.
|
|
FloatComplexTy = getComplexType(FloatTy);
|
|
DoubleComplexTy = getComplexType(DoubleTy);
|
|
LongDoubleComplexTy = getComplexType(LongDoubleTy);
|
|
|
|
BuiltinVaListType = QualType();
|
|
|
|
// "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
|
|
ObjCIdTypedefType = QualType();
|
|
ObjCClassTypedefType = QualType();
|
|
ObjCSelTypedefType = QualType();
|
|
|
|
// Builtin types for 'id', 'Class', and 'SEL'.
|
|
InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
|
|
InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
|
|
InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
|
|
|
|
ObjCConstantStringType = QualType();
|
|
|
|
// void * type
|
|
VoidPtrTy = getPointerType(VoidTy);
|
|
|
|
// nullptr type (C++0x 2.14.7)
|
|
InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
|
|
}
|
|
|
|
MemberSpecializationInfo *
|
|
ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
|
|
assert(Var->isStaticDataMember() && "Not a static data member");
|
|
llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
|
|
= InstantiatedFromStaticDataMember.find(Var);
|
|
if (Pos == InstantiatedFromStaticDataMember.end())
|
|
return 0;
|
|
|
|
return Pos->second;
|
|
}
|
|
|
|
void
|
|
ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
|
|
TemplateSpecializationKind TSK,
|
|
SourceLocation PointOfInstantiation) {
|
|
assert(Inst->isStaticDataMember() && "Not a static data member");
|
|
assert(Tmpl->isStaticDataMember() && "Not a static data member");
|
|
assert(!InstantiatedFromStaticDataMember[Inst] &&
|
|
"Already noted what static data member was instantiated from");
|
|
InstantiatedFromStaticDataMember[Inst]
|
|
= new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
|
|
}
|
|
|
|
NamedDecl *
|
|
ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
|
|
llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
|
|
= InstantiatedFromUsingDecl.find(UUD);
|
|
if (Pos == InstantiatedFromUsingDecl.end())
|
|
return 0;
|
|
|
|
return Pos->second;
|
|
}
|
|
|
|
void
|
|
ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
|
|
assert((isa<UsingDecl>(Pattern) ||
|
|
isa<UnresolvedUsingValueDecl>(Pattern) ||
|
|
isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
|
|
"pattern decl is not a using decl");
|
|
assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
|
|
InstantiatedFromUsingDecl[Inst] = Pattern;
|
|
}
|
|
|
|
UsingShadowDecl *
|
|
ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
|
|
llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
|
|
= InstantiatedFromUsingShadowDecl.find(Inst);
|
|
if (Pos == InstantiatedFromUsingShadowDecl.end())
|
|
return 0;
|
|
|
|
return Pos->second;
|
|
}
|
|
|
|
void
|
|
ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
|
|
UsingShadowDecl *Pattern) {
|
|
assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
|
|
InstantiatedFromUsingShadowDecl[Inst] = Pattern;
|
|
}
|
|
|
|
FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
|
|
llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
|
|
= InstantiatedFromUnnamedFieldDecl.find(Field);
|
|
if (Pos == InstantiatedFromUnnamedFieldDecl.end())
|
|
return 0;
|
|
|
|
return Pos->second;
|
|
}
|
|
|
|
void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
|
|
FieldDecl *Tmpl) {
|
|
assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
|
|
assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
|
|
assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
|
|
"Already noted what unnamed field was instantiated from");
|
|
|
|
InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
|
|
}
|
|
|
|
ASTContext::overridden_cxx_method_iterator
|
|
ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
|
|
llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
|
|
= OverriddenMethods.find(Method);
|
|
if (Pos == OverriddenMethods.end())
|
|
return 0;
|
|
|
|
return Pos->second.begin();
|
|
}
|
|
|
|
ASTContext::overridden_cxx_method_iterator
|
|
ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
|
|
llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
|
|
= OverriddenMethods.find(Method);
|
|
if (Pos == OverriddenMethods.end())
|
|
return 0;
|
|
|
|
return Pos->second.end();
|
|
}
|
|
|
|
unsigned
|
|
ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
|
|
llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
|
|
= OverriddenMethods.find(Method);
|
|
if (Pos == OverriddenMethods.end())
|
|
return 0;
|
|
|
|
return Pos->second.size();
|
|
}
|
|
|
|
void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
|
|
const CXXMethodDecl *Overridden) {
|
|
OverriddenMethods[Method].push_back(Overridden);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Sizing and Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
|
|
/// scalar floating point type.
|
|
const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
|
|
const BuiltinType *BT = T->getAs<BuiltinType>();
|
|
assert(BT && "Not a floating point type!");
|
|
switch (BT->getKind()) {
|
|
default: assert(0 && "Not a floating point type!");
|
|
case BuiltinType::Float: return Target.getFloatFormat();
|
|
case BuiltinType::Double: return Target.getDoubleFormat();
|
|
case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
|
|
}
|
|
}
|
|
|
|
/// getDeclAlign - Return a conservative estimate of the alignment of the
|
|
/// specified decl. Note that bitfields do not have a valid alignment, so
|
|
/// this method will assert on them.
|
|
/// If @p RefAsPointee, references are treated like their underlying type
|
|
/// (for alignof), else they're treated like pointers (for CodeGen).
|
|
CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
|
|
unsigned Align = Target.getCharWidth();
|
|
|
|
Align = std::max(Align, D->getMaxAlignment());
|
|
|
|
if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
|
|
QualType T = VD->getType();
|
|
if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
|
|
if (RefAsPointee)
|
|
T = RT->getPointeeType();
|
|
else
|
|
T = getPointerType(RT->getPointeeType());
|
|
}
|
|
if (!T->isIncompleteType() && !T->isFunctionType()) {
|
|
unsigned MinWidth = Target.getLargeArrayMinWidth();
|
|
unsigned ArrayAlign = Target.getLargeArrayAlign();
|
|
if (isa<VariableArrayType>(T) && MinWidth != 0)
|
|
Align = std::max(Align, ArrayAlign);
|
|
if (ConstantArrayType *CT = dyn_cast<ConstantArrayType>(T)) {
|
|
unsigned Size = getTypeSize(CT);
|
|
if (MinWidth != 0 && MinWidth <= Size)
|
|
Align = std::max(Align, ArrayAlign);
|
|
}
|
|
// Incomplete or function types default to 1.
|
|
while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
|
|
T = cast<ArrayType>(T)->getElementType();
|
|
|
|
Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
|
|
}
|
|
if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
|
|
// In the case of a field in a packed struct, we want the minimum
|
|
// of the alignment of the field and the alignment of the struct.
|
|
Align = std::min(Align,
|
|
getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
|
|
}
|
|
}
|
|
|
|
return CharUnits::fromQuantity(Align / Target.getCharWidth());
|
|
}
|
|
|
|
std::pair<CharUnits, CharUnits>
|
|
ASTContext::getTypeInfoInChars(const Type *T) {
|
|
std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
|
|
return std::make_pair(CharUnits::fromQuantity(Info.first / getCharWidth()),
|
|
CharUnits::fromQuantity(Info.second / getCharWidth()));
|
|
}
|
|
|
|
std::pair<CharUnits, CharUnits>
|
|
ASTContext::getTypeInfoInChars(QualType T) {
|
|
return getTypeInfoInChars(T.getTypePtr());
|
|
}
|
|
|
|
/// getTypeSize - Return the size of the specified type, in bits. This method
|
|
/// does not work on incomplete types.
|
|
///
|
|
/// FIXME: Pointers into different addr spaces could have different sizes and
|
|
/// alignment requirements: getPointerInfo should take an AddrSpace, this
|
|
/// should take a QualType, &c.
|
|
std::pair<uint64_t, unsigned>
|
|
ASTContext::getTypeInfo(const Type *T) {
|
|
uint64_t Width=0;
|
|
unsigned Align=8;
|
|
switch (T->getTypeClass()) {
|
|
#define TYPE(Class, Base)
|
|
#define ABSTRACT_TYPE(Class, Base)
|
|
#define NON_CANONICAL_TYPE(Class, Base)
|
|
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
|
|
#include "clang/AST/TypeNodes.def"
|
|
assert(false && "Should not see dependent types");
|
|
break;
|
|
|
|
case Type::FunctionNoProto:
|
|
case Type::FunctionProto:
|
|
// GCC extension: alignof(function) = 32 bits
|
|
Width = 0;
|
|
Align = 32;
|
|
break;
|
|
|
|
case Type::IncompleteArray:
|
|
case Type::VariableArray:
|
|
Width = 0;
|
|
Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
|
|
break;
|
|
|
|
case Type::ConstantArray: {
|
|
const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
|
|
|
|
std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
|
|
Width = EltInfo.first*CAT->getSize().getZExtValue();
|
|
Align = EltInfo.second;
|
|
break;
|
|
}
|
|
case Type::ExtVector:
|
|
case Type::Vector: {
|
|
const VectorType *VT = cast<VectorType>(T);
|
|
std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
|
|
Width = EltInfo.first*VT->getNumElements();
|
|
Align = Width;
|
|
// If the alignment is not a power of 2, round up to the next power of 2.
|
|
// This happens for non-power-of-2 length vectors.
|
|
if (Align & (Align-1)) {
|
|
Align = llvm::NextPowerOf2(Align);
|
|
Width = llvm::RoundUpToAlignment(Width, Align);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Type::Builtin:
|
|
switch (cast<BuiltinType>(T)->getKind()) {
|
|
default: assert(0 && "Unknown builtin type!");
|
|
case BuiltinType::Void:
|
|
// GCC extension: alignof(void) = 8 bits.
|
|
Width = 0;
|
|
Align = 8;
|
|
break;
|
|
|
|
case BuiltinType::Bool:
|
|
Width = Target.getBoolWidth();
|
|
Align = Target.getBoolAlign();
|
|
break;
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::UChar:
|
|
case BuiltinType::SChar:
|
|
Width = Target.getCharWidth();
|
|
Align = Target.getCharAlign();
|
|
break;
|
|
case BuiltinType::WChar:
|
|
Width = Target.getWCharWidth();
|
|
Align = Target.getWCharAlign();
|
|
break;
|
|
case BuiltinType::Char16:
|
|
Width = Target.getChar16Width();
|
|
Align = Target.getChar16Align();
|
|
break;
|
|
case BuiltinType::Char32:
|
|
Width = Target.getChar32Width();
|
|
Align = Target.getChar32Align();
|
|
break;
|
|
case BuiltinType::UShort:
|
|
case BuiltinType::Short:
|
|
Width = Target.getShortWidth();
|
|
Align = Target.getShortAlign();
|
|
break;
|
|
case BuiltinType::UInt:
|
|
case BuiltinType::Int:
|
|
Width = Target.getIntWidth();
|
|
Align = Target.getIntAlign();
|
|
break;
|
|
case BuiltinType::ULong:
|
|
case BuiltinType::Long:
|
|
Width = Target.getLongWidth();
|
|
Align = Target.getLongAlign();
|
|
break;
|
|
case BuiltinType::ULongLong:
|
|
case BuiltinType::LongLong:
|
|
Width = Target.getLongLongWidth();
|
|
Align = Target.getLongLongAlign();
|
|
break;
|
|
case BuiltinType::Int128:
|
|
case BuiltinType::UInt128:
|
|
Width = 128;
|
|
Align = 128; // int128_t is 128-bit aligned on all targets.
|
|
break;
|
|
case BuiltinType::Float:
|
|
Width = Target.getFloatWidth();
|
|
Align = Target.getFloatAlign();
|
|
break;
|
|
case BuiltinType::Double:
|
|
Width = Target.getDoubleWidth();
|
|
Align = Target.getDoubleAlign();
|
|
break;
|
|
case BuiltinType::LongDouble:
|
|
Width = Target.getLongDoubleWidth();
|
|
Align = Target.getLongDoubleAlign();
|
|
break;
|
|
case BuiltinType::NullPtr:
|
|
Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
|
|
Align = Target.getPointerAlign(0); // == sizeof(void*)
|
|
break;
|
|
case BuiltinType::ObjCId:
|
|
case BuiltinType::ObjCClass:
|
|
case BuiltinType::ObjCSel:
|
|
Width = Target.getPointerWidth(0);
|
|
Align = Target.getPointerAlign(0);
|
|
break;
|
|
}
|
|
break;
|
|
case Type::ObjCObjectPointer:
|
|
Width = Target.getPointerWidth(0);
|
|
Align = Target.getPointerAlign(0);
|
|
break;
|
|
case Type::BlockPointer: {
|
|
unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
|
|
Width = Target.getPointerWidth(AS);
|
|
Align = Target.getPointerAlign(AS);
|
|
break;
|
|
}
|
|
case Type::LValueReference:
|
|
case Type::RValueReference: {
|
|
// alignof and sizeof should never enter this code path here, so we go
|
|
// the pointer route.
|
|
unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
|
|
Width = Target.getPointerWidth(AS);
|
|
Align = Target.getPointerAlign(AS);
|
|
break;
|
|
}
|
|
case Type::Pointer: {
|
|
unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
|
|
Width = Target.getPointerWidth(AS);
|
|
Align = Target.getPointerAlign(AS);
|
|
break;
|
|
}
|
|
case Type::MemberPointer: {
|
|
const MemberPointerType *MPT = cast<MemberPointerType>(T);
|
|
std::pair<uint64_t, unsigned> PtrDiffInfo =
|
|
getTypeInfo(getPointerDiffType());
|
|
Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
|
|
Align = PtrDiffInfo.second;
|
|
break;
|
|
}
|
|
case Type::Complex: {
|
|
// Complex types have the same alignment as their elements, but twice the
|
|
// size.
|
|
std::pair<uint64_t, unsigned> EltInfo =
|
|
getTypeInfo(cast<ComplexType>(T)->getElementType());
|
|
Width = EltInfo.first*2;
|
|
Align = EltInfo.second;
|
|
break;
|
|
}
|
|
case Type::ObjCObject:
|
|
return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
|
|
case Type::ObjCInterface: {
|
|
const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
|
|
const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
|
|
Width = Layout.getSize();
|
|
Align = Layout.getAlignment();
|
|
break;
|
|
}
|
|
case Type::Record:
|
|
case Type::Enum: {
|
|
const TagType *TT = cast<TagType>(T);
|
|
|
|
if (TT->getDecl()->isInvalidDecl()) {
|
|
Width = 1;
|
|
Align = 1;
|
|
break;
|
|
}
|
|
|
|
if (const EnumType *ET = dyn_cast<EnumType>(TT))
|
|
return getTypeInfo(ET->getDecl()->getIntegerType());
|
|
|
|
const RecordType *RT = cast<RecordType>(TT);
|
|
const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
|
|
Width = Layout.getSize();
|
|
Align = Layout.getAlignment();
|
|
break;
|
|
}
|
|
|
|
case Type::SubstTemplateTypeParm:
|
|
return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
|
|
getReplacementType().getTypePtr());
|
|
|
|
case Type::Typedef: {
|
|
const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
|
|
Align = std::max(Typedef->getMaxAlignment(),
|
|
getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
|
|
Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
|
|
break;
|
|
}
|
|
|
|
case Type::TypeOfExpr:
|
|
return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
|
|
.getTypePtr());
|
|
|
|
case Type::TypeOf:
|
|
return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
|
|
|
|
case Type::Decltype:
|
|
return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
|
|
.getTypePtr());
|
|
|
|
case Type::Elaborated:
|
|
return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
|
|
|
|
case Type::TemplateSpecialization:
|
|
assert(getCanonicalType(T) != T &&
|
|
"Cannot request the size of a dependent type");
|
|
// FIXME: this is likely to be wrong once we support template
|
|
// aliases, since a template alias could refer to a typedef that
|
|
// has an __aligned__ attribute on it.
|
|
return getTypeInfo(getCanonicalType(T));
|
|
}
|
|
|
|
assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
|
|
return std::make_pair(Width, Align);
|
|
}
|
|
|
|
/// getTypeSizeInChars - Return the size of the specified type, in characters.
|
|
/// This method does not work on incomplete types.
|
|
CharUnits ASTContext::getTypeSizeInChars(QualType T) {
|
|
return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
|
|
}
|
|
CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
|
|
return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
|
|
}
|
|
|
|
/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
|
|
/// characters. This method does not work on incomplete types.
|
|
CharUnits ASTContext::getTypeAlignInChars(QualType T) {
|
|
return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
|
|
}
|
|
CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
|
|
return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
|
|
}
|
|
|
|
/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
|
|
/// type for the current target in bits. This can be different than the ABI
|
|
/// alignment in cases where it is beneficial for performance to overalign
|
|
/// a data type.
|
|
unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
|
|
unsigned ABIAlign = getTypeAlign(T);
|
|
|
|
// Double and long long should be naturally aligned if possible.
|
|
if (const ComplexType* CT = T->getAs<ComplexType>())
|
|
T = CT->getElementType().getTypePtr();
|
|
if (T->isSpecificBuiltinType(BuiltinType::Double) ||
|
|
T->isSpecificBuiltinType(BuiltinType::LongLong))
|
|
return std::max(ABIAlign, (unsigned)getTypeSize(T));
|
|
|
|
return ABIAlign;
|
|
}
|
|
|
|
/// ShallowCollectObjCIvars -
|
|
/// Collect all ivars, including those synthesized, in the current class.
|
|
///
|
|
void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
|
|
llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
|
|
// FIXME. This need be removed but there are two many places which
|
|
// assume const-ness of ObjCInterfaceDecl
|
|
ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
|
|
for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
|
|
Iv= Iv->getNextIvar())
|
|
Ivars.push_back(Iv);
|
|
}
|
|
|
|
/// DeepCollectObjCIvars -
|
|
/// This routine first collects all declared, but not synthesized, ivars in
|
|
/// super class and then collects all ivars, including those synthesized for
|
|
/// current class. This routine is used for implementation of current class
|
|
/// when all ivars, declared and synthesized are known.
|
|
///
|
|
void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
|
|
bool leafClass,
|
|
llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
|
|
if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
|
|
DeepCollectObjCIvars(SuperClass, false, Ivars);
|
|
if (!leafClass) {
|
|
for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
|
|
E = OI->ivar_end(); I != E; ++I)
|
|
Ivars.push_back(*I);
|
|
}
|
|
else
|
|
ShallowCollectObjCIvars(OI, Ivars);
|
|
}
|
|
|
|
/// CollectInheritedProtocols - Collect all protocols in current class and
|
|
/// those inherited by it.
|
|
void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
|
|
llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
|
|
if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
|
|
for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
|
|
PE = OI->protocol_end(); P != PE; ++P) {
|
|
ObjCProtocolDecl *Proto = (*P);
|
|
Protocols.insert(Proto);
|
|
for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
|
|
PE = Proto->protocol_end(); P != PE; ++P) {
|
|
Protocols.insert(*P);
|
|
CollectInheritedProtocols(*P, Protocols);
|
|
}
|
|
}
|
|
|
|
// Categories of this Interface.
|
|
for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
|
|
CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
|
|
CollectInheritedProtocols(CDeclChain, Protocols);
|
|
if (ObjCInterfaceDecl *SD = OI->getSuperClass())
|
|
while (SD) {
|
|
CollectInheritedProtocols(SD, Protocols);
|
|
SD = SD->getSuperClass();
|
|
}
|
|
} else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
|
|
for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
|
|
PE = OC->protocol_end(); P != PE; ++P) {
|
|
ObjCProtocolDecl *Proto = (*P);
|
|
Protocols.insert(Proto);
|
|
for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
|
|
PE = Proto->protocol_end(); P != PE; ++P)
|
|
CollectInheritedProtocols(*P, Protocols);
|
|
}
|
|
} else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
|
|
for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
|
|
PE = OP->protocol_end(); P != PE; ++P) {
|
|
ObjCProtocolDecl *Proto = (*P);
|
|
Protocols.insert(Proto);
|
|
for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
|
|
PE = Proto->protocol_end(); P != PE; ++P)
|
|
CollectInheritedProtocols(*P, Protocols);
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) {
|
|
unsigned count = 0;
|
|
// Count ivars declared in class extension.
|
|
for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
|
|
CDecl = CDecl->getNextClassExtension())
|
|
count += CDecl->ivar_size();
|
|
|
|
// Count ivar defined in this class's implementation. This
|
|
// includes synthesized ivars.
|
|
if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
|
|
count += ImplDecl->ivar_size();
|
|
|
|
return count;
|
|
}
|
|
|
|
/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
|
|
ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
|
|
llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
|
|
I = ObjCImpls.find(D);
|
|
if (I != ObjCImpls.end())
|
|
return cast<ObjCImplementationDecl>(I->second);
|
|
return 0;
|
|
}
|
|
/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
|
|
ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
|
|
llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
|
|
I = ObjCImpls.find(D);
|
|
if (I != ObjCImpls.end())
|
|
return cast<ObjCCategoryImplDecl>(I->second);
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Set the implementation of ObjCInterfaceDecl.
|
|
void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
|
|
ObjCImplementationDecl *ImplD) {
|
|
assert(IFaceD && ImplD && "Passed null params");
|
|
ObjCImpls[IFaceD] = ImplD;
|
|
}
|
|
/// \brief Set the implementation of ObjCCategoryDecl.
|
|
void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
|
|
ObjCCategoryImplDecl *ImplD) {
|
|
assert(CatD && ImplD && "Passed null params");
|
|
ObjCImpls[CatD] = ImplD;
|
|
}
|
|
|
|
/// \brief Allocate an uninitialized TypeSourceInfo.
|
|
///
|
|
/// The caller should initialize the memory held by TypeSourceInfo using
|
|
/// the TypeLoc wrappers.
|
|
///
|
|
/// \param T the type that will be the basis for type source info. This type
|
|
/// should refer to how the declarator was written in source code, not to
|
|
/// what type semantic analysis resolved the declarator to.
|
|
TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
|
|
unsigned DataSize) {
|
|
if (!DataSize)
|
|
DataSize = TypeLoc::getFullDataSizeForType(T);
|
|
else
|
|
assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
|
|
"incorrect data size provided to CreateTypeSourceInfo!");
|
|
|
|
TypeSourceInfo *TInfo =
|
|
(TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
|
|
new (TInfo) TypeSourceInfo(T);
|
|
return TInfo;
|
|
}
|
|
|
|
TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
|
|
SourceLocation L) {
|
|
TypeSourceInfo *DI = CreateTypeSourceInfo(T);
|
|
DI->getTypeLoc().initialize(L);
|
|
return DI;
|
|
}
|
|
|
|
const ASTRecordLayout &
|
|
ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
|
|
return getObjCLayout(D, 0);
|
|
}
|
|
|
|
const ASTRecordLayout &
|
|
ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
|
|
return getObjCLayout(D->getClassInterface(), D);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type creation/memoization methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
|
|
unsigned Fast = Quals.getFastQualifiers();
|
|
Quals.removeFastQualifiers();
|
|
|
|
// Check if we've already instantiated this type.
|
|
llvm::FoldingSetNodeID ID;
|
|
ExtQuals::Profile(ID, TypeNode, Quals);
|
|
void *InsertPos = 0;
|
|
if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
|
|
assert(EQ->getQualifiers() == Quals);
|
|
QualType T = QualType(EQ, Fast);
|
|
return T;
|
|
}
|
|
|
|
ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
|
|
ExtQualNodes.InsertNode(New, InsertPos);
|
|
QualType T = QualType(New, Fast);
|
|
return T;
|
|
}
|
|
|
|
QualType ASTContext::getVolatileType(QualType T) {
|
|
QualType CanT = getCanonicalType(T);
|
|
if (CanT.isVolatileQualified()) return T;
|
|
|
|
QualifierCollector Quals;
|
|
const Type *TypeNode = Quals.strip(T);
|
|
Quals.addVolatile();
|
|
|
|
return getExtQualType(TypeNode, Quals);
|
|
}
|
|
|
|
QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
|
|
QualType CanT = getCanonicalType(T);
|
|
if (CanT.getAddressSpace() == AddressSpace)
|
|
return T;
|
|
|
|
// If we are composing extended qualifiers together, merge together
|
|
// into one ExtQuals node.
|
|
QualifierCollector Quals;
|
|
const Type *TypeNode = Quals.strip(T);
|
|
|
|
// If this type already has an address space specified, it cannot get
|
|
// another one.
|
|
assert(!Quals.hasAddressSpace() &&
|
|
"Type cannot be in multiple addr spaces!");
|
|
Quals.addAddressSpace(AddressSpace);
|
|
|
|
return getExtQualType(TypeNode, Quals);
|
|
}
|
|
|
|
QualType ASTContext::getObjCGCQualType(QualType T,
|
|
Qualifiers::GC GCAttr) {
|
|
QualType CanT = getCanonicalType(T);
|
|
if (CanT.getObjCGCAttr() == GCAttr)
|
|
return T;
|
|
|
|
if (T->isPointerType()) {
|
|
QualType Pointee = T->getAs<PointerType>()->getPointeeType();
|
|
if (Pointee->isAnyPointerType()) {
|
|
QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
|
|
return getPointerType(ResultType);
|
|
}
|
|
}
|
|
|
|
// If we are composing extended qualifiers together, merge together
|
|
// into one ExtQuals node.
|
|
QualifierCollector Quals;
|
|
const Type *TypeNode = Quals.strip(T);
|
|
|
|
// If this type already has an ObjCGC specified, it cannot get
|
|
// another one.
|
|
assert(!Quals.hasObjCGCAttr() &&
|
|
"Type cannot have multiple ObjCGCs!");
|
|
Quals.addObjCGCAttr(GCAttr);
|
|
|
|
return getExtQualType(TypeNode, Quals);
|
|
}
|
|
|
|
static QualType getExtFunctionType(ASTContext& Context, QualType T,
|
|
const FunctionType::ExtInfo &Info) {
|
|
QualType ResultType;
|
|
if (const PointerType *Pointer = T->getAs<PointerType>()) {
|
|
QualType Pointee = Pointer->getPointeeType();
|
|
ResultType = getExtFunctionType(Context, Pointee, Info);
|
|
if (ResultType == Pointee)
|
|
return T;
|
|
|
|
ResultType = Context.getPointerType(ResultType);
|
|
} else if (const BlockPointerType *BlockPointer
|
|
= T->getAs<BlockPointerType>()) {
|
|
QualType Pointee = BlockPointer->getPointeeType();
|
|
ResultType = getExtFunctionType(Context, Pointee, Info);
|
|
if (ResultType == Pointee)
|
|
return T;
|
|
|
|
ResultType = Context.getBlockPointerType(ResultType);
|
|
} else if (const FunctionType *F = T->getAs<FunctionType>()) {
|
|
if (F->getExtInfo() == Info)
|
|
return T;
|
|
|
|
if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
|
|
ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
|
|
Info);
|
|
} else {
|
|
const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
|
|
ResultType
|
|
= Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
|
|
FPT->getNumArgs(), FPT->isVariadic(),
|
|
FPT->getTypeQuals(),
|
|
FPT->hasExceptionSpec(),
|
|
FPT->hasAnyExceptionSpec(),
|
|
FPT->getNumExceptions(),
|
|
FPT->exception_begin(),
|
|
Info);
|
|
}
|
|
} else
|
|
return T;
|
|
|
|
return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
|
|
}
|
|
|
|
QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
|
|
FunctionType::ExtInfo Info = getFunctionExtInfo(T);
|
|
return getExtFunctionType(*this, T,
|
|
Info.withNoReturn(AddNoReturn));
|
|
}
|
|
|
|
QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
|
|
FunctionType::ExtInfo Info = getFunctionExtInfo(T);
|
|
return getExtFunctionType(*this, T,
|
|
Info.withCallingConv(CallConv));
|
|
}
|
|
|
|
QualType ASTContext::getRegParmType(QualType T, unsigned RegParm) {
|
|
FunctionType::ExtInfo Info = getFunctionExtInfo(T);
|
|
return getExtFunctionType(*this, T,
|
|
Info.withRegParm(RegParm));
|
|
}
|
|
|
|
/// getComplexType - Return the uniqued reference to the type for a complex
|
|
/// number with the specified element type.
|
|
QualType ASTContext::getComplexType(QualType T) {
|
|
// Unique pointers, to guarantee there is only one pointer of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
ComplexType::Profile(ID, T);
|
|
|
|
void *InsertPos = 0;
|
|
if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(CT, 0);
|
|
|
|
// If the pointee type isn't canonical, this won't be a canonical type either,
|
|
// so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!T.isCanonical()) {
|
|
Canonical = getComplexType(getCanonicalType(T));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
|
|
Types.push_back(New);
|
|
ComplexTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getPointerType - Return the uniqued reference to the type for a pointer to
|
|
/// the specified type.
|
|
QualType ASTContext::getPointerType(QualType T) {
|
|
// Unique pointers, to guarantee there is only one pointer of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
PointerType::Profile(ID, T);
|
|
|
|
void *InsertPos = 0;
|
|
if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(PT, 0);
|
|
|
|
// If the pointee type isn't canonical, this won't be a canonical type either,
|
|
// so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!T.isCanonical()) {
|
|
Canonical = getPointerType(getCanonicalType(T));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
|
|
Types.push_back(New);
|
|
PointerTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getBlockPointerType - Return the uniqued reference to the type for
|
|
/// a pointer to the specified block.
|
|
QualType ASTContext::getBlockPointerType(QualType T) {
|
|
assert(T->isFunctionType() && "block of function types only");
|
|
// Unique pointers, to guarantee there is only one block of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
BlockPointerType::Profile(ID, T);
|
|
|
|
void *InsertPos = 0;
|
|
if (BlockPointerType *PT =
|
|
BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(PT, 0);
|
|
|
|
// If the block pointee type isn't canonical, this won't be a canonical
|
|
// type either so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!T.isCanonical()) {
|
|
Canonical = getBlockPointerType(getCanonicalType(T));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
BlockPointerType *NewIP =
|
|
BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
BlockPointerType *New
|
|
= new (*this, TypeAlignment) BlockPointerType(T, Canonical);
|
|
Types.push_back(New);
|
|
BlockPointerTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getLValueReferenceType - Return the uniqued reference to the type for an
|
|
/// lvalue reference to the specified type.
|
|
QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
|
|
// Unique pointers, to guarantee there is only one pointer of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
ReferenceType::Profile(ID, T, SpelledAsLValue);
|
|
|
|
void *InsertPos = 0;
|
|
if (LValueReferenceType *RT =
|
|
LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(RT, 0);
|
|
|
|
const ReferenceType *InnerRef = T->getAs<ReferenceType>();
|
|
|
|
// If the referencee type isn't canonical, this won't be a canonical type
|
|
// either, so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
|
|
QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
|
|
Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
LValueReferenceType *NewIP =
|
|
LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
|
|
LValueReferenceType *New
|
|
= new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
|
|
SpelledAsLValue);
|
|
Types.push_back(New);
|
|
LValueReferenceTypes.InsertNode(New, InsertPos);
|
|
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getRValueReferenceType - Return the uniqued reference to the type for an
|
|
/// rvalue reference to the specified type.
|
|
QualType ASTContext::getRValueReferenceType(QualType T) {
|
|
// Unique pointers, to guarantee there is only one pointer of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
ReferenceType::Profile(ID, T, false);
|
|
|
|
void *InsertPos = 0;
|
|
if (RValueReferenceType *RT =
|
|
RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(RT, 0);
|
|
|
|
const ReferenceType *InnerRef = T->getAs<ReferenceType>();
|
|
|
|
// If the referencee type isn't canonical, this won't be a canonical type
|
|
// either, so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (InnerRef || !T.isCanonical()) {
|
|
QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
|
|
Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
RValueReferenceType *NewIP =
|
|
RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
|
|
RValueReferenceType *New
|
|
= new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
|
|
Types.push_back(New);
|
|
RValueReferenceTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getMemberPointerType - Return the uniqued reference to the type for a
|
|
/// member pointer to the specified type, in the specified class.
|
|
QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
|
|
// Unique pointers, to guarantee there is only one pointer of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
MemberPointerType::Profile(ID, T, Cls);
|
|
|
|
void *InsertPos = 0;
|
|
if (MemberPointerType *PT =
|
|
MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(PT, 0);
|
|
|
|
// If the pointee or class type isn't canonical, this won't be a canonical
|
|
// type either, so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
|
|
Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
MemberPointerType *NewIP =
|
|
MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
MemberPointerType *New
|
|
= new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
|
|
Types.push_back(New);
|
|
MemberPointerTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getConstantArrayType - Return the unique reference to the type for an
|
|
/// array of the specified element type.
|
|
QualType ASTContext::getConstantArrayType(QualType EltTy,
|
|
const llvm::APInt &ArySizeIn,
|
|
ArrayType::ArraySizeModifier ASM,
|
|
unsigned EltTypeQuals) {
|
|
assert((EltTy->isDependentType() ||
|
|
EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
|
|
"Constant array of VLAs is illegal!");
|
|
|
|
// Convert the array size into a canonical width matching the pointer size for
|
|
// the target.
|
|
llvm::APInt ArySize(ArySizeIn);
|
|
ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
|
|
|
|
void *InsertPos = 0;
|
|
if (ConstantArrayType *ATP =
|
|
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(ATP, 0);
|
|
|
|
// If the element type isn't canonical, this won't be a canonical type either,
|
|
// so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!EltTy.isCanonical()) {
|
|
Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
|
|
ASM, EltTypeQuals);
|
|
// Get the new insert position for the node we care about.
|
|
ConstantArrayType *NewIP =
|
|
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
|
|
ConstantArrayType *New = new(*this,TypeAlignment)
|
|
ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
|
|
ConstantArrayTypes.InsertNode(New, InsertPos);
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getVariableArrayType - Returns a non-unique reference to the type for a
|
|
/// variable array of the specified element type.
|
|
QualType ASTContext::getVariableArrayType(QualType EltTy,
|
|
Expr *NumElts,
|
|
ArrayType::ArraySizeModifier ASM,
|
|
unsigned EltTypeQuals,
|
|
SourceRange Brackets) {
|
|
// Since we don't unique expressions, it isn't possible to unique VLA's
|
|
// that have an expression provided for their size.
|
|
QualType CanonType;
|
|
|
|
if (!EltTy.isCanonical()) {
|
|
if (NumElts)
|
|
NumElts->Retain();
|
|
CanonType = getVariableArrayType(getCanonicalType(EltTy), NumElts, ASM,
|
|
EltTypeQuals, Brackets);
|
|
}
|
|
|
|
VariableArrayType *New = new(*this, TypeAlignment)
|
|
VariableArrayType(EltTy, CanonType, NumElts, ASM, EltTypeQuals, Brackets);
|
|
|
|
VariableArrayTypes.push_back(New);
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getDependentSizedArrayType - Returns a non-unique reference to
|
|
/// the type for a dependently-sized array of the specified element
|
|
/// type.
|
|
QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
|
|
Expr *NumElts,
|
|
ArrayType::ArraySizeModifier ASM,
|
|
unsigned EltTypeQuals,
|
|
SourceRange Brackets) {
|
|
assert((!NumElts || NumElts->isTypeDependent() ||
|
|
NumElts->isValueDependent()) &&
|
|
"Size must be type- or value-dependent!");
|
|
|
|
void *InsertPos = 0;
|
|
DependentSizedArrayType *Canon = 0;
|
|
llvm::FoldingSetNodeID ID;
|
|
|
|
if (NumElts) {
|
|
// Dependently-sized array types that do not have a specified
|
|
// number of elements will have their sizes deduced from an
|
|
// initializer.
|
|
DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
|
|
EltTypeQuals, NumElts);
|
|
|
|
Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
}
|
|
|
|
DependentSizedArrayType *New;
|
|
if (Canon) {
|
|
// We already have a canonical version of this array type; use it as
|
|
// the canonical type for a newly-built type.
|
|
New = new (*this, TypeAlignment)
|
|
DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
|
|
NumElts, ASM, EltTypeQuals, Brackets);
|
|
} else {
|
|
QualType CanonEltTy = getCanonicalType(EltTy);
|
|
if (CanonEltTy == EltTy) {
|
|
New = new (*this, TypeAlignment)
|
|
DependentSizedArrayType(*this, EltTy, QualType(),
|
|
NumElts, ASM, EltTypeQuals, Brackets);
|
|
|
|
if (NumElts) {
|
|
DependentSizedArrayType *CanonCheck
|
|
= DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!CanonCheck && "Dependent-sized canonical array type broken");
|
|
(void)CanonCheck;
|
|
DependentSizedArrayTypes.InsertNode(New, InsertPos);
|
|
}
|
|
} else {
|
|
QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
|
|
ASM, EltTypeQuals,
|
|
SourceRange());
|
|
New = new (*this, TypeAlignment)
|
|
DependentSizedArrayType(*this, EltTy, Canon,
|
|
NumElts, ASM, EltTypeQuals, Brackets);
|
|
}
|
|
}
|
|
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
QualType ASTContext::getIncompleteArrayType(QualType EltTy,
|
|
ArrayType::ArraySizeModifier ASM,
|
|
unsigned EltTypeQuals) {
|
|
llvm::FoldingSetNodeID ID;
|
|
IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
|
|
|
|
void *InsertPos = 0;
|
|
if (IncompleteArrayType *ATP =
|
|
IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(ATP, 0);
|
|
|
|
// If the element type isn't canonical, this won't be a canonical type
|
|
// either, so fill in the canonical type field.
|
|
QualType Canonical;
|
|
|
|
if (!EltTy.isCanonical()) {
|
|
Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
|
|
ASM, EltTypeQuals);
|
|
|
|
// Get the new insert position for the node we care about.
|
|
IncompleteArrayType *NewIP =
|
|
IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
|
|
IncompleteArrayType *New = new (*this, TypeAlignment)
|
|
IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
|
|
|
|
IncompleteArrayTypes.InsertNode(New, InsertPos);
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getVectorType - Return the unique reference to a vector type of
|
|
/// the specified element type and size. VectorType must be a built-in type.
|
|
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
|
|
VectorType::AltiVecSpecific AltiVecSpec) {
|
|
BuiltinType *baseType;
|
|
|
|
baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
|
|
assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
|
|
|
|
// Check if we've already instantiated a vector of this type.
|
|
llvm::FoldingSetNodeID ID;
|
|
VectorType::Profile(ID, vecType, NumElts, Type::Vector, AltiVecSpec);
|
|
|
|
void *InsertPos = 0;
|
|
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(VTP, 0);
|
|
|
|
// If the element type isn't canonical, this won't be a canonical type either,
|
|
// so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!vecType.isCanonical()) {
|
|
Canonical = getVectorType(getCanonicalType(vecType), NumElts,
|
|
VectorType::NotAltiVec);
|
|
|
|
// Get the new insert position for the node we care about.
|
|
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
VectorType *New = new (*this, TypeAlignment)
|
|
VectorType(vecType, NumElts, Canonical, AltiVecSpec);
|
|
VectorTypes.InsertNode(New, InsertPos);
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getExtVectorType - Return the unique reference to an extended vector type of
|
|
/// the specified element type and size. VectorType must be a built-in type.
|
|
QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
|
|
BuiltinType *baseType;
|
|
|
|
baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
|
|
assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
|
|
|
|
// Check if we've already instantiated a vector of this type.
|
|
llvm::FoldingSetNodeID ID;
|
|
VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
|
|
VectorType::NotAltiVec);
|
|
void *InsertPos = 0;
|
|
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(VTP, 0);
|
|
|
|
// If the element type isn't canonical, this won't be a canonical type either,
|
|
// so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!vecType.isCanonical()) {
|
|
Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
|
|
|
|
// Get the new insert position for the node we care about.
|
|
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
ExtVectorType *New = new (*this, TypeAlignment)
|
|
ExtVectorType(vecType, NumElts, Canonical);
|
|
VectorTypes.InsertNode(New, InsertPos);
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
|
|
Expr *SizeExpr,
|
|
SourceLocation AttrLoc) {
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
|
|
SizeExpr);
|
|
|
|
void *InsertPos = 0;
|
|
DependentSizedExtVectorType *Canon
|
|
= DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
DependentSizedExtVectorType *New;
|
|
if (Canon) {
|
|
// We already have a canonical version of this array type; use it as
|
|
// the canonical type for a newly-built type.
|
|
New = new (*this, TypeAlignment)
|
|
DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
|
|
SizeExpr, AttrLoc);
|
|
} else {
|
|
QualType CanonVecTy = getCanonicalType(vecType);
|
|
if (CanonVecTy == vecType) {
|
|
New = new (*this, TypeAlignment)
|
|
DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
|
|
AttrLoc);
|
|
|
|
DependentSizedExtVectorType *CanonCheck
|
|
= DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
|
|
(void)CanonCheck;
|
|
DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
|
|
} else {
|
|
QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
|
|
SourceLocation());
|
|
New = new (*this, TypeAlignment)
|
|
DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
|
|
}
|
|
}
|
|
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
|
|
///
|
|
QualType ASTContext::getFunctionNoProtoType(QualType ResultTy,
|
|
const FunctionType::ExtInfo &Info) {
|
|
const CallingConv CallConv = Info.getCC();
|
|
// Unique functions, to guarantee there is only one function of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
FunctionNoProtoType::Profile(ID, ResultTy, Info);
|
|
|
|
void *InsertPos = 0;
|
|
if (FunctionNoProtoType *FT =
|
|
FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(FT, 0);
|
|
|
|
QualType Canonical;
|
|
if (!ResultTy.isCanonical() ||
|
|
getCanonicalCallConv(CallConv) != CallConv) {
|
|
Canonical =
|
|
getFunctionNoProtoType(getCanonicalType(ResultTy),
|
|
Info.withCallingConv(getCanonicalCallConv(CallConv)));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
FunctionNoProtoType *NewIP =
|
|
FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
|
|
FunctionNoProtoType *New = new (*this, TypeAlignment)
|
|
FunctionNoProtoType(ResultTy, Canonical, Info);
|
|
Types.push_back(New);
|
|
FunctionNoProtoTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getFunctionType - Return a normal function type with a typed argument
|
|
/// list. isVariadic indicates whether the argument list includes '...'.
|
|
QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
|
|
unsigned NumArgs, bool isVariadic,
|
|
unsigned TypeQuals, bool hasExceptionSpec,
|
|
bool hasAnyExceptionSpec, unsigned NumExs,
|
|
const QualType *ExArray,
|
|
const FunctionType::ExtInfo &Info) {
|
|
const CallingConv CallConv= Info.getCC();
|
|
// Unique functions, to guarantee there is only one function of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
|
|
TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
|
|
NumExs, ExArray, Info);
|
|
|
|
void *InsertPos = 0;
|
|
if (FunctionProtoType *FTP =
|
|
FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(FTP, 0);
|
|
|
|
// Determine whether the type being created is already canonical or not.
|
|
bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
|
|
for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
|
|
if (!ArgArray[i].isCanonicalAsParam())
|
|
isCanonical = false;
|
|
|
|
// If this type isn't canonical, get the canonical version of it.
|
|
// The exception spec is not part of the canonical type.
|
|
QualType Canonical;
|
|
if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
|
|
llvm::SmallVector<QualType, 16> CanonicalArgs;
|
|
CanonicalArgs.reserve(NumArgs);
|
|
for (unsigned i = 0; i != NumArgs; ++i)
|
|
CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
|
|
|
|
Canonical = getFunctionType(getCanonicalType(ResultTy),
|
|
CanonicalArgs.data(), NumArgs,
|
|
isVariadic, TypeQuals, false,
|
|
false, 0, 0,
|
|
Info.withCallingConv(getCanonicalCallConv(CallConv)));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
FunctionProtoType *NewIP =
|
|
FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
|
|
// FunctionProtoType objects are allocated with extra bytes after them
|
|
// for two variable size arrays (for parameter and exception types) at the
|
|
// end of them.
|
|
FunctionProtoType *FTP =
|
|
(FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
|
|
NumArgs*sizeof(QualType) +
|
|
NumExs*sizeof(QualType), TypeAlignment);
|
|
new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
|
|
TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
|
|
ExArray, NumExs, Canonical, Info);
|
|
Types.push_back(FTP);
|
|
FunctionProtoTypes.InsertNode(FTP, InsertPos);
|
|
return QualType(FTP, 0);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static bool NeedsInjectedClassNameType(const RecordDecl *D) {
|
|
if (!isa<CXXRecordDecl>(D)) return false;
|
|
const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
|
|
if (isa<ClassTemplatePartialSpecializationDecl>(RD))
|
|
return true;
|
|
if (RD->getDescribedClassTemplate() &&
|
|
!isa<ClassTemplateSpecializationDecl>(RD))
|
|
return true;
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/// getInjectedClassNameType - Return the unique reference to the
|
|
/// injected class name type for the specified templated declaration.
|
|
QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
|
|
QualType TST) {
|
|
assert(NeedsInjectedClassNameType(Decl));
|
|
if (Decl->TypeForDecl) {
|
|
assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
|
|
} else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
|
|
assert(PrevDecl->TypeForDecl && "previous declaration has no type");
|
|
Decl->TypeForDecl = PrevDecl->TypeForDecl;
|
|
assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
|
|
} else {
|
|
Decl->TypeForDecl =
|
|
new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
|
|
Types.push_back(Decl->TypeForDecl);
|
|
}
|
|
return QualType(Decl->TypeForDecl, 0);
|
|
}
|
|
|
|
/// getTypeDeclType - Return the unique reference to the type for the
|
|
/// specified type declaration.
|
|
QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
|
|
assert(Decl && "Passed null for Decl param");
|
|
assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
|
|
|
|
if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
|
|
return getTypedefType(Typedef);
|
|
|
|
assert(!isa<TemplateTypeParmDecl>(Decl) &&
|
|
"Template type parameter types are always available.");
|
|
|
|
if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
|
|
assert(!Record->getPreviousDeclaration() &&
|
|
"struct/union has previous declaration");
|
|
assert(!NeedsInjectedClassNameType(Record));
|
|
return getRecordType(Record);
|
|
} else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
|
|
assert(!Enum->getPreviousDeclaration() &&
|
|
"enum has previous declaration");
|
|
return getEnumType(Enum);
|
|
} else if (const UnresolvedUsingTypenameDecl *Using =
|
|
dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
|
|
Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
|
|
} else
|
|
llvm_unreachable("TypeDecl without a type?");
|
|
|
|
Types.push_back(Decl->TypeForDecl);
|
|
return QualType(Decl->TypeForDecl, 0);
|
|
}
|
|
|
|
/// getTypedefType - Return the unique reference to the type for the
|
|
/// specified typename decl.
|
|
QualType
|
|
ASTContext::getTypedefType(const TypedefDecl *Decl, QualType Canonical) {
|
|
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
|
|
|
|
if (Canonical.isNull())
|
|
Canonical = getCanonicalType(Decl->getUnderlyingType());
|
|
Decl->TypeForDecl = new(*this, TypeAlignment)
|
|
TypedefType(Type::Typedef, Decl, Canonical);
|
|
Types.push_back(Decl->TypeForDecl);
|
|
return QualType(Decl->TypeForDecl, 0);
|
|
}
|
|
|
|
QualType ASTContext::getRecordType(const RecordDecl *Decl) {
|
|
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
|
|
|
|
if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
|
|
if (PrevDecl->TypeForDecl)
|
|
return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
|
|
|
|
Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Decl);
|
|
Types.push_back(Decl->TypeForDecl);
|
|
return QualType(Decl->TypeForDecl, 0);
|
|
}
|
|
|
|
QualType ASTContext::getEnumType(const EnumDecl *Decl) {
|
|
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
|
|
|
|
if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
|
|
if (PrevDecl->TypeForDecl)
|
|
return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
|
|
|
|
Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Decl);
|
|
Types.push_back(Decl->TypeForDecl);
|
|
return QualType(Decl->TypeForDecl, 0);
|
|
}
|
|
|
|
/// \brief Retrieve a substitution-result type.
|
|
QualType
|
|
ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
|
|
QualType Replacement) {
|
|
assert(Replacement.isCanonical()
|
|
&& "replacement types must always be canonical");
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
|
|
void *InsertPos = 0;
|
|
SubstTemplateTypeParmType *SubstParm
|
|
= SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!SubstParm) {
|
|
SubstParm = new (*this, TypeAlignment)
|
|
SubstTemplateTypeParmType(Parm, Replacement);
|
|
Types.push_back(SubstParm);
|
|
SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
|
|
}
|
|
|
|
return QualType(SubstParm, 0);
|
|
}
|
|
|
|
/// \brief Retrieve the template type parameter type for a template
|
|
/// parameter or parameter pack with the given depth, index, and (optionally)
|
|
/// name.
|
|
QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
|
|
bool ParameterPack,
|
|
IdentifierInfo *Name) {
|
|
llvm::FoldingSetNodeID ID;
|
|
TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
|
|
void *InsertPos = 0;
|
|
TemplateTypeParmType *TypeParm
|
|
= TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (TypeParm)
|
|
return QualType(TypeParm, 0);
|
|
|
|
if (Name) {
|
|
QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
|
|
TypeParm = new (*this, TypeAlignment)
|
|
TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
|
|
|
|
TemplateTypeParmType *TypeCheck
|
|
= TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!TypeCheck && "Template type parameter canonical type broken");
|
|
(void)TypeCheck;
|
|
} else
|
|
TypeParm = new (*this, TypeAlignment)
|
|
TemplateTypeParmType(Depth, Index, ParameterPack);
|
|
|
|
Types.push_back(TypeParm);
|
|
TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
|
|
|
|
return QualType(TypeParm, 0);
|
|
}
|
|
|
|
TypeSourceInfo *
|
|
ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
|
|
SourceLocation NameLoc,
|
|
const TemplateArgumentListInfo &Args,
|
|
QualType CanonType) {
|
|
QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
|
|
|
|
TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
|
|
TemplateSpecializationTypeLoc TL
|
|
= cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
|
|
TL.setTemplateNameLoc(NameLoc);
|
|
TL.setLAngleLoc(Args.getLAngleLoc());
|
|
TL.setRAngleLoc(Args.getRAngleLoc());
|
|
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
|
|
TL.setArgLocInfo(i, Args[i].getLocInfo());
|
|
return DI;
|
|
}
|
|
|
|
QualType
|
|
ASTContext::getTemplateSpecializationType(TemplateName Template,
|
|
const TemplateArgumentListInfo &Args,
|
|
QualType Canon) {
|
|
unsigned NumArgs = Args.size();
|
|
|
|
llvm::SmallVector<TemplateArgument, 4> ArgVec;
|
|
ArgVec.reserve(NumArgs);
|
|
for (unsigned i = 0; i != NumArgs; ++i)
|
|
ArgVec.push_back(Args[i].getArgument());
|
|
|
|
return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
|
|
Canon);
|
|
}
|
|
|
|
QualType
|
|
ASTContext::getTemplateSpecializationType(TemplateName Template,
|
|
const TemplateArgument *Args,
|
|
unsigned NumArgs,
|
|
QualType Canon) {
|
|
if (!Canon.isNull())
|
|
Canon = getCanonicalType(Canon);
|
|
else
|
|
Canon = getCanonicalTemplateSpecializationType(Template, Args, NumArgs);
|
|
|
|
// Allocate the (non-canonical) template specialization type, but don't
|
|
// try to unique it: these types typically have location information that
|
|
// we don't unique and don't want to lose.
|
|
void *Mem = Allocate((sizeof(TemplateSpecializationType) +
|
|
sizeof(TemplateArgument) * NumArgs),
|
|
TypeAlignment);
|
|
TemplateSpecializationType *Spec
|
|
= new (Mem) TemplateSpecializationType(Template,
|
|
Args, NumArgs,
|
|
Canon);
|
|
|
|
Types.push_back(Spec);
|
|
return QualType(Spec, 0);
|
|
}
|
|
|
|
QualType
|
|
ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
|
|
const TemplateArgument *Args,
|
|
unsigned NumArgs) {
|
|
// Build the canonical template specialization type.
|
|
TemplateName CanonTemplate = getCanonicalTemplateName(Template);
|
|
llvm::SmallVector<TemplateArgument, 4> CanonArgs;
|
|
CanonArgs.reserve(NumArgs);
|
|
for (unsigned I = 0; I != NumArgs; ++I)
|
|
CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
|
|
|
|
// Determine whether this canonical template specialization type already
|
|
// exists.
|
|
llvm::FoldingSetNodeID ID;
|
|
TemplateSpecializationType::Profile(ID, CanonTemplate,
|
|
CanonArgs.data(), NumArgs, *this);
|
|
|
|
void *InsertPos = 0;
|
|
TemplateSpecializationType *Spec
|
|
= TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!Spec) {
|
|
// Allocate a new canonical template specialization type.
|
|
void *Mem = Allocate((sizeof(TemplateSpecializationType) +
|
|
sizeof(TemplateArgument) * NumArgs),
|
|
TypeAlignment);
|
|
Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
|
|
CanonArgs.data(), NumArgs,
|
|
QualType());
|
|
Types.push_back(Spec);
|
|
TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
|
|
}
|
|
|
|
assert(Spec->isDependentType() &&
|
|
"Non-dependent template-id type must have a canonical type");
|
|
return QualType(Spec, 0);
|
|
}
|
|
|
|
QualType
|
|
ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifier *NNS,
|
|
QualType NamedType) {
|
|
llvm::FoldingSetNodeID ID;
|
|
ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
|
|
|
|
void *InsertPos = 0;
|
|
ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (T)
|
|
return QualType(T, 0);
|
|
|
|
QualType Canon = NamedType;
|
|
if (!Canon.isCanonical()) {
|
|
Canon = getCanonicalType(NamedType);
|
|
ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!CheckT && "Elaborated canonical type broken");
|
|
(void)CheckT;
|
|
}
|
|
|
|
T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
|
|
Types.push_back(T);
|
|
ElaboratedTypes.InsertNode(T, InsertPos);
|
|
return QualType(T, 0);
|
|
}
|
|
|
|
QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifier *NNS,
|
|
const IdentifierInfo *Name,
|
|
QualType Canon) {
|
|
assert(NNS->isDependent() && "nested-name-specifier must be dependent");
|
|
|
|
if (Canon.isNull()) {
|
|
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
|
|
ElaboratedTypeKeyword CanonKeyword = Keyword;
|
|
if (Keyword == ETK_None)
|
|
CanonKeyword = ETK_Typename;
|
|
|
|
if (CanonNNS != NNS || CanonKeyword != Keyword)
|
|
Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
|
|
}
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentNameType::Profile(ID, Keyword, NNS, Name);
|
|
|
|
void *InsertPos = 0;
|
|
DependentNameType *T
|
|
= DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (T)
|
|
return QualType(T, 0);
|
|
|
|
T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
|
|
Types.push_back(T);
|
|
DependentNameTypes.InsertNode(T, InsertPos);
|
|
return QualType(T, 0);
|
|
}
|
|
|
|
QualType
|
|
ASTContext::getDependentTemplateSpecializationType(
|
|
ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifier *NNS,
|
|
const IdentifierInfo *Name,
|
|
const TemplateArgumentListInfo &Args) {
|
|
// TODO: avoid this copy
|
|
llvm::SmallVector<TemplateArgument, 16> ArgCopy;
|
|
for (unsigned I = 0, E = Args.size(); I != E; ++I)
|
|
ArgCopy.push_back(Args[I].getArgument());
|
|
return getDependentTemplateSpecializationType(Keyword, NNS, Name,
|
|
ArgCopy.size(),
|
|
ArgCopy.data());
|
|
}
|
|
|
|
QualType
|
|
ASTContext::getDependentTemplateSpecializationType(
|
|
ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifier *NNS,
|
|
const IdentifierInfo *Name,
|
|
unsigned NumArgs,
|
|
const TemplateArgument *Args) {
|
|
assert(NNS->isDependent() && "nested-name-specifier must be dependent");
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
|
|
Name, NumArgs, Args);
|
|
|
|
void *InsertPos = 0;
|
|
DependentTemplateSpecializationType *T
|
|
= DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (T)
|
|
return QualType(T, 0);
|
|
|
|
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
|
|
|
|
ElaboratedTypeKeyword CanonKeyword = Keyword;
|
|
if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
|
|
|
|
bool AnyNonCanonArgs = false;
|
|
llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
|
|
for (unsigned I = 0; I != NumArgs; ++I) {
|
|
CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
|
|
if (!CanonArgs[I].structurallyEquals(Args[I]))
|
|
AnyNonCanonArgs = true;
|
|
}
|
|
|
|
QualType Canon;
|
|
if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
|
|
Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
|
|
Name, NumArgs,
|
|
CanonArgs.data());
|
|
|
|
// Find the insert position again.
|
|
DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
}
|
|
|
|
void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
|
|
sizeof(TemplateArgument) * NumArgs),
|
|
TypeAlignment);
|
|
T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
|
|
Name, NumArgs, Args, Canon);
|
|
Types.push_back(T);
|
|
DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
|
|
return QualType(T, 0);
|
|
}
|
|
|
|
/// CmpProtocolNames - Comparison predicate for sorting protocols
|
|
/// alphabetically.
|
|
static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
|
|
const ObjCProtocolDecl *RHS) {
|
|
return LHS->getDeclName() < RHS->getDeclName();
|
|
}
|
|
|
|
static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
|
|
unsigned NumProtocols) {
|
|
if (NumProtocols == 0) return true;
|
|
|
|
for (unsigned i = 1; i != NumProtocols; ++i)
|
|
if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
|
|
unsigned &NumProtocols) {
|
|
ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
|
|
|
|
// Sort protocols, keyed by name.
|
|
std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
|
|
|
|
// Remove duplicates.
|
|
ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
|
|
NumProtocols = ProtocolsEnd-Protocols;
|
|
}
|
|
|
|
QualType ASTContext::getObjCObjectType(QualType BaseType,
|
|
ObjCProtocolDecl * const *Protocols,
|
|
unsigned NumProtocols) {
|
|
// If the base type is an interface and there aren't any protocols
|
|
// to add, then the interface type will do just fine.
|
|
if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
|
|
return BaseType;
|
|
|
|
// Look in the folding set for an existing type.
|
|
llvm::FoldingSetNodeID ID;
|
|
ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
|
|
void *InsertPos = 0;
|
|
if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(QT, 0);
|
|
|
|
// Build the canonical type, which has the canonical base type and
|
|
// a sorted-and-uniqued list of protocols.
|
|
QualType Canonical;
|
|
bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
|
|
if (!ProtocolsSorted || !BaseType.isCanonical()) {
|
|
if (!ProtocolsSorted) {
|
|
llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
|
|
Protocols + NumProtocols);
|
|
unsigned UniqueCount = NumProtocols;
|
|
|
|
SortAndUniqueProtocols(&Sorted[0], UniqueCount);
|
|
Canonical = getObjCObjectType(getCanonicalType(BaseType),
|
|
&Sorted[0], UniqueCount);
|
|
} else {
|
|
Canonical = getObjCObjectType(getCanonicalType(BaseType),
|
|
Protocols, NumProtocols);
|
|
}
|
|
|
|
// Regenerate InsertPos.
|
|
ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
}
|
|
|
|
unsigned Size = sizeof(ObjCObjectTypeImpl);
|
|
Size += NumProtocols * sizeof(ObjCProtocolDecl *);
|
|
void *Mem = Allocate(Size, TypeAlignment);
|
|
ObjCObjectTypeImpl *T =
|
|
new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
|
|
|
|
Types.push_back(T);
|
|
ObjCObjectTypes.InsertNode(T, InsertPos);
|
|
return QualType(T, 0);
|
|
}
|
|
|
|
/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
|
|
/// the given object type.
|
|
QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) {
|
|
llvm::FoldingSetNodeID ID;
|
|
ObjCObjectPointerType::Profile(ID, ObjectT);
|
|
|
|
void *InsertPos = 0;
|
|
if (ObjCObjectPointerType *QT =
|
|
ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(QT, 0);
|
|
|
|
// Find the canonical object type.
|
|
QualType Canonical;
|
|
if (!ObjectT.isCanonical()) {
|
|
Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
|
|
|
|
// Regenerate InsertPos.
|
|
ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
}
|
|
|
|
// No match.
|
|
void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
|
|
ObjCObjectPointerType *QType =
|
|
new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
|
|
|
|
Types.push_back(QType);
|
|
ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
|
|
return QualType(QType, 0);
|
|
}
|
|
|
|
/// getObjCInterfaceType - Return the unique reference to the type for the
|
|
/// specified ObjC interface decl. The list of protocols is optional.
|
|
QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
|
|
if (Decl->TypeForDecl)
|
|
return QualType(Decl->TypeForDecl, 0);
|
|
|
|
// FIXME: redeclarations?
|
|
void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
|
|
ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
|
|
Decl->TypeForDecl = T;
|
|
Types.push_back(T);
|
|
return QualType(T, 0);
|
|
}
|
|
|
|
/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
|
|
/// TypeOfExprType AST's (since expression's are never shared). For example,
|
|
/// multiple declarations that refer to "typeof(x)" all contain different
|
|
/// DeclRefExpr's. This doesn't effect the type checker, since it operates
|
|
/// on canonical type's (which are always unique).
|
|
QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
|
|
TypeOfExprType *toe;
|
|
if (tofExpr->isTypeDependent()) {
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentTypeOfExprType::Profile(ID, *this, tofExpr);
|
|
|
|
void *InsertPos = 0;
|
|
DependentTypeOfExprType *Canon
|
|
= DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (Canon) {
|
|
// We already have a "canonical" version of an identical, dependent
|
|
// typeof(expr) type. Use that as our canonical type.
|
|
toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
|
|
QualType((TypeOfExprType*)Canon, 0));
|
|
}
|
|
else {
|
|
// Build a new, canonical typeof(expr) type.
|
|
Canon
|
|
= new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
|
|
DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
|
|
toe = Canon;
|
|
}
|
|
} else {
|
|
QualType Canonical = getCanonicalType(tofExpr->getType());
|
|
toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
|
|
}
|
|
Types.push_back(toe);
|
|
return QualType(toe, 0);
|
|
}
|
|
|
|
/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
|
|
/// TypeOfType AST's. The only motivation to unique these nodes would be
|
|
/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
|
|
/// an issue. This doesn't effect the type checker, since it operates
|
|
/// on canonical type's (which are always unique).
|
|
QualType ASTContext::getTypeOfType(QualType tofType) {
|
|
QualType Canonical = getCanonicalType(tofType);
|
|
TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
|
|
Types.push_back(tot);
|
|
return QualType(tot, 0);
|
|
}
|
|
|
|
/// getDecltypeForExpr - Given an expr, will return the decltype for that
|
|
/// expression, according to the rules in C++0x [dcl.type.simple]p4
|
|
static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
|
|
if (e->isTypeDependent())
|
|
return Context.DependentTy;
|
|
|
|
// If e is an id expression or a class member access, decltype(e) is defined
|
|
// as the type of the entity named by e.
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
|
|
if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
|
|
return VD->getType();
|
|
}
|
|
if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
|
|
if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
|
|
return FD->getType();
|
|
}
|
|
// If e is a function call or an invocation of an overloaded operator,
|
|
// (parentheses around e are ignored), decltype(e) is defined as the
|
|
// return type of that function.
|
|
if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
|
|
return CE->getCallReturnType();
|
|
|
|
QualType T = e->getType();
|
|
|
|
// Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
|
|
// defined as T&, otherwise decltype(e) is defined as T.
|
|
if (e->isLvalue(Context) == Expr::LV_Valid)
|
|
T = Context.getLValueReferenceType(T);
|
|
|
|
return T;
|
|
}
|
|
|
|
/// getDecltypeType - Unlike many "get<Type>" functions, we don't unique
|
|
/// DecltypeType AST's. The only motivation to unique these nodes would be
|
|
/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
|
|
/// an issue. This doesn't effect the type checker, since it operates
|
|
/// on canonical type's (which are always unique).
|
|
QualType ASTContext::getDecltypeType(Expr *e) {
|
|
DecltypeType *dt;
|
|
if (e->isTypeDependent()) {
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentDecltypeType::Profile(ID, *this, e);
|
|
|
|
void *InsertPos = 0;
|
|
DependentDecltypeType *Canon
|
|
= DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (Canon) {
|
|
// We already have a "canonical" version of an equivalent, dependent
|
|
// decltype type. Use that as our canonical type.
|
|
dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
|
|
QualType((DecltypeType*)Canon, 0));
|
|
}
|
|
else {
|
|
// Build a new, canonical typeof(expr) type.
|
|
Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
|
|
DependentDecltypeTypes.InsertNode(Canon, InsertPos);
|
|
dt = Canon;
|
|
}
|
|
} else {
|
|
QualType T = getDecltypeForExpr(e, *this);
|
|
dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
|
|
}
|
|
Types.push_back(dt);
|
|
return QualType(dt, 0);
|
|
}
|
|
|
|
/// getTagDeclType - Return the unique reference to the type for the
|
|
/// specified TagDecl (struct/union/class/enum) decl.
|
|
QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
|
|
assert (Decl);
|
|
// FIXME: What is the design on getTagDeclType when it requires casting
|
|
// away const? mutable?
|
|
return getTypeDeclType(const_cast<TagDecl*>(Decl));
|
|
}
|
|
|
|
/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
|
|
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
|
|
/// needs to agree with the definition in <stddef.h>.
|
|
CanQualType ASTContext::getSizeType() const {
|
|
return getFromTargetType(Target.getSizeType());
|
|
}
|
|
|
|
/// getSignedWCharType - Return the type of "signed wchar_t".
|
|
/// Used when in C++, as a GCC extension.
|
|
QualType ASTContext::getSignedWCharType() const {
|
|
// FIXME: derive from "Target" ?
|
|
return WCharTy;
|
|
}
|
|
|
|
/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
|
|
/// Used when in C++, as a GCC extension.
|
|
QualType ASTContext::getUnsignedWCharType() const {
|
|
// FIXME: derive from "Target" ?
|
|
return UnsignedIntTy;
|
|
}
|
|
|
|
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
|
|
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
|
|
QualType ASTContext::getPointerDiffType() const {
|
|
return getFromTargetType(Target.getPtrDiffType(0));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Operators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CanQualType ASTContext::getCanonicalParamType(QualType T) {
|
|
// Push qualifiers into arrays, and then discard any remaining
|
|
// qualifiers.
|
|
T = getCanonicalType(T);
|
|
const Type *Ty = T.getTypePtr();
|
|
|
|
QualType Result;
|
|
if (isa<ArrayType>(Ty)) {
|
|
Result = getArrayDecayedType(QualType(Ty,0));
|
|
} else if (isa<FunctionType>(Ty)) {
|
|
Result = getPointerType(QualType(Ty, 0));
|
|
} else {
|
|
Result = QualType(Ty, 0);
|
|
}
|
|
|
|
return CanQualType::CreateUnsafe(Result);
|
|
}
|
|
|
|
/// getCanonicalType - Return the canonical (structural) type corresponding to
|
|
/// the specified potentially non-canonical type. The non-canonical version
|
|
/// of a type may have many "decorated" versions of types. Decorators can
|
|
/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
|
|
/// to be free of any of these, allowing two canonical types to be compared
|
|
/// for exact equality with a simple pointer comparison.
|
|
CanQualType ASTContext::getCanonicalType(QualType T) {
|
|
QualifierCollector Quals;
|
|
const Type *Ptr = Quals.strip(T);
|
|
QualType CanType = Ptr->getCanonicalTypeInternal();
|
|
|
|
// The canonical internal type will be the canonical type *except*
|
|
// that we push type qualifiers down through array types.
|
|
|
|
// If there are no new qualifiers to push down, stop here.
|
|
if (!Quals.hasQualifiers())
|
|
return CanQualType::CreateUnsafe(CanType);
|
|
|
|
// If the type qualifiers are on an array type, get the canonical
|
|
// type of the array with the qualifiers applied to the element
|
|
// type.
|
|
ArrayType *AT = dyn_cast<ArrayType>(CanType);
|
|
if (!AT)
|
|
return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
|
|
|
|
// Get the canonical version of the element with the extra qualifiers on it.
|
|
// This can recursively sink qualifiers through multiple levels of arrays.
|
|
QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
|
|
NewEltTy = getCanonicalType(NewEltTy);
|
|
|
|
if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
|
|
return CanQualType::CreateUnsafe(
|
|
getConstantArrayType(NewEltTy, CAT->getSize(),
|
|
CAT->getSizeModifier(),
|
|
CAT->getIndexTypeCVRQualifiers()));
|
|
if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
|
|
return CanQualType::CreateUnsafe(
|
|
getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
|
|
IAT->getIndexTypeCVRQualifiers()));
|
|
|
|
if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
|
|
return CanQualType::CreateUnsafe(
|
|
getDependentSizedArrayType(NewEltTy,
|
|
DSAT->getSizeExpr() ?
|
|
DSAT->getSizeExpr()->Retain() : 0,
|
|
DSAT->getSizeModifier(),
|
|
DSAT->getIndexTypeCVRQualifiers(),
|
|
DSAT->getBracketsRange())->getCanonicalTypeInternal());
|
|
|
|
VariableArrayType *VAT = cast<VariableArrayType>(AT);
|
|
return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
|
|
VAT->getSizeExpr() ?
|
|
VAT->getSizeExpr()->Retain() : 0,
|
|
VAT->getSizeModifier(),
|
|
VAT->getIndexTypeCVRQualifiers(),
|
|
VAT->getBracketsRange()));
|
|
}
|
|
|
|
QualType ASTContext::getUnqualifiedArrayType(QualType T,
|
|
Qualifiers &Quals) {
|
|
Quals = T.getQualifiers();
|
|
const ArrayType *AT = getAsArrayType(T);
|
|
if (!AT) {
|
|
return T.getUnqualifiedType();
|
|
}
|
|
|
|
QualType Elt = AT->getElementType();
|
|
QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
|
|
if (Elt == UnqualElt)
|
|
return T;
|
|
|
|
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
|
|
return getConstantArrayType(UnqualElt, CAT->getSize(),
|
|
CAT->getSizeModifier(), 0);
|
|
}
|
|
|
|
if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
|
|
return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
|
|
}
|
|
|
|
if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
|
|
return getVariableArrayType(UnqualElt,
|
|
VAT->getSizeExpr() ?
|
|
VAT->getSizeExpr()->Retain() : 0,
|
|
VAT->getSizeModifier(),
|
|
VAT->getIndexTypeCVRQualifiers(),
|
|
VAT->getBracketsRange());
|
|
}
|
|
|
|
const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
|
|
return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
|
|
DSAT->getSizeModifier(), 0,
|
|
SourceRange());
|
|
}
|
|
|
|
/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that
|
|
/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
|
|
/// they point to and return true. If T1 and T2 aren't pointer types
|
|
/// or pointer-to-member types, or if they are not similar at this
|
|
/// level, returns false and leaves T1 and T2 unchanged. Top-level
|
|
/// qualifiers on T1 and T2 are ignored. This function will typically
|
|
/// be called in a loop that successively "unwraps" pointer and
|
|
/// pointer-to-member types to compare them at each level.
|
|
bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
|
|
const PointerType *T1PtrType = T1->getAs<PointerType>(),
|
|
*T2PtrType = T2->getAs<PointerType>();
|
|
if (T1PtrType && T2PtrType) {
|
|
T1 = T1PtrType->getPointeeType();
|
|
T2 = T2PtrType->getPointeeType();
|
|
return true;
|
|
}
|
|
|
|
const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
|
|
*T2MPType = T2->getAs<MemberPointerType>();
|
|
if (T1MPType && T2MPType &&
|
|
hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
|
|
QualType(T2MPType->getClass(), 0))) {
|
|
T1 = T1MPType->getPointeeType();
|
|
T2 = T2MPType->getPointeeType();
|
|
return true;
|
|
}
|
|
|
|
if (getLangOptions().ObjC1) {
|
|
const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
|
|
*T2OPType = T2->getAs<ObjCObjectPointerType>();
|
|
if (T1OPType && T2OPType) {
|
|
T1 = T1OPType->getPointeeType();
|
|
T2 = T2OPType->getPointeeType();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// FIXME: Block pointers, too?
|
|
|
|
return false;
|
|
}
|
|
|
|
DeclarationNameInfo ASTContext::getNameForTemplate(TemplateName Name,
|
|
SourceLocation NameLoc) {
|
|
if (TemplateDecl *TD = Name.getAsTemplateDecl())
|
|
// DNInfo work in progress: CHECKME: what about DNLoc?
|
|
return DeclarationNameInfo(TD->getDeclName(), NameLoc);
|
|
|
|
if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
|
|
DeclarationName DName;
|
|
if (DTN->isIdentifier()) {
|
|
DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
|
|
return DeclarationNameInfo(DName, NameLoc);
|
|
} else {
|
|
DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
|
|
// DNInfo work in progress: FIXME: source locations?
|
|
DeclarationNameLoc DNLoc;
|
|
DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
|
|
DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
|
|
return DeclarationNameInfo(DName, NameLoc, DNLoc);
|
|
}
|
|
}
|
|
|
|
OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
|
|
assert(Storage);
|
|
// DNInfo work in progress: CHECKME: what about DNLoc?
|
|
return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
|
|
}
|
|
|
|
TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
|
|
if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
|
|
if (TemplateTemplateParmDecl *TTP
|
|
= dyn_cast<TemplateTemplateParmDecl>(Template))
|
|
Template = getCanonicalTemplateTemplateParmDecl(TTP);
|
|
|
|
// The canonical template name is the canonical template declaration.
|
|
return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
|
|
}
|
|
|
|
assert(!Name.getAsOverloadedTemplate());
|
|
|
|
DependentTemplateName *DTN = Name.getAsDependentTemplateName();
|
|
assert(DTN && "Non-dependent template names must refer to template decls.");
|
|
return DTN->CanonicalTemplateName;
|
|
}
|
|
|
|
bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
|
|
X = getCanonicalTemplateName(X);
|
|
Y = getCanonicalTemplateName(Y);
|
|
return X.getAsVoidPointer() == Y.getAsVoidPointer();
|
|
}
|
|
|
|
TemplateArgument
|
|
ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
return Arg;
|
|
|
|
case TemplateArgument::Expression:
|
|
return Arg;
|
|
|
|
case TemplateArgument::Declaration:
|
|
return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
|
|
|
|
case TemplateArgument::Template:
|
|
return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
|
|
|
|
case TemplateArgument::Integral:
|
|
return TemplateArgument(*Arg.getAsIntegral(),
|
|
getCanonicalType(Arg.getIntegralType()));
|
|
|
|
case TemplateArgument::Type:
|
|
return TemplateArgument(getCanonicalType(Arg.getAsType()));
|
|
|
|
case TemplateArgument::Pack: {
|
|
// FIXME: Allocate in ASTContext
|
|
TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
|
|
unsigned Idx = 0;
|
|
for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
|
|
AEnd = Arg.pack_end();
|
|
A != AEnd; (void)++A, ++Idx)
|
|
CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
|
|
|
|
TemplateArgument Result;
|
|
Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
// Silence GCC warning
|
|
assert(false && "Unhandled template argument kind");
|
|
return TemplateArgument();
|
|
}
|
|
|
|
NestedNameSpecifier *
|
|
ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
|
|
if (!NNS)
|
|
return 0;
|
|
|
|
switch (NNS->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
// Canonicalize the prefix but keep the identifier the same.
|
|
return NestedNameSpecifier::Create(*this,
|
|
getCanonicalNestedNameSpecifier(NNS->getPrefix()),
|
|
NNS->getAsIdentifier());
|
|
|
|
case NestedNameSpecifier::Namespace:
|
|
// A namespace is canonical; build a nested-name-specifier with
|
|
// this namespace and no prefix.
|
|
return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate: {
|
|
QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
|
|
return NestedNameSpecifier::Create(*this, 0,
|
|
NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
|
|
T.getTypePtr());
|
|
}
|
|
|
|
case NestedNameSpecifier::Global:
|
|
// The global specifier is canonical and unique.
|
|
return NNS;
|
|
}
|
|
|
|
// Required to silence a GCC warning
|
|
return 0;
|
|
}
|
|
|
|
|
|
const ArrayType *ASTContext::getAsArrayType(QualType T) {
|
|
// Handle the non-qualified case efficiently.
|
|
if (!T.hasLocalQualifiers()) {
|
|
// Handle the common positive case fast.
|
|
if (const ArrayType *AT = dyn_cast<ArrayType>(T))
|
|
return AT;
|
|
}
|
|
|
|
// Handle the common negative case fast.
|
|
QualType CType = T->getCanonicalTypeInternal();
|
|
if (!isa<ArrayType>(CType))
|
|
return 0;
|
|
|
|
// Apply any qualifiers from the array type to the element type. This
|
|
// implements C99 6.7.3p8: "If the specification of an array type includes
|
|
// any type qualifiers, the element type is so qualified, not the array type."
|
|
|
|
// If we get here, we either have type qualifiers on the type, or we have
|
|
// sugar such as a typedef in the way. If we have type qualifiers on the type
|
|
// we must propagate them down into the element type.
|
|
|
|
QualifierCollector Qs;
|
|
const Type *Ty = Qs.strip(T.getDesugaredType());
|
|
|
|
// If we have a simple case, just return now.
|
|
const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
|
|
if (ATy == 0 || Qs.empty())
|
|
return ATy;
|
|
|
|
// Otherwise, we have an array and we have qualifiers on it. Push the
|
|
// qualifiers into the array element type and return a new array type.
|
|
// Get the canonical version of the element with the extra qualifiers on it.
|
|
// This can recursively sink qualifiers through multiple levels of arrays.
|
|
QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
|
|
|
|
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
|
|
return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
|
|
CAT->getSizeModifier(),
|
|
CAT->getIndexTypeCVRQualifiers()));
|
|
if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
|
|
return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
|
|
IAT->getSizeModifier(),
|
|
IAT->getIndexTypeCVRQualifiers()));
|
|
|
|
if (const DependentSizedArrayType *DSAT
|
|
= dyn_cast<DependentSizedArrayType>(ATy))
|
|
return cast<ArrayType>(
|
|
getDependentSizedArrayType(NewEltTy,
|
|
DSAT->getSizeExpr() ?
|
|
DSAT->getSizeExpr()->Retain() : 0,
|
|
DSAT->getSizeModifier(),
|
|
DSAT->getIndexTypeCVRQualifiers(),
|
|
DSAT->getBracketsRange()));
|
|
|
|
const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
|
|
return cast<ArrayType>(getVariableArrayType(NewEltTy,
|
|
VAT->getSizeExpr() ?
|
|
VAT->getSizeExpr()->Retain() : 0,
|
|
VAT->getSizeModifier(),
|
|
VAT->getIndexTypeCVRQualifiers(),
|
|
VAT->getBracketsRange()));
|
|
}
|
|
|
|
|
|
/// getArrayDecayedType - Return the properly qualified result of decaying the
|
|
/// specified array type to a pointer. This operation is non-trivial when
|
|
/// handling typedefs etc. The canonical type of "T" must be an array type,
|
|
/// this returns a pointer to a properly qualified element of the array.
|
|
///
|
|
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
|
|
QualType ASTContext::getArrayDecayedType(QualType Ty) {
|
|
// Get the element type with 'getAsArrayType' so that we don't lose any
|
|
// typedefs in the element type of the array. This also handles propagation
|
|
// of type qualifiers from the array type into the element type if present
|
|
// (C99 6.7.3p8).
|
|
const ArrayType *PrettyArrayType = getAsArrayType(Ty);
|
|
assert(PrettyArrayType && "Not an array type!");
|
|
|
|
QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
|
|
|
|
// int x[restrict 4] -> int *restrict
|
|
return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
|
|
}
|
|
|
|
QualType ASTContext::getBaseElementType(QualType QT) {
|
|
QualifierCollector Qs;
|
|
while (const ArrayType *AT = getAsArrayType(QualType(Qs.strip(QT), 0)))
|
|
QT = AT->getElementType();
|
|
return Qs.apply(QT);
|
|
}
|
|
|
|
QualType ASTContext::getBaseElementType(const ArrayType *AT) {
|
|
QualType ElemTy = AT->getElementType();
|
|
|
|
if (const ArrayType *AT = getAsArrayType(ElemTy))
|
|
return getBaseElementType(AT);
|
|
|
|
return ElemTy;
|
|
}
|
|
|
|
/// getConstantArrayElementCount - Returns number of constant array elements.
|
|
uint64_t
|
|
ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
|
|
uint64_t ElementCount = 1;
|
|
do {
|
|
ElementCount *= CA->getSize().getZExtValue();
|
|
CA = dyn_cast<ConstantArrayType>(CA->getElementType());
|
|
} while (CA);
|
|
return ElementCount;
|
|
}
|
|
|
|
/// getFloatingRank - Return a relative rank for floating point types.
|
|
/// This routine will assert if passed a built-in type that isn't a float.
|
|
static FloatingRank getFloatingRank(QualType T) {
|
|
if (const ComplexType *CT = T->getAs<ComplexType>())
|
|
return getFloatingRank(CT->getElementType());
|
|
|
|
assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
|
|
switch (T->getAs<BuiltinType>()->getKind()) {
|
|
default: assert(0 && "getFloatingRank(): not a floating type");
|
|
case BuiltinType::Float: return FloatRank;
|
|
case BuiltinType::Double: return DoubleRank;
|
|
case BuiltinType::LongDouble: return LongDoubleRank;
|
|
}
|
|
}
|
|
|
|
/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
|
|
/// point or a complex type (based on typeDomain/typeSize).
|
|
/// 'typeDomain' is a real floating point or complex type.
|
|
/// 'typeSize' is a real floating point or complex type.
|
|
QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
|
|
QualType Domain) const {
|
|
FloatingRank EltRank = getFloatingRank(Size);
|
|
if (Domain->isComplexType()) {
|
|
switch (EltRank) {
|
|
default: assert(0 && "getFloatingRank(): illegal value for rank");
|
|
case FloatRank: return FloatComplexTy;
|
|
case DoubleRank: return DoubleComplexTy;
|
|
case LongDoubleRank: return LongDoubleComplexTy;
|
|
}
|
|
}
|
|
|
|
assert(Domain->isRealFloatingType() && "Unknown domain!");
|
|
switch (EltRank) {
|
|
default: assert(0 && "getFloatingRank(): illegal value for rank");
|
|
case FloatRank: return FloatTy;
|
|
case DoubleRank: return DoubleTy;
|
|
case LongDoubleRank: return LongDoubleTy;
|
|
}
|
|
}
|
|
|
|
/// getFloatingTypeOrder - Compare the rank of the two specified floating
|
|
/// point types, ignoring the domain of the type (i.e. 'double' ==
|
|
/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
|
|
/// LHS < RHS, return -1.
|
|
int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
|
|
FloatingRank LHSR = getFloatingRank(LHS);
|
|
FloatingRank RHSR = getFloatingRank(RHS);
|
|
|
|
if (LHSR == RHSR)
|
|
return 0;
|
|
if (LHSR > RHSR)
|
|
return 1;
|
|
return -1;
|
|
}
|
|
|
|
/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
|
|
/// routine will assert if passed a built-in type that isn't an integer or enum,
|
|
/// or if it is not canonicalized.
|
|
unsigned ASTContext::getIntegerRank(Type *T) {
|
|
assert(T->isCanonicalUnqualified() && "T should be canonicalized");
|
|
if (EnumType* ET = dyn_cast<EnumType>(T))
|
|
T = ET->getDecl()->getPromotionType().getTypePtr();
|
|
|
|
if (T->isSpecificBuiltinType(BuiltinType::WChar))
|
|
T = getFromTargetType(Target.getWCharType()).getTypePtr();
|
|
|
|
if (T->isSpecificBuiltinType(BuiltinType::Char16))
|
|
T = getFromTargetType(Target.getChar16Type()).getTypePtr();
|
|
|
|
if (T->isSpecificBuiltinType(BuiltinType::Char32))
|
|
T = getFromTargetType(Target.getChar32Type()).getTypePtr();
|
|
|
|
switch (cast<BuiltinType>(T)->getKind()) {
|
|
default: assert(0 && "getIntegerRank(): not a built-in integer");
|
|
case BuiltinType::Bool:
|
|
return 1 + (getIntWidth(BoolTy) << 3);
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::SChar:
|
|
case BuiltinType::UChar:
|
|
return 2 + (getIntWidth(CharTy) << 3);
|
|
case BuiltinType::Short:
|
|
case BuiltinType::UShort:
|
|
return 3 + (getIntWidth(ShortTy) << 3);
|
|
case BuiltinType::Int:
|
|
case BuiltinType::UInt:
|
|
return 4 + (getIntWidth(IntTy) << 3);
|
|
case BuiltinType::Long:
|
|
case BuiltinType::ULong:
|
|
return 5 + (getIntWidth(LongTy) << 3);
|
|
case BuiltinType::LongLong:
|
|
case BuiltinType::ULongLong:
|
|
return 6 + (getIntWidth(LongLongTy) << 3);
|
|
case BuiltinType::Int128:
|
|
case BuiltinType::UInt128:
|
|
return 7 + (getIntWidth(Int128Ty) << 3);
|
|
}
|
|
}
|
|
|
|
/// \brief Whether this is a promotable bitfield reference according
|
|
/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
|
|
///
|
|
/// \returns the type this bit-field will promote to, or NULL if no
|
|
/// promotion occurs.
|
|
QualType ASTContext::isPromotableBitField(Expr *E) {
|
|
if (E->isTypeDependent() || E->isValueDependent())
|
|
return QualType();
|
|
|
|
FieldDecl *Field = E->getBitField();
|
|
if (!Field)
|
|
return QualType();
|
|
|
|
QualType FT = Field->getType();
|
|
|
|
llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
|
|
uint64_t BitWidth = BitWidthAP.getZExtValue();
|
|
uint64_t IntSize = getTypeSize(IntTy);
|
|
// GCC extension compatibility: if the bit-field size is less than or equal
|
|
// to the size of int, it gets promoted no matter what its type is.
|
|
// For instance, unsigned long bf : 4 gets promoted to signed int.
|
|
if (BitWidth < IntSize)
|
|
return IntTy;
|
|
|
|
if (BitWidth == IntSize)
|
|
return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
|
|
|
|
// Types bigger than int are not subject to promotions, and therefore act
|
|
// like the base type.
|
|
// FIXME: This doesn't quite match what gcc does, but what gcc does here
|
|
// is ridiculous.
|
|
return QualType();
|
|
}
|
|
|
|
/// getPromotedIntegerType - Returns the type that Promotable will
|
|
/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
|
|
/// integer type.
|
|
QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
|
|
assert(!Promotable.isNull());
|
|
assert(Promotable->isPromotableIntegerType());
|
|
if (const EnumType *ET = Promotable->getAs<EnumType>())
|
|
return ET->getDecl()->getPromotionType();
|
|
if (Promotable->isSignedIntegerType())
|
|
return IntTy;
|
|
uint64_t PromotableSize = getTypeSize(Promotable);
|
|
uint64_t IntSize = getTypeSize(IntTy);
|
|
assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
|
|
return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
|
|
}
|
|
|
|
/// getIntegerTypeOrder - Returns the highest ranked integer type:
|
|
/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
|
|
/// LHS < RHS, return -1.
|
|
int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
|
|
Type *LHSC = getCanonicalType(LHS).getTypePtr();
|
|
Type *RHSC = getCanonicalType(RHS).getTypePtr();
|
|
if (LHSC == RHSC) return 0;
|
|
|
|
bool LHSUnsigned = LHSC->isUnsignedIntegerType();
|
|
bool RHSUnsigned = RHSC->isUnsignedIntegerType();
|
|
|
|
unsigned LHSRank = getIntegerRank(LHSC);
|
|
unsigned RHSRank = getIntegerRank(RHSC);
|
|
|
|
if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
|
|
if (LHSRank == RHSRank) return 0;
|
|
return LHSRank > RHSRank ? 1 : -1;
|
|
}
|
|
|
|
// Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
|
|
if (LHSUnsigned) {
|
|
// If the unsigned [LHS] type is larger, return it.
|
|
if (LHSRank >= RHSRank)
|
|
return 1;
|
|
|
|
// If the signed type can represent all values of the unsigned type, it
|
|
// wins. Because we are dealing with 2's complement and types that are
|
|
// powers of two larger than each other, this is always safe.
|
|
return -1;
|
|
}
|
|
|
|
// If the unsigned [RHS] type is larger, return it.
|
|
if (RHSRank >= LHSRank)
|
|
return -1;
|
|
|
|
// If the signed type can represent all values of the unsigned type, it
|
|
// wins. Because we are dealing with 2's complement and types that are
|
|
// powers of two larger than each other, this is always safe.
|
|
return 1;
|
|
}
|
|
|
|
static RecordDecl *
|
|
CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
|
|
SourceLocation L, IdentifierInfo *Id) {
|
|
if (Ctx.getLangOptions().CPlusPlus)
|
|
return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
|
|
else
|
|
return RecordDecl::Create(Ctx, TK, DC, L, Id);
|
|
}
|
|
|
|
// getCFConstantStringType - Return the type used for constant CFStrings.
|
|
QualType ASTContext::getCFConstantStringType() {
|
|
if (!CFConstantStringTypeDecl) {
|
|
CFConstantStringTypeDecl =
|
|
CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
|
|
&Idents.get("NSConstantString"));
|
|
CFConstantStringTypeDecl->startDefinition();
|
|
|
|
QualType FieldTypes[4];
|
|
|
|
// const int *isa;
|
|
FieldTypes[0] = getPointerType(IntTy.withConst());
|
|
// int flags;
|
|
FieldTypes[1] = IntTy;
|
|
// const char *str;
|
|
FieldTypes[2] = getPointerType(CharTy.withConst());
|
|
// long length;
|
|
FieldTypes[3] = LongTy;
|
|
|
|
// Create fields
|
|
for (unsigned i = 0; i < 4; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
|
|
SourceLocation(), 0,
|
|
FieldTypes[i], /*TInfo=*/0,
|
|
/*BitWidth=*/0,
|
|
/*Mutable=*/false);
|
|
Field->setAccess(AS_public);
|
|
CFConstantStringTypeDecl->addDecl(Field);
|
|
}
|
|
|
|
CFConstantStringTypeDecl->completeDefinition();
|
|
}
|
|
|
|
return getTagDeclType(CFConstantStringTypeDecl);
|
|
}
|
|
|
|
void ASTContext::setCFConstantStringType(QualType T) {
|
|
const RecordType *Rec = T->getAs<RecordType>();
|
|
assert(Rec && "Invalid CFConstantStringType");
|
|
CFConstantStringTypeDecl = Rec->getDecl();
|
|
}
|
|
|
|
// getNSConstantStringType - Return the type used for constant NSStrings.
|
|
QualType ASTContext::getNSConstantStringType() {
|
|
if (!NSConstantStringTypeDecl) {
|
|
NSConstantStringTypeDecl =
|
|
CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
|
|
&Idents.get("__builtin_NSString"));
|
|
NSConstantStringTypeDecl->startDefinition();
|
|
|
|
QualType FieldTypes[3];
|
|
|
|
// const int *isa;
|
|
FieldTypes[0] = getPointerType(IntTy.withConst());
|
|
// const char *str;
|
|
FieldTypes[1] = getPointerType(CharTy.withConst());
|
|
// unsigned int length;
|
|
FieldTypes[2] = UnsignedIntTy;
|
|
|
|
// Create fields
|
|
for (unsigned i = 0; i < 3; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
|
|
SourceLocation(), 0,
|
|
FieldTypes[i], /*TInfo=*/0,
|
|
/*BitWidth=*/0,
|
|
/*Mutable=*/false);
|
|
Field->setAccess(AS_public);
|
|
NSConstantStringTypeDecl->addDecl(Field);
|
|
}
|
|
|
|
NSConstantStringTypeDecl->completeDefinition();
|
|
}
|
|
|
|
return getTagDeclType(NSConstantStringTypeDecl);
|
|
}
|
|
|
|
void ASTContext::setNSConstantStringType(QualType T) {
|
|
const RecordType *Rec = T->getAs<RecordType>();
|
|
assert(Rec && "Invalid NSConstantStringType");
|
|
NSConstantStringTypeDecl = Rec->getDecl();
|
|
}
|
|
|
|
QualType ASTContext::getObjCFastEnumerationStateType() {
|
|
if (!ObjCFastEnumerationStateTypeDecl) {
|
|
ObjCFastEnumerationStateTypeDecl =
|
|
CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
|
|
&Idents.get("__objcFastEnumerationState"));
|
|
ObjCFastEnumerationStateTypeDecl->startDefinition();
|
|
|
|
QualType FieldTypes[] = {
|
|
UnsignedLongTy,
|
|
getPointerType(ObjCIdTypedefType),
|
|
getPointerType(UnsignedLongTy),
|
|
getConstantArrayType(UnsignedLongTy,
|
|
llvm::APInt(32, 5), ArrayType::Normal, 0)
|
|
};
|
|
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(*this,
|
|
ObjCFastEnumerationStateTypeDecl,
|
|
SourceLocation(), 0,
|
|
FieldTypes[i], /*TInfo=*/0,
|
|
/*BitWidth=*/0,
|
|
/*Mutable=*/false);
|
|
Field->setAccess(AS_public);
|
|
ObjCFastEnumerationStateTypeDecl->addDecl(Field);
|
|
}
|
|
if (getLangOptions().CPlusPlus)
|
|
if (CXXRecordDecl *CXXRD =
|
|
dyn_cast<CXXRecordDecl>(ObjCFastEnumerationStateTypeDecl))
|
|
CXXRD->setEmpty(false);
|
|
|
|
ObjCFastEnumerationStateTypeDecl->completeDefinition();
|
|
}
|
|
|
|
return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
|
|
}
|
|
|
|
QualType ASTContext::getBlockDescriptorType() {
|
|
if (BlockDescriptorType)
|
|
return getTagDeclType(BlockDescriptorType);
|
|
|
|
RecordDecl *T;
|
|
// FIXME: Needs the FlagAppleBlock bit.
|
|
T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
|
|
&Idents.get("__block_descriptor"));
|
|
T->startDefinition();
|
|
|
|
QualType FieldTypes[] = {
|
|
UnsignedLongTy,
|
|
UnsignedLongTy,
|
|
};
|
|
|
|
const char *FieldNames[] = {
|
|
"reserved",
|
|
"Size"
|
|
};
|
|
|
|
for (size_t i = 0; i < 2; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(*this,
|
|
T,
|
|
SourceLocation(),
|
|
&Idents.get(FieldNames[i]),
|
|
FieldTypes[i], /*TInfo=*/0,
|
|
/*BitWidth=*/0,
|
|
/*Mutable=*/false);
|
|
Field->setAccess(AS_public);
|
|
T->addDecl(Field);
|
|
}
|
|
|
|
T->completeDefinition();
|
|
|
|
BlockDescriptorType = T;
|
|
|
|
return getTagDeclType(BlockDescriptorType);
|
|
}
|
|
|
|
void ASTContext::setBlockDescriptorType(QualType T) {
|
|
const RecordType *Rec = T->getAs<RecordType>();
|
|
assert(Rec && "Invalid BlockDescriptorType");
|
|
BlockDescriptorType = Rec->getDecl();
|
|
}
|
|
|
|
QualType ASTContext::getBlockDescriptorExtendedType() {
|
|
if (BlockDescriptorExtendedType)
|
|
return getTagDeclType(BlockDescriptorExtendedType);
|
|
|
|
RecordDecl *T;
|
|
// FIXME: Needs the FlagAppleBlock bit.
|
|
T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
|
|
&Idents.get("__block_descriptor_withcopydispose"));
|
|
T->startDefinition();
|
|
|
|
QualType FieldTypes[] = {
|
|
UnsignedLongTy,
|
|
UnsignedLongTy,
|
|
getPointerType(VoidPtrTy),
|
|
getPointerType(VoidPtrTy)
|
|
};
|
|
|
|
const char *FieldNames[] = {
|
|
"reserved",
|
|
"Size",
|
|
"CopyFuncPtr",
|
|
"DestroyFuncPtr"
|
|
};
|
|
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(*this,
|
|
T,
|
|
SourceLocation(),
|
|
&Idents.get(FieldNames[i]),
|
|
FieldTypes[i], /*TInfo=*/0,
|
|
/*BitWidth=*/0,
|
|
/*Mutable=*/false);
|
|
Field->setAccess(AS_public);
|
|
T->addDecl(Field);
|
|
}
|
|
|
|
T->completeDefinition();
|
|
|
|
BlockDescriptorExtendedType = T;
|
|
|
|
return getTagDeclType(BlockDescriptorExtendedType);
|
|
}
|
|
|
|
void ASTContext::setBlockDescriptorExtendedType(QualType T) {
|
|
const RecordType *Rec = T->getAs<RecordType>();
|
|
assert(Rec && "Invalid BlockDescriptorType");
|
|
BlockDescriptorExtendedType = Rec->getDecl();
|
|
}
|
|
|
|
bool ASTContext::BlockRequiresCopying(QualType Ty) {
|
|
if (Ty->isBlockPointerType())
|
|
return true;
|
|
if (isObjCNSObjectType(Ty))
|
|
return true;
|
|
if (Ty->isObjCObjectPointerType())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
QualType ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) {
|
|
// type = struct __Block_byref_1_X {
|
|
// void *__isa;
|
|
// struct __Block_byref_1_X *__forwarding;
|
|
// unsigned int __flags;
|
|
// unsigned int __size;
|
|
// void *__copy_helper; // as needed
|
|
// void *__destroy_help // as needed
|
|
// int X;
|
|
// } *
|
|
|
|
bool HasCopyAndDispose = BlockRequiresCopying(Ty);
|
|
|
|
// FIXME: Move up
|
|
llvm::SmallString<36> Name;
|
|
llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
|
|
++UniqueBlockByRefTypeID << '_' << DeclName;
|
|
RecordDecl *T;
|
|
T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
|
|
&Idents.get(Name.str()));
|
|
T->startDefinition();
|
|
QualType Int32Ty = IntTy;
|
|
assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
|
|
QualType FieldTypes[] = {
|
|
getPointerType(VoidPtrTy),
|
|
getPointerType(getTagDeclType(T)),
|
|
Int32Ty,
|
|
Int32Ty,
|
|
getPointerType(VoidPtrTy),
|
|
getPointerType(VoidPtrTy),
|
|
Ty
|
|
};
|
|
|
|
llvm::StringRef FieldNames[] = {
|
|
"__isa",
|
|
"__forwarding",
|
|
"__flags",
|
|
"__size",
|
|
"__copy_helper",
|
|
"__destroy_helper",
|
|
DeclName,
|
|
};
|
|
|
|
for (size_t i = 0; i < 7; ++i) {
|
|
if (!HasCopyAndDispose && i >=4 && i <= 5)
|
|
continue;
|
|
FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
|
|
&Idents.get(FieldNames[i]),
|
|
FieldTypes[i], /*TInfo=*/0,
|
|
/*BitWidth=*/0, /*Mutable=*/false);
|
|
Field->setAccess(AS_public);
|
|
T->addDecl(Field);
|
|
}
|
|
|
|
T->completeDefinition();
|
|
|
|
return getPointerType(getTagDeclType(T));
|
|
}
|
|
|
|
|
|
QualType ASTContext::getBlockParmType(
|
|
bool BlockHasCopyDispose,
|
|
llvm::SmallVectorImpl<const Expr *> &Layout) {
|
|
|
|
// FIXME: Move up
|
|
llvm::SmallString<36> Name;
|
|
llvm::raw_svector_ostream(Name) << "__block_literal_"
|
|
<< ++UniqueBlockParmTypeID;
|
|
RecordDecl *T;
|
|
T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
|
|
&Idents.get(Name.str()));
|
|
T->startDefinition();
|
|
QualType FieldTypes[] = {
|
|
getPointerType(VoidPtrTy),
|
|
IntTy,
|
|
IntTy,
|
|
getPointerType(VoidPtrTy),
|
|
(BlockHasCopyDispose ?
|
|
getPointerType(getBlockDescriptorExtendedType()) :
|
|
getPointerType(getBlockDescriptorType()))
|
|
};
|
|
|
|
const char *FieldNames[] = {
|
|
"__isa",
|
|
"__flags",
|
|
"__reserved",
|
|
"__FuncPtr",
|
|
"__descriptor"
|
|
};
|
|
|
|
for (size_t i = 0; i < 5; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
|
|
&Idents.get(FieldNames[i]),
|
|
FieldTypes[i], /*TInfo=*/0,
|
|
/*BitWidth=*/0, /*Mutable=*/false);
|
|
Field->setAccess(AS_public);
|
|
T->addDecl(Field);
|
|
}
|
|
|
|
for (unsigned i = 0; i < Layout.size(); ++i) {
|
|
const Expr *E = Layout[i];
|
|
|
|
QualType FieldType = E->getType();
|
|
IdentifierInfo *FieldName = 0;
|
|
if (isa<CXXThisExpr>(E)) {
|
|
FieldName = &Idents.get("this");
|
|
} else if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) {
|
|
const ValueDecl *D = BDRE->getDecl();
|
|
FieldName = D->getIdentifier();
|
|
if (BDRE->isByRef())
|
|
FieldType = BuildByRefType(D->getName(), FieldType);
|
|
} else {
|
|
// Padding.
|
|
assert(isa<ConstantArrayType>(FieldType) &&
|
|
isa<DeclRefExpr>(E) &&
|
|
!cast<DeclRefExpr>(E)->getDecl()->getDeclName() &&
|
|
"doesn't match characteristics of padding decl");
|
|
}
|
|
|
|
FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
|
|
FieldName, FieldType, /*TInfo=*/0,
|
|
/*BitWidth=*/0, /*Mutable=*/false);
|
|
Field->setAccess(AS_public);
|
|
T->addDecl(Field);
|
|
}
|
|
|
|
T->completeDefinition();
|
|
|
|
return getPointerType(getTagDeclType(T));
|
|
}
|
|
|
|
void ASTContext::setObjCFastEnumerationStateType(QualType T) {
|
|
const RecordType *Rec = T->getAs<RecordType>();
|
|
assert(Rec && "Invalid ObjCFAstEnumerationStateType");
|
|
ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
|
|
}
|
|
|
|
// This returns true if a type has been typedefed to BOOL:
|
|
// typedef <type> BOOL;
|
|
static bool isTypeTypedefedAsBOOL(QualType T) {
|
|
if (const TypedefType *TT = dyn_cast<TypedefType>(T))
|
|
if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
|
|
return II->isStr("BOOL");
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getObjCEncodingTypeSize returns size of type for objective-c encoding
|
|
/// purpose.
|
|
CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
|
|
CharUnits sz = getTypeSizeInChars(type);
|
|
|
|
// Make all integer and enum types at least as large as an int
|
|
if (sz.isPositive() && type->isIntegralOrEnumerationType())
|
|
sz = std::max(sz, getTypeSizeInChars(IntTy));
|
|
// Treat arrays as pointers, since that's how they're passed in.
|
|
else if (type->isArrayType())
|
|
sz = getTypeSizeInChars(VoidPtrTy);
|
|
return sz;
|
|
}
|
|
|
|
static inline
|
|
std::string charUnitsToString(const CharUnits &CU) {
|
|
return llvm::itostr(CU.getQuantity());
|
|
}
|
|
|
|
/// getObjCEncodingForBlockDecl - Return the encoded type for this block
|
|
/// declaration.
|
|
void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
|
|
std::string& S) {
|
|
const BlockDecl *Decl = Expr->getBlockDecl();
|
|
QualType BlockTy =
|
|
Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
|
|
// Encode result type.
|
|
getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
|
|
// Compute size of all parameters.
|
|
// Start with computing size of a pointer in number of bytes.
|
|
// FIXME: There might(should) be a better way of doing this computation!
|
|
SourceLocation Loc;
|
|
CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
|
|
CharUnits ParmOffset = PtrSize;
|
|
for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
|
|
E = Decl->param_end(); PI != E; ++PI) {
|
|
QualType PType = (*PI)->getType();
|
|
CharUnits sz = getObjCEncodingTypeSize(PType);
|
|
assert (sz.isPositive() && "BlockExpr - Incomplete param type");
|
|
ParmOffset += sz;
|
|
}
|
|
// Size of the argument frame
|
|
S += charUnitsToString(ParmOffset);
|
|
// Block pointer and offset.
|
|
S += "@?0";
|
|
ParmOffset = PtrSize;
|
|
|
|
// Argument types.
|
|
ParmOffset = PtrSize;
|
|
for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
|
|
Decl->param_end(); PI != E; ++PI) {
|
|
ParmVarDecl *PVDecl = *PI;
|
|
QualType PType = PVDecl->getOriginalType();
|
|
if (const ArrayType *AT =
|
|
dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
|
|
// Use array's original type only if it has known number of
|
|
// elements.
|
|
if (!isa<ConstantArrayType>(AT))
|
|
PType = PVDecl->getType();
|
|
} else if (PType->isFunctionType())
|
|
PType = PVDecl->getType();
|
|
getObjCEncodingForType(PType, S);
|
|
S += charUnitsToString(ParmOffset);
|
|
ParmOffset += getObjCEncodingTypeSize(PType);
|
|
}
|
|
}
|
|
|
|
/// getObjCEncodingForMethodDecl - Return the encoded type for this method
|
|
/// declaration.
|
|
void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
|
|
std::string& S) {
|
|
// FIXME: This is not very efficient.
|
|
// Encode type qualifer, 'in', 'inout', etc. for the return type.
|
|
getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
|
|
// Encode result type.
|
|
getObjCEncodingForType(Decl->getResultType(), S);
|
|
// Compute size of all parameters.
|
|
// Start with computing size of a pointer in number of bytes.
|
|
// FIXME: There might(should) be a better way of doing this computation!
|
|
SourceLocation Loc;
|
|
CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
|
|
// The first two arguments (self and _cmd) are pointers; account for
|
|
// their size.
|
|
CharUnits ParmOffset = 2 * PtrSize;
|
|
for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
|
|
E = Decl->sel_param_end(); PI != E; ++PI) {
|
|
QualType PType = (*PI)->getType();
|
|
CharUnits sz = getObjCEncodingTypeSize(PType);
|
|
assert (sz.isPositive() &&
|
|
"getObjCEncodingForMethodDecl - Incomplete param type");
|
|
ParmOffset += sz;
|
|
}
|
|
S += charUnitsToString(ParmOffset);
|
|
S += "@0:";
|
|
S += charUnitsToString(PtrSize);
|
|
|
|
// Argument types.
|
|
ParmOffset = 2 * PtrSize;
|
|
for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
|
|
E = Decl->sel_param_end(); PI != E; ++PI) {
|
|
ParmVarDecl *PVDecl = *PI;
|
|
QualType PType = PVDecl->getOriginalType();
|
|
if (const ArrayType *AT =
|
|
dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
|
|
// Use array's original type only if it has known number of
|
|
// elements.
|
|
if (!isa<ConstantArrayType>(AT))
|
|
PType = PVDecl->getType();
|
|
} else if (PType->isFunctionType())
|
|
PType = PVDecl->getType();
|
|
// Process argument qualifiers for user supplied arguments; such as,
|
|
// 'in', 'inout', etc.
|
|
getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
|
|
getObjCEncodingForType(PType, S);
|
|
S += charUnitsToString(ParmOffset);
|
|
ParmOffset += getObjCEncodingTypeSize(PType);
|
|
}
|
|
}
|
|
|
|
/// getObjCEncodingForPropertyDecl - Return the encoded type for this
|
|
/// property declaration. If non-NULL, Container must be either an
|
|
/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
|
|
/// NULL when getting encodings for protocol properties.
|
|
/// Property attributes are stored as a comma-delimited C string. The simple
|
|
/// attributes readonly and bycopy are encoded as single characters. The
|
|
/// parametrized attributes, getter=name, setter=name, and ivar=name, are
|
|
/// encoded as single characters, followed by an identifier. Property types
|
|
/// are also encoded as a parametrized attribute. The characters used to encode
|
|
/// these attributes are defined by the following enumeration:
|
|
/// @code
|
|
/// enum PropertyAttributes {
|
|
/// kPropertyReadOnly = 'R', // property is read-only.
|
|
/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
|
|
/// kPropertyByref = '&', // property is a reference to the value last assigned
|
|
/// kPropertyDynamic = 'D', // property is dynamic
|
|
/// kPropertyGetter = 'G', // followed by getter selector name
|
|
/// kPropertySetter = 'S', // followed by setter selector name
|
|
/// kPropertyInstanceVariable = 'V' // followed by instance variable name
|
|
/// kPropertyType = 't' // followed by old-style type encoding.
|
|
/// kPropertyWeak = 'W' // 'weak' property
|
|
/// kPropertyStrong = 'P' // property GC'able
|
|
/// kPropertyNonAtomic = 'N' // property non-atomic
|
|
/// };
|
|
/// @endcode
|
|
void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
|
|
const Decl *Container,
|
|
std::string& S) {
|
|
// Collect information from the property implementation decl(s).
|
|
bool Dynamic = false;
|
|
ObjCPropertyImplDecl *SynthesizePID = 0;
|
|
|
|
// FIXME: Duplicated code due to poor abstraction.
|
|
if (Container) {
|
|
if (const ObjCCategoryImplDecl *CID =
|
|
dyn_cast<ObjCCategoryImplDecl>(Container)) {
|
|
for (ObjCCategoryImplDecl::propimpl_iterator
|
|
i = CID->propimpl_begin(), e = CID->propimpl_end();
|
|
i != e; ++i) {
|
|
ObjCPropertyImplDecl *PID = *i;
|
|
if (PID->getPropertyDecl() == PD) {
|
|
if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
|
|
Dynamic = true;
|
|
} else {
|
|
SynthesizePID = PID;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
|
|
for (ObjCCategoryImplDecl::propimpl_iterator
|
|
i = OID->propimpl_begin(), e = OID->propimpl_end();
|
|
i != e; ++i) {
|
|
ObjCPropertyImplDecl *PID = *i;
|
|
if (PID->getPropertyDecl() == PD) {
|
|
if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
|
|
Dynamic = true;
|
|
} else {
|
|
SynthesizePID = PID;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: This is not very efficient.
|
|
S = "T";
|
|
|
|
// Encode result type.
|
|
// GCC has some special rules regarding encoding of properties which
|
|
// closely resembles encoding of ivars.
|
|
getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
|
|
true /* outermost type */,
|
|
true /* encoding for property */);
|
|
|
|
if (PD->isReadOnly()) {
|
|
S += ",R";
|
|
} else {
|
|
switch (PD->getSetterKind()) {
|
|
case ObjCPropertyDecl::Assign: break;
|
|
case ObjCPropertyDecl::Copy: S += ",C"; break;
|
|
case ObjCPropertyDecl::Retain: S += ",&"; break;
|
|
}
|
|
}
|
|
|
|
// It really isn't clear at all what this means, since properties
|
|
// are "dynamic by default".
|
|
if (Dynamic)
|
|
S += ",D";
|
|
|
|
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
|
|
S += ",N";
|
|
|
|
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
|
|
S += ",G";
|
|
S += PD->getGetterName().getAsString();
|
|
}
|
|
|
|
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
|
|
S += ",S";
|
|
S += PD->getSetterName().getAsString();
|
|
}
|
|
|
|
if (SynthesizePID) {
|
|
const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
|
|
S += ",V";
|
|
S += OID->getNameAsString();
|
|
}
|
|
|
|
// FIXME: OBJCGC: weak & strong
|
|
}
|
|
|
|
/// getLegacyIntegralTypeEncoding -
|
|
/// Another legacy compatibility encoding: 32-bit longs are encoded as
|
|
/// 'l' or 'L' , but not always. For typedefs, we need to use
|
|
/// 'i' or 'I' instead if encoding a struct field, or a pointer!
|
|
///
|
|
void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
|
|
if (isa<TypedefType>(PointeeTy.getTypePtr())) {
|
|
if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
|
|
if (BT->getKind() == BuiltinType::ULong &&
|
|
((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
|
|
PointeeTy = UnsignedIntTy;
|
|
else
|
|
if (BT->getKind() == BuiltinType::Long &&
|
|
((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
|
|
PointeeTy = IntTy;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
|
|
const FieldDecl *Field) {
|
|
// We follow the behavior of gcc, expanding structures which are
|
|
// directly pointed to, and expanding embedded structures. Note that
|
|
// these rules are sufficient to prevent recursive encoding of the
|
|
// same type.
|
|
getObjCEncodingForTypeImpl(T, S, true, true, Field,
|
|
true /* outermost type */);
|
|
}
|
|
|
|
static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
|
|
switch (T->getAs<BuiltinType>()->getKind()) {
|
|
default: assert(0 && "Unhandled builtin type kind");
|
|
case BuiltinType::Void: return 'v';
|
|
case BuiltinType::Bool: return 'B';
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::UChar: return 'C';
|
|
case BuiltinType::UShort: return 'S';
|
|
case BuiltinType::UInt: return 'I';
|
|
case BuiltinType::ULong:
|
|
return
|
|
(const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'L' : 'Q';
|
|
case BuiltinType::UInt128: return 'T';
|
|
case BuiltinType::ULongLong: return 'Q';
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::SChar: return 'c';
|
|
case BuiltinType::Short: return 's';
|
|
case BuiltinType::WChar:
|
|
case BuiltinType::Int: return 'i';
|
|
case BuiltinType::Long:
|
|
return
|
|
(const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'l' : 'q';
|
|
case BuiltinType::LongLong: return 'q';
|
|
case BuiltinType::Int128: return 't';
|
|
case BuiltinType::Float: return 'f';
|
|
case BuiltinType::Double: return 'd';
|
|
case BuiltinType::LongDouble: return 'd';
|
|
}
|
|
}
|
|
|
|
static void EncodeBitField(const ASTContext *Context, std::string& S,
|
|
QualType T, const FieldDecl *FD) {
|
|
const Expr *E = FD->getBitWidth();
|
|
assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
|
|
ASTContext *Ctx = const_cast<ASTContext*>(Context);
|
|
S += 'b';
|
|
// The NeXT runtime encodes bit fields as b followed by the number of bits.
|
|
// The GNU runtime requires more information; bitfields are encoded as b,
|
|
// then the offset (in bits) of the first element, then the type of the
|
|
// bitfield, then the size in bits. For example, in this structure:
|
|
//
|
|
// struct
|
|
// {
|
|
// int integer;
|
|
// int flags:2;
|
|
// };
|
|
// On a 32-bit system, the encoding for flags would be b2 for the NeXT
|
|
// runtime, but b32i2 for the GNU runtime. The reason for this extra
|
|
// information is not especially sensible, but we're stuck with it for
|
|
// compatibility with GCC, although providing it breaks anything that
|
|
// actually uses runtime introspection and wants to work on both runtimes...
|
|
if (!Ctx->getLangOptions().NeXTRuntime) {
|
|
const RecordDecl *RD = FD->getParent();
|
|
const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
|
|
// FIXME: This same linear search is also used in ExprConstant - it might
|
|
// be better if the FieldDecl stored its offset. We'd be increasing the
|
|
// size of the object slightly, but saving some time every time it is used.
|
|
unsigned i = 0;
|
|
for (RecordDecl::field_iterator Field = RD->field_begin(),
|
|
FieldEnd = RD->field_end();
|
|
Field != FieldEnd; (void)++Field, ++i) {
|
|
if (*Field == FD)
|
|
break;
|
|
}
|
|
S += llvm::utostr(RL.getFieldOffset(i));
|
|
S += ObjCEncodingForPrimitiveKind(Context, T);
|
|
}
|
|
unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
|
|
S += llvm::utostr(N);
|
|
}
|
|
|
|
// FIXME: Use SmallString for accumulating string.
|
|
void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
|
|
bool ExpandPointedToStructures,
|
|
bool ExpandStructures,
|
|
const FieldDecl *FD,
|
|
bool OutermostType,
|
|
bool EncodingProperty) {
|
|
if (T->getAs<BuiltinType>()) {
|
|
if (FD && FD->isBitField())
|
|
return EncodeBitField(this, S, T, FD);
|
|
S += ObjCEncodingForPrimitiveKind(this, T);
|
|
return;
|
|
}
|
|
|
|
if (const ComplexType *CT = T->getAs<ComplexType>()) {
|
|
S += 'j';
|
|
getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
|
|
false);
|
|
return;
|
|
}
|
|
|
|
// encoding for pointer or r3eference types.
|
|
QualType PointeeTy;
|
|
if (const PointerType *PT = T->getAs<PointerType>()) {
|
|
if (PT->isObjCSelType()) {
|
|
S += ':';
|
|
return;
|
|
}
|
|
PointeeTy = PT->getPointeeType();
|
|
}
|
|
else if (const ReferenceType *RT = T->getAs<ReferenceType>())
|
|
PointeeTy = RT->getPointeeType();
|
|
if (!PointeeTy.isNull()) {
|
|
bool isReadOnly = false;
|
|
// For historical/compatibility reasons, the read-only qualifier of the
|
|
// pointee gets emitted _before_ the '^'. The read-only qualifier of
|
|
// the pointer itself gets ignored, _unless_ we are looking at a typedef!
|
|
// Also, do not emit the 'r' for anything but the outermost type!
|
|
if (isa<TypedefType>(T.getTypePtr())) {
|
|
if (OutermostType && T.isConstQualified()) {
|
|
isReadOnly = true;
|
|
S += 'r';
|
|
}
|
|
} else if (OutermostType) {
|
|
QualType P = PointeeTy;
|
|
while (P->getAs<PointerType>())
|
|
P = P->getAs<PointerType>()->getPointeeType();
|
|
if (P.isConstQualified()) {
|
|
isReadOnly = true;
|
|
S += 'r';
|
|
}
|
|
}
|
|
if (isReadOnly) {
|
|
// Another legacy compatibility encoding. Some ObjC qualifier and type
|
|
// combinations need to be rearranged.
|
|
// Rewrite "in const" from "nr" to "rn"
|
|
if (llvm::StringRef(S).endswith("nr"))
|
|
S.replace(S.end()-2, S.end(), "rn");
|
|
}
|
|
|
|
if (PointeeTy->isCharType()) {
|
|
// char pointer types should be encoded as '*' unless it is a
|
|
// type that has been typedef'd to 'BOOL'.
|
|
if (!isTypeTypedefedAsBOOL(PointeeTy)) {
|
|
S += '*';
|
|
return;
|
|
}
|
|
} else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
|
|
// GCC binary compat: Need to convert "struct objc_class *" to "#".
|
|
if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
|
|
S += '#';
|
|
return;
|
|
}
|
|
// GCC binary compat: Need to convert "struct objc_object *" to "@".
|
|
if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
|
|
S += '@';
|
|
return;
|
|
}
|
|
// fall through...
|
|
}
|
|
S += '^';
|
|
getLegacyIntegralTypeEncoding(PointeeTy);
|
|
|
|
getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
|
|
NULL);
|
|
return;
|
|
}
|
|
|
|
if (const ArrayType *AT =
|
|
// Ignore type qualifiers etc.
|
|
dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
|
|
if (isa<IncompleteArrayType>(AT)) {
|
|
// Incomplete arrays are encoded as a pointer to the array element.
|
|
S += '^';
|
|
|
|
getObjCEncodingForTypeImpl(AT->getElementType(), S,
|
|
false, ExpandStructures, FD);
|
|
} else {
|
|
S += '[';
|
|
|
|
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
|
|
S += llvm::utostr(CAT->getSize().getZExtValue());
|
|
else {
|
|
//Variable length arrays are encoded as a regular array with 0 elements.
|
|
assert(isa<VariableArrayType>(AT) && "Unknown array type!");
|
|
S += '0';
|
|
}
|
|
|
|
getObjCEncodingForTypeImpl(AT->getElementType(), S,
|
|
false, ExpandStructures, FD);
|
|
S += ']';
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (T->getAs<FunctionType>()) {
|
|
S += '?';
|
|
return;
|
|
}
|
|
|
|
if (const RecordType *RTy = T->getAs<RecordType>()) {
|
|
RecordDecl *RDecl = RTy->getDecl();
|
|
S += RDecl->isUnion() ? '(' : '{';
|
|
// Anonymous structures print as '?'
|
|
if (const IdentifierInfo *II = RDecl->getIdentifier()) {
|
|
S += II->getName();
|
|
if (ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
|
|
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
|
|
std::string TemplateArgsStr
|
|
= TemplateSpecializationType::PrintTemplateArgumentList(
|
|
TemplateArgs.getFlatArgumentList(),
|
|
TemplateArgs.flat_size(),
|
|
(*this).PrintingPolicy);
|
|
|
|
S += TemplateArgsStr;
|
|
}
|
|
} else {
|
|
S += '?';
|
|
}
|
|
if (ExpandStructures) {
|
|
S += '=';
|
|
for (RecordDecl::field_iterator Field = RDecl->field_begin(),
|
|
FieldEnd = RDecl->field_end();
|
|
Field != FieldEnd; ++Field) {
|
|
if (FD) {
|
|
S += '"';
|
|
S += Field->getNameAsString();
|
|
S += '"';
|
|
}
|
|
|
|
// Special case bit-fields.
|
|
if (Field->isBitField()) {
|
|
getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
|
|
(*Field));
|
|
} else {
|
|
QualType qt = Field->getType();
|
|
getLegacyIntegralTypeEncoding(qt);
|
|
getObjCEncodingForTypeImpl(qt, S, false, true,
|
|
FD);
|
|
}
|
|
}
|
|
}
|
|
S += RDecl->isUnion() ? ')' : '}';
|
|
return;
|
|
}
|
|
|
|
if (T->isEnumeralType()) {
|
|
if (FD && FD->isBitField())
|
|
EncodeBitField(this, S, T, FD);
|
|
else
|
|
S += 'i';
|
|
return;
|
|
}
|
|
|
|
if (T->isBlockPointerType()) {
|
|
S += "@?"; // Unlike a pointer-to-function, which is "^?".
|
|
return;
|
|
}
|
|
|
|
// Ignore protocol qualifiers when mangling at this level.
|
|
if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
|
|
T = OT->getBaseType();
|
|
|
|
if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
|
|
// @encode(class_name)
|
|
ObjCInterfaceDecl *OI = OIT->getDecl();
|
|
S += '{';
|
|
const IdentifierInfo *II = OI->getIdentifier();
|
|
S += II->getName();
|
|
S += '=';
|
|
llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
|
|
DeepCollectObjCIvars(OI, true, Ivars);
|
|
for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
|
|
FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
|
|
if (Field->isBitField())
|
|
getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
|
|
else
|
|
getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
|
|
}
|
|
S += '}';
|
|
return;
|
|
}
|
|
|
|
if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
|
|
if (OPT->isObjCIdType()) {
|
|
S += '@';
|
|
return;
|
|
}
|
|
|
|
if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
|
|
// FIXME: Consider if we need to output qualifiers for 'Class<p>'.
|
|
// Since this is a binary compatibility issue, need to consult with runtime
|
|
// folks. Fortunately, this is a *very* obsure construct.
|
|
S += '#';
|
|
return;
|
|
}
|
|
|
|
if (OPT->isObjCQualifiedIdType()) {
|
|
getObjCEncodingForTypeImpl(getObjCIdType(), S,
|
|
ExpandPointedToStructures,
|
|
ExpandStructures, FD);
|
|
if (FD || EncodingProperty) {
|
|
// Note that we do extended encoding of protocol qualifer list
|
|
// Only when doing ivar or property encoding.
|
|
S += '"';
|
|
for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
|
|
E = OPT->qual_end(); I != E; ++I) {
|
|
S += '<';
|
|
S += (*I)->getNameAsString();
|
|
S += '>';
|
|
}
|
|
S += '"';
|
|
}
|
|
return;
|
|
}
|
|
|
|
QualType PointeeTy = OPT->getPointeeType();
|
|
if (!EncodingProperty &&
|
|
isa<TypedefType>(PointeeTy.getTypePtr())) {
|
|
// Another historical/compatibility reason.
|
|
// We encode the underlying type which comes out as
|
|
// {...};
|
|
S += '^';
|
|
getObjCEncodingForTypeImpl(PointeeTy, S,
|
|
false, ExpandPointedToStructures,
|
|
NULL);
|
|
return;
|
|
}
|
|
|
|
S += '@';
|
|
if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
|
|
S += '"';
|
|
S += OPT->getInterfaceDecl()->getIdentifier()->getName();
|
|
for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
|
|
E = OPT->qual_end(); I != E; ++I) {
|
|
S += '<';
|
|
S += (*I)->getNameAsString();
|
|
S += '>';
|
|
}
|
|
S += '"';
|
|
}
|
|
return;
|
|
}
|
|
|
|
// gcc just blithely ignores member pointers.
|
|
// TODO: maybe there should be a mangling for these
|
|
if (T->getAs<MemberPointerType>())
|
|
return;
|
|
|
|
assert(0 && "@encode for type not implemented!");
|
|
}
|
|
|
|
void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
|
|
std::string& S) const {
|
|
if (QT & Decl::OBJC_TQ_In)
|
|
S += 'n';
|
|
if (QT & Decl::OBJC_TQ_Inout)
|
|
S += 'N';
|
|
if (QT & Decl::OBJC_TQ_Out)
|
|
S += 'o';
|
|
if (QT & Decl::OBJC_TQ_Bycopy)
|
|
S += 'O';
|
|
if (QT & Decl::OBJC_TQ_Byref)
|
|
S += 'R';
|
|
if (QT & Decl::OBJC_TQ_Oneway)
|
|
S += 'V';
|
|
}
|
|
|
|
void ASTContext::setBuiltinVaListType(QualType T) {
|
|
assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
|
|
|
|
BuiltinVaListType = T;
|
|
}
|
|
|
|
void ASTContext::setObjCIdType(QualType T) {
|
|
ObjCIdTypedefType = T;
|
|
}
|
|
|
|
void ASTContext::setObjCSelType(QualType T) {
|
|
ObjCSelTypedefType = T;
|
|
}
|
|
|
|
void ASTContext::setObjCProtoType(QualType QT) {
|
|
ObjCProtoType = QT;
|
|
}
|
|
|
|
void ASTContext::setObjCClassType(QualType T) {
|
|
ObjCClassTypedefType = T;
|
|
}
|
|
|
|
void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
|
|
assert(ObjCConstantStringType.isNull() &&
|
|
"'NSConstantString' type already set!");
|
|
|
|
ObjCConstantStringType = getObjCInterfaceType(Decl);
|
|
}
|
|
|
|
/// \brief Retrieve the template name that corresponds to a non-empty
|
|
/// lookup.
|
|
TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
|
|
UnresolvedSetIterator End) {
|
|
unsigned size = End - Begin;
|
|
assert(size > 1 && "set is not overloaded!");
|
|
|
|
void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
|
|
size * sizeof(FunctionTemplateDecl*));
|
|
OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
|
|
|
|
NamedDecl **Storage = OT->getStorage();
|
|
for (UnresolvedSetIterator I = Begin; I != End; ++I) {
|
|
NamedDecl *D = *I;
|
|
assert(isa<FunctionTemplateDecl>(D) ||
|
|
(isa<UsingShadowDecl>(D) &&
|
|
isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
|
|
*Storage++ = D;
|
|
}
|
|
|
|
return TemplateName(OT);
|
|
}
|
|
|
|
/// \brief Retrieve the template name that represents a qualified
|
|
/// template name such as \c std::vector.
|
|
TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
|
|
bool TemplateKeyword,
|
|
TemplateDecl *Template) {
|
|
// FIXME: Canonicalization?
|
|
llvm::FoldingSetNodeID ID;
|
|
QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
|
|
|
|
void *InsertPos = 0;
|
|
QualifiedTemplateName *QTN =
|
|
QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (!QTN) {
|
|
QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
|
|
QualifiedTemplateNames.InsertNode(QTN, InsertPos);
|
|
}
|
|
|
|
return TemplateName(QTN);
|
|
}
|
|
|
|
/// \brief Retrieve the template name that represents a dependent
|
|
/// template name such as \c MetaFun::template apply.
|
|
TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
|
|
const IdentifierInfo *Name) {
|
|
assert((!NNS || NNS->isDependent()) &&
|
|
"Nested name specifier must be dependent");
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentTemplateName::Profile(ID, NNS, Name);
|
|
|
|
void *InsertPos = 0;
|
|
DependentTemplateName *QTN =
|
|
DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (QTN)
|
|
return TemplateName(QTN);
|
|
|
|
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
|
|
if (CanonNNS == NNS) {
|
|
QTN = new (*this,4) DependentTemplateName(NNS, Name);
|
|
} else {
|
|
TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
|
|
QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
|
|
DependentTemplateName *CheckQTN =
|
|
DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!CheckQTN && "Dependent type name canonicalization broken");
|
|
(void)CheckQTN;
|
|
}
|
|
|
|
DependentTemplateNames.InsertNode(QTN, InsertPos);
|
|
return TemplateName(QTN);
|
|
}
|
|
|
|
/// \brief Retrieve the template name that represents a dependent
|
|
/// template name such as \c MetaFun::template operator+.
|
|
TemplateName
|
|
ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
|
|
OverloadedOperatorKind Operator) {
|
|
assert((!NNS || NNS->isDependent()) &&
|
|
"Nested name specifier must be dependent");
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentTemplateName::Profile(ID, NNS, Operator);
|
|
|
|
void *InsertPos = 0;
|
|
DependentTemplateName *QTN
|
|
= DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (QTN)
|
|
return TemplateName(QTN);
|
|
|
|
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
|
|
if (CanonNNS == NNS) {
|
|
QTN = new (*this,4) DependentTemplateName(NNS, Operator);
|
|
} else {
|
|
TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
|
|
QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
|
|
|
|
DependentTemplateName *CheckQTN
|
|
= DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!CheckQTN && "Dependent template name canonicalization broken");
|
|
(void)CheckQTN;
|
|
}
|
|
|
|
DependentTemplateNames.InsertNode(QTN, InsertPos);
|
|
return TemplateName(QTN);
|
|
}
|
|
|
|
/// getFromTargetType - Given one of the integer types provided by
|
|
/// TargetInfo, produce the corresponding type. The unsigned @p Type
|
|
/// is actually a value of type @c TargetInfo::IntType.
|
|
CanQualType ASTContext::getFromTargetType(unsigned Type) const {
|
|
switch (Type) {
|
|
case TargetInfo::NoInt: return CanQualType();
|
|
case TargetInfo::SignedShort: return ShortTy;
|
|
case TargetInfo::UnsignedShort: return UnsignedShortTy;
|
|
case TargetInfo::SignedInt: return IntTy;
|
|
case TargetInfo::UnsignedInt: return UnsignedIntTy;
|
|
case TargetInfo::SignedLong: return LongTy;
|
|
case TargetInfo::UnsignedLong: return UnsignedLongTy;
|
|
case TargetInfo::SignedLongLong: return LongLongTy;
|
|
case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
|
|
}
|
|
|
|
assert(false && "Unhandled TargetInfo::IntType value");
|
|
return CanQualType();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Predicates.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isObjCNSObjectType - Return true if this is an NSObject object using
|
|
/// NSObject attribute on a c-style pointer type.
|
|
/// FIXME - Make it work directly on types.
|
|
/// FIXME: Move to Type.
|
|
///
|
|
bool ASTContext::isObjCNSObjectType(QualType Ty) const {
|
|
if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
|
|
if (TypedefDecl *TD = TDT->getDecl())
|
|
if (TD->getAttr<ObjCNSObjectAttr>())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
|
|
/// garbage collection attribute.
|
|
///
|
|
Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
|
|
Qualifiers::GC GCAttrs = Qualifiers::GCNone;
|
|
if (getLangOptions().ObjC1 &&
|
|
getLangOptions().getGCMode() != LangOptions::NonGC) {
|
|
GCAttrs = Ty.getObjCGCAttr();
|
|
// Default behavious under objective-c's gc is for objective-c pointers
|
|
// (or pointers to them) be treated as though they were declared
|
|
// as __strong.
|
|
if (GCAttrs == Qualifiers::GCNone) {
|
|
if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
|
|
GCAttrs = Qualifiers::Strong;
|
|
else if (Ty->isPointerType())
|
|
return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
|
|
}
|
|
// Non-pointers have none gc'able attribute regardless of the attribute
|
|
// set on them.
|
|
else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
|
|
return Qualifiers::GCNone;
|
|
}
|
|
return GCAttrs;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Compatibility Testing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// areCompatVectorTypes - Return true if the two specified vector types are
|
|
/// compatible.
|
|
static bool areCompatVectorTypes(const VectorType *LHS,
|
|
const VectorType *RHS) {
|
|
assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
|
|
return LHS->getElementType() == RHS->getElementType() &&
|
|
LHS->getNumElements() == RHS->getNumElements();
|
|
}
|
|
|
|
bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
|
|
QualType SecondVec) {
|
|
assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
|
|
assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
|
|
|
|
if (hasSameUnqualifiedType(FirstVec, SecondVec))
|
|
return true;
|
|
|
|
// AltiVec vectors types are identical to equivalent GCC vector types
|
|
const VectorType *First = FirstVec->getAs<VectorType>();
|
|
const VectorType *Second = SecondVec->getAs<VectorType>();
|
|
if ((((First->getAltiVecSpecific() == VectorType::AltiVec) &&
|
|
(Second->getAltiVecSpecific() == VectorType::NotAltiVec)) ||
|
|
((First->getAltiVecSpecific() == VectorType::NotAltiVec) &&
|
|
(Second->getAltiVecSpecific() == VectorType::AltiVec))) &&
|
|
hasSameType(First->getElementType(), Second->getElementType()) &&
|
|
(First->getNumElements() == Second->getNumElements()))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
|
|
/// inheritance hierarchy of 'rProto'.
|
|
bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
|
|
ObjCProtocolDecl *rProto) {
|
|
if (lProto == rProto)
|
|
return true;
|
|
for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
|
|
E = rProto->protocol_end(); PI != E; ++PI)
|
|
if (ProtocolCompatibleWithProtocol(lProto, *PI))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
|
|
/// return true if lhs's protocols conform to rhs's protocol; false
|
|
/// otherwise.
|
|
bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
|
|
if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
|
|
return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
|
|
return false;
|
|
}
|
|
|
|
/// ObjCQualifiedClassTypesAreCompatible - compare Class<p,...> and
|
|
/// Class<p1, ...>.
|
|
bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
|
|
QualType rhs) {
|
|
const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
|
|
const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
|
|
assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
|
|
|
|
for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
|
|
E = lhsQID->qual_end(); I != E; ++I) {
|
|
bool match = false;
|
|
ObjCProtocolDecl *lhsProto = *I;
|
|
for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
|
|
E = rhsOPT->qual_end(); J != E; ++J) {
|
|
ObjCProtocolDecl *rhsProto = *J;
|
|
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
|
|
match = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!match)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
|
|
/// ObjCQualifiedIDType.
|
|
bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
|
|
bool compare) {
|
|
// Allow id<P..> and an 'id' or void* type in all cases.
|
|
if (lhs->isVoidPointerType() ||
|
|
lhs->isObjCIdType() || lhs->isObjCClassType())
|
|
return true;
|
|
else if (rhs->isVoidPointerType() ||
|
|
rhs->isObjCIdType() || rhs->isObjCClassType())
|
|
return true;
|
|
|
|
if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
|
|
const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
|
|
|
|
if (!rhsOPT) return false;
|
|
|
|
if (rhsOPT->qual_empty()) {
|
|
// If the RHS is a unqualified interface pointer "NSString*",
|
|
// make sure we check the class hierarchy.
|
|
if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
|
|
for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
|
|
E = lhsQID->qual_end(); I != E; ++I) {
|
|
// when comparing an id<P> on lhs with a static type on rhs,
|
|
// see if static class implements all of id's protocols, directly or
|
|
// through its super class and categories.
|
|
if (!rhsID->ClassImplementsProtocol(*I, true))
|
|
return false;
|
|
}
|
|
}
|
|
// If there are no qualifiers and no interface, we have an 'id'.
|
|
return true;
|
|
}
|
|
// Both the right and left sides have qualifiers.
|
|
for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
|
|
E = lhsQID->qual_end(); I != E; ++I) {
|
|
ObjCProtocolDecl *lhsProto = *I;
|
|
bool match = false;
|
|
|
|
// when comparing an id<P> on lhs with a static type on rhs,
|
|
// see if static class implements all of id's protocols, directly or
|
|
// through its super class and categories.
|
|
for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
|
|
E = rhsOPT->qual_end(); J != E; ++J) {
|
|
ObjCProtocolDecl *rhsProto = *J;
|
|
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
|
|
(compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
|
|
match = true;
|
|
break;
|
|
}
|
|
}
|
|
// If the RHS is a qualified interface pointer "NSString<P>*",
|
|
// make sure we check the class hierarchy.
|
|
if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
|
|
for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
|
|
E = lhsQID->qual_end(); I != E; ++I) {
|
|
// when comparing an id<P> on lhs with a static type on rhs,
|
|
// see if static class implements all of id's protocols, directly or
|
|
// through its super class and categories.
|
|
if (rhsID->ClassImplementsProtocol(*I, true)) {
|
|
match = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!match)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
|
|
assert(rhsQID && "One of the LHS/RHS should be id<x>");
|
|
|
|
if (const ObjCObjectPointerType *lhsOPT =
|
|
lhs->getAsObjCInterfacePointerType()) {
|
|
if (lhsOPT->qual_empty()) {
|
|
bool match = false;
|
|
if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
|
|
for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
|
|
E = rhsQID->qual_end(); I != E; ++I) {
|
|
// when comparing an id<P> on rhs with a static type on lhs,
|
|
// static class must implement all of id's protocols directly or
|
|
// indirectly through its super class.
|
|
if (lhsID->ClassImplementsProtocol(*I, true)) {
|
|
match = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!match)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
// Both the right and left sides have qualifiers.
|
|
for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
|
|
E = lhsOPT->qual_end(); I != E; ++I) {
|
|
ObjCProtocolDecl *lhsProto = *I;
|
|
bool match = false;
|
|
|
|
// when comparing an id<P> on lhs with a static type on rhs,
|
|
// see if static class implements all of id's protocols, directly or
|
|
// through its super class and categories.
|
|
for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
|
|
E = rhsQID->qual_end(); J != E; ++J) {
|
|
ObjCProtocolDecl *rhsProto = *J;
|
|
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
|
|
(compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
|
|
match = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!match)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// canAssignObjCInterfaces - Return true if the two interface types are
|
|
/// compatible for assignment from RHS to LHS. This handles validation of any
|
|
/// protocol qualifiers on the LHS or RHS.
|
|
///
|
|
bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
|
|
const ObjCObjectPointerType *RHSOPT) {
|
|
const ObjCObjectType* LHS = LHSOPT->getObjectType();
|
|
const ObjCObjectType* RHS = RHSOPT->getObjectType();
|
|
|
|
// If either type represents the built-in 'id' or 'Class' types, return true.
|
|
if (LHS->isObjCUnqualifiedIdOrClass() ||
|
|
RHS->isObjCUnqualifiedIdOrClass())
|
|
return true;
|
|
|
|
if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
|
|
return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
|
|
QualType(RHSOPT,0),
|
|
false);
|
|
|
|
if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
|
|
return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
|
|
QualType(RHSOPT,0));
|
|
|
|
// If we have 2 user-defined types, fall into that path.
|
|
if (LHS->getInterface() && RHS->getInterface())
|
|
return canAssignObjCInterfaces(LHS, RHS);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
|
|
/// for providing type-safty for objective-c pointers used to pass/return
|
|
/// arguments in block literals. When passed as arguments, passing 'A*' where
|
|
/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
|
|
/// not OK. For the return type, the opposite is not OK.
|
|
bool ASTContext::canAssignObjCInterfacesInBlockPointer(
|
|
const ObjCObjectPointerType *LHSOPT,
|
|
const ObjCObjectPointerType *RHSOPT) {
|
|
if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
|
|
return true;
|
|
|
|
if (LHSOPT->isObjCBuiltinType()) {
|
|
return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
|
|
}
|
|
|
|
if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
|
|
return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
|
|
QualType(RHSOPT,0),
|
|
false);
|
|
|
|
const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
|
|
const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
|
|
if (LHS && RHS) { // We have 2 user-defined types.
|
|
if (LHS != RHS) {
|
|
if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
|
|
return false;
|
|
if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
|
|
return true;
|
|
}
|
|
else
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// getIntersectionOfProtocols - This routine finds the intersection of set
|
|
/// of protocols inherited from two distinct objective-c pointer objects.
|
|
/// It is used to build composite qualifier list of the composite type of
|
|
/// the conditional expression involving two objective-c pointer objects.
|
|
static
|
|
void getIntersectionOfProtocols(ASTContext &Context,
|
|
const ObjCObjectPointerType *LHSOPT,
|
|
const ObjCObjectPointerType *RHSOPT,
|
|
llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
|
|
|
|
const ObjCObjectType* LHS = LHSOPT->getObjectType();
|
|
const ObjCObjectType* RHS = RHSOPT->getObjectType();
|
|
assert(LHS->getInterface() && "LHS must have an interface base");
|
|
assert(RHS->getInterface() && "RHS must have an interface base");
|
|
|
|
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
|
|
unsigned LHSNumProtocols = LHS->getNumProtocols();
|
|
if (LHSNumProtocols > 0)
|
|
InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
|
|
else {
|
|
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
|
|
Context.CollectInheritedProtocols(LHS->getInterface(),
|
|
LHSInheritedProtocols);
|
|
InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
|
|
LHSInheritedProtocols.end());
|
|
}
|
|
|
|
unsigned RHSNumProtocols = RHS->getNumProtocols();
|
|
if (RHSNumProtocols > 0) {
|
|
ObjCProtocolDecl **RHSProtocols =
|
|
const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
|
|
for (unsigned i = 0; i < RHSNumProtocols; ++i)
|
|
if (InheritedProtocolSet.count(RHSProtocols[i]))
|
|
IntersectionOfProtocols.push_back(RHSProtocols[i]);
|
|
}
|
|
else {
|
|
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
|
|
Context.CollectInheritedProtocols(RHS->getInterface(),
|
|
RHSInheritedProtocols);
|
|
for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
|
|
RHSInheritedProtocols.begin(),
|
|
E = RHSInheritedProtocols.end(); I != E; ++I)
|
|
if (InheritedProtocolSet.count((*I)))
|
|
IntersectionOfProtocols.push_back((*I));
|
|
}
|
|
}
|
|
|
|
/// areCommonBaseCompatible - Returns common base class of the two classes if
|
|
/// one found. Note that this is O'2 algorithm. But it will be called as the
|
|
/// last type comparison in a ?-exp of ObjC pointer types before a
|
|
/// warning is issued. So, its invokation is extremely rare.
|
|
QualType ASTContext::areCommonBaseCompatible(
|
|
const ObjCObjectPointerType *Lptr,
|
|
const ObjCObjectPointerType *Rptr) {
|
|
const ObjCObjectType *LHS = Lptr->getObjectType();
|
|
const ObjCObjectType *RHS = Rptr->getObjectType();
|
|
const ObjCInterfaceDecl* LDecl = LHS->getInterface();
|
|
const ObjCInterfaceDecl* RDecl = RHS->getInterface();
|
|
if (!LDecl || !RDecl)
|
|
return QualType();
|
|
|
|
while ((LDecl = LDecl->getSuperClass())) {
|
|
LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
|
|
if (canAssignObjCInterfaces(LHS, RHS)) {
|
|
llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
|
|
getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
|
|
|
|
QualType Result = QualType(LHS, 0);
|
|
if (!Protocols.empty())
|
|
Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
|
|
Result = getObjCObjectPointerType(Result);
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
return QualType();
|
|
}
|
|
|
|
bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
|
|
const ObjCObjectType *RHS) {
|
|
assert(LHS->getInterface() && "LHS is not an interface type");
|
|
assert(RHS->getInterface() && "RHS is not an interface type");
|
|
|
|
// Verify that the base decls are compatible: the RHS must be a subclass of
|
|
// the LHS.
|
|
if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
|
|
return false;
|
|
|
|
// RHS must have a superset of the protocols in the LHS. If the LHS is not
|
|
// protocol qualified at all, then we are good.
|
|
if (LHS->getNumProtocols() == 0)
|
|
return true;
|
|
|
|
// Okay, we know the LHS has protocol qualifiers. If the RHS doesn't, then it
|
|
// isn't a superset.
|
|
if (RHS->getNumProtocols() == 0)
|
|
return true; // FIXME: should return false!
|
|
|
|
for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
|
|
LHSPE = LHS->qual_end();
|
|
LHSPI != LHSPE; LHSPI++) {
|
|
bool RHSImplementsProtocol = false;
|
|
|
|
// If the RHS doesn't implement the protocol on the left, the types
|
|
// are incompatible.
|
|
for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
|
|
RHSPE = RHS->qual_end();
|
|
RHSPI != RHSPE; RHSPI++) {
|
|
if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
|
|
RHSImplementsProtocol = true;
|
|
break;
|
|
}
|
|
}
|
|
// FIXME: For better diagnostics, consider passing back the protocol name.
|
|
if (!RHSImplementsProtocol)
|
|
return false;
|
|
}
|
|
// The RHS implements all protocols listed on the LHS.
|
|
return true;
|
|
}
|
|
|
|
bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
|
|
// get the "pointed to" types
|
|
const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
|
|
const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
|
|
|
|
if (!LHSOPT || !RHSOPT)
|
|
return false;
|
|
|
|
return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
|
|
canAssignObjCInterfaces(RHSOPT, LHSOPT);
|
|
}
|
|
|
|
bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
|
|
return canAssignObjCInterfaces(
|
|
getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
|
|
getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
|
|
}
|
|
|
|
/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
|
|
/// both shall have the identically qualified version of a compatible type.
|
|
/// C99 6.2.7p1: Two types have compatible types if their types are the
|
|
/// same. See 6.7.[2,3,5] for additional rules.
|
|
bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
|
|
bool CompareUnqualified) {
|
|
if (getLangOptions().CPlusPlus)
|
|
return hasSameType(LHS, RHS);
|
|
|
|
return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
|
|
}
|
|
|
|
bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
|
|
return !mergeTypes(LHS, RHS, true).isNull();
|
|
}
|
|
|
|
QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
|
|
bool OfBlockPointer,
|
|
bool Unqualified) {
|
|
const FunctionType *lbase = lhs->getAs<FunctionType>();
|
|
const FunctionType *rbase = rhs->getAs<FunctionType>();
|
|
const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
|
|
const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
|
|
bool allLTypes = true;
|
|
bool allRTypes = true;
|
|
|
|
// Check return type
|
|
QualType retType;
|
|
if (OfBlockPointer)
|
|
retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true,
|
|
Unqualified);
|
|
else
|
|
retType = mergeTypes(lbase->getResultType(), rbase->getResultType(),
|
|
false, Unqualified);
|
|
if (retType.isNull()) return QualType();
|
|
|
|
if (Unqualified)
|
|
retType = retType.getUnqualifiedType();
|
|
|
|
CanQualType LRetType = getCanonicalType(lbase->getResultType());
|
|
CanQualType RRetType = getCanonicalType(rbase->getResultType());
|
|
if (Unqualified) {
|
|
LRetType = LRetType.getUnqualifiedType();
|
|
RRetType = RRetType.getUnqualifiedType();
|
|
}
|
|
|
|
if (getCanonicalType(retType) != LRetType)
|
|
allLTypes = false;
|
|
if (getCanonicalType(retType) != RRetType)
|
|
allRTypes = false;
|
|
// FIXME: double check this
|
|
// FIXME: should we error if lbase->getRegParmAttr() != 0 &&
|
|
// rbase->getRegParmAttr() != 0 &&
|
|
// lbase->getRegParmAttr() != rbase->getRegParmAttr()?
|
|
FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
|
|
FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
|
|
unsigned RegParm = lbaseInfo.getRegParm() == 0 ? rbaseInfo.getRegParm() :
|
|
lbaseInfo.getRegParm();
|
|
bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
|
|
if (NoReturn != lbaseInfo.getNoReturn() ||
|
|
RegParm != lbaseInfo.getRegParm())
|
|
allLTypes = false;
|
|
if (NoReturn != rbaseInfo.getNoReturn() ||
|
|
RegParm != rbaseInfo.getRegParm())
|
|
allRTypes = false;
|
|
CallingConv lcc = lbaseInfo.getCC();
|
|
CallingConv rcc = rbaseInfo.getCC();
|
|
// Compatible functions must have compatible calling conventions
|
|
if (!isSameCallConv(lcc, rcc))
|
|
return QualType();
|
|
|
|
if (lproto && rproto) { // two C99 style function prototypes
|
|
assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
|
|
"C++ shouldn't be here");
|
|
unsigned lproto_nargs = lproto->getNumArgs();
|
|
unsigned rproto_nargs = rproto->getNumArgs();
|
|
|
|
// Compatible functions must have the same number of arguments
|
|
if (lproto_nargs != rproto_nargs)
|
|
return QualType();
|
|
|
|
// Variadic and non-variadic functions aren't compatible
|
|
if (lproto->isVariadic() != rproto->isVariadic())
|
|
return QualType();
|
|
|
|
if (lproto->getTypeQuals() != rproto->getTypeQuals())
|
|
return QualType();
|
|
|
|
// Check argument compatibility
|
|
llvm::SmallVector<QualType, 10> types;
|
|
for (unsigned i = 0; i < lproto_nargs; i++) {
|
|
QualType largtype = lproto->getArgType(i).getUnqualifiedType();
|
|
QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
|
|
QualType argtype = mergeTypes(largtype, rargtype, OfBlockPointer,
|
|
Unqualified);
|
|
if (argtype.isNull()) return QualType();
|
|
|
|
if (Unqualified)
|
|
argtype = argtype.getUnqualifiedType();
|
|
|
|
types.push_back(argtype);
|
|
if (Unqualified) {
|
|
largtype = largtype.getUnqualifiedType();
|
|
rargtype = rargtype.getUnqualifiedType();
|
|
}
|
|
|
|
if (getCanonicalType(argtype) != getCanonicalType(largtype))
|
|
allLTypes = false;
|
|
if (getCanonicalType(argtype) != getCanonicalType(rargtype))
|
|
allRTypes = false;
|
|
}
|
|
if (allLTypes) return lhs;
|
|
if (allRTypes) return rhs;
|
|
return getFunctionType(retType, types.begin(), types.size(),
|
|
lproto->isVariadic(), lproto->getTypeQuals(),
|
|
false, false, 0, 0,
|
|
FunctionType::ExtInfo(NoReturn, RegParm, lcc));
|
|
}
|
|
|
|
if (lproto) allRTypes = false;
|
|
if (rproto) allLTypes = false;
|
|
|
|
const FunctionProtoType *proto = lproto ? lproto : rproto;
|
|
if (proto) {
|
|
assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
|
|
if (proto->isVariadic()) return QualType();
|
|
// Check that the types are compatible with the types that
|
|
// would result from default argument promotions (C99 6.7.5.3p15).
|
|
// The only types actually affected are promotable integer
|
|
// types and floats, which would be passed as a different
|
|
// type depending on whether the prototype is visible.
|
|
unsigned proto_nargs = proto->getNumArgs();
|
|
for (unsigned i = 0; i < proto_nargs; ++i) {
|
|
QualType argTy = proto->getArgType(i);
|
|
|
|
// Look at the promotion type of enum types, since that is the type used
|
|
// to pass enum values.
|
|
if (const EnumType *Enum = argTy->getAs<EnumType>())
|
|
argTy = Enum->getDecl()->getPromotionType();
|
|
|
|
if (argTy->isPromotableIntegerType() ||
|
|
getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
|
|
return QualType();
|
|
}
|
|
|
|
if (allLTypes) return lhs;
|
|
if (allRTypes) return rhs;
|
|
return getFunctionType(retType, proto->arg_type_begin(),
|
|
proto->getNumArgs(), proto->isVariadic(),
|
|
proto->getTypeQuals(),
|
|
false, false, 0, 0,
|
|
FunctionType::ExtInfo(NoReturn, RegParm, lcc));
|
|
}
|
|
|
|
if (allLTypes) return lhs;
|
|
if (allRTypes) return rhs;
|
|
FunctionType::ExtInfo Info(NoReturn, RegParm, lcc);
|
|
return getFunctionNoProtoType(retType, Info);
|
|
}
|
|
|
|
QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
|
|
bool OfBlockPointer,
|
|
bool Unqualified) {
|
|
// C++ [expr]: If an expression initially has the type "reference to T", the
|
|
// type is adjusted to "T" prior to any further analysis, the expression
|
|
// designates the object or function denoted by the reference, and the
|
|
// expression is an lvalue unless the reference is an rvalue reference and
|
|
// the expression is a function call (possibly inside parentheses).
|
|
assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
|
|
assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
|
|
|
|
if (Unqualified) {
|
|
LHS = LHS.getUnqualifiedType();
|
|
RHS = RHS.getUnqualifiedType();
|
|
}
|
|
|
|
QualType LHSCan = getCanonicalType(LHS),
|
|
RHSCan = getCanonicalType(RHS);
|
|
|
|
// If two types are identical, they are compatible.
|
|
if (LHSCan == RHSCan)
|
|
return LHS;
|
|
|
|
// If the qualifiers are different, the types aren't compatible... mostly.
|
|
Qualifiers LQuals = LHSCan.getLocalQualifiers();
|
|
Qualifiers RQuals = RHSCan.getLocalQualifiers();
|
|
if (LQuals != RQuals) {
|
|
// If any of these qualifiers are different, we have a type
|
|
// mismatch.
|
|
if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
|
|
LQuals.getAddressSpace() != RQuals.getAddressSpace())
|
|
return QualType();
|
|
|
|
// Exactly one GC qualifier difference is allowed: __strong is
|
|
// okay if the other type has no GC qualifier but is an Objective
|
|
// C object pointer (i.e. implicitly strong by default). We fix
|
|
// this by pretending that the unqualified type was actually
|
|
// qualified __strong.
|
|
Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
|
|
Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
|
|
assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
|
|
|
|
if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
|
|
return QualType();
|
|
|
|
if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
|
|
return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
|
|
}
|
|
if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
|
|
return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
|
|
}
|
|
return QualType();
|
|
}
|
|
|
|
// Okay, qualifiers are equal.
|
|
|
|
Type::TypeClass LHSClass = LHSCan->getTypeClass();
|
|
Type::TypeClass RHSClass = RHSCan->getTypeClass();
|
|
|
|
// We want to consider the two function types to be the same for these
|
|
// comparisons, just force one to the other.
|
|
if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
|
|
if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
|
|
|
|
// Same as above for arrays
|
|
if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
|
|
LHSClass = Type::ConstantArray;
|
|
if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
|
|
RHSClass = Type::ConstantArray;
|
|
|
|
// ObjCInterfaces are just specialized ObjCObjects.
|
|
if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
|
|
if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
|
|
|
|
// Canonicalize ExtVector -> Vector.
|
|
if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
|
|
if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
|
|
|
|
// If the canonical type classes don't match.
|
|
if (LHSClass != RHSClass) {
|
|
// C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
|
|
// a signed integer type, or an unsigned integer type.
|
|
// Compatibility is based on the underlying type, not the promotion
|
|
// type.
|
|
if (const EnumType* ETy = LHS->getAs<EnumType>()) {
|
|
if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
|
|
return RHS;
|
|
}
|
|
if (const EnumType* ETy = RHS->getAs<EnumType>()) {
|
|
if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
|
|
return LHS;
|
|
}
|
|
|
|
return QualType();
|
|
}
|
|
|
|
// The canonical type classes match.
|
|
switch (LHSClass) {
|
|
#define TYPE(Class, Base)
|
|
#define ABSTRACT_TYPE(Class, Base)
|
|
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
|
|
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
|
|
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
|
|
#include "clang/AST/TypeNodes.def"
|
|
assert(false && "Non-canonical and dependent types shouldn't get here");
|
|
return QualType();
|
|
|
|
case Type::LValueReference:
|
|
case Type::RValueReference:
|
|
case Type::MemberPointer:
|
|
assert(false && "C++ should never be in mergeTypes");
|
|
return QualType();
|
|
|
|
case Type::ObjCInterface:
|
|
case Type::IncompleteArray:
|
|
case Type::VariableArray:
|
|
case Type::FunctionProto:
|
|
case Type::ExtVector:
|
|
assert(false && "Types are eliminated above");
|
|
return QualType();
|
|
|
|
case Type::Pointer:
|
|
{
|
|
// Merge two pointer types, while trying to preserve typedef info
|
|
QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
|
|
QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
|
|
if (Unqualified) {
|
|
LHSPointee = LHSPointee.getUnqualifiedType();
|
|
RHSPointee = RHSPointee.getUnqualifiedType();
|
|
}
|
|
QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
|
|
Unqualified);
|
|
if (ResultType.isNull()) return QualType();
|
|
if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
|
|
return LHS;
|
|
if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
|
|
return RHS;
|
|
return getPointerType(ResultType);
|
|
}
|
|
case Type::BlockPointer:
|
|
{
|
|
// Merge two block pointer types, while trying to preserve typedef info
|
|
QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
|
|
QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
|
|
if (Unqualified) {
|
|
LHSPointee = LHSPointee.getUnqualifiedType();
|
|
RHSPointee = RHSPointee.getUnqualifiedType();
|
|
}
|
|
QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
|
|
Unqualified);
|
|
if (ResultType.isNull()) return QualType();
|
|
if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
|
|
return LHS;
|
|
if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
|
|
return RHS;
|
|
return getBlockPointerType(ResultType);
|
|
}
|
|
case Type::ConstantArray:
|
|
{
|
|
const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
|
|
const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
|
|
if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
|
|
return QualType();
|
|
|
|
QualType LHSElem = getAsArrayType(LHS)->getElementType();
|
|
QualType RHSElem = getAsArrayType(RHS)->getElementType();
|
|
if (Unqualified) {
|
|
LHSElem = LHSElem.getUnqualifiedType();
|
|
RHSElem = RHSElem.getUnqualifiedType();
|
|
}
|
|
|
|
QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
|
|
if (ResultType.isNull()) return QualType();
|
|
if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
|
|
return LHS;
|
|
if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
|
|
return RHS;
|
|
if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
|
|
ArrayType::ArraySizeModifier(), 0);
|
|
if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
|
|
ArrayType::ArraySizeModifier(), 0);
|
|
const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
|
|
const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
|
|
if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
|
|
return LHS;
|
|
if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
|
|
return RHS;
|
|
if (LVAT) {
|
|
// FIXME: This isn't correct! But tricky to implement because
|
|
// the array's size has to be the size of LHS, but the type
|
|
// has to be different.
|
|
return LHS;
|
|
}
|
|
if (RVAT) {
|
|
// FIXME: This isn't correct! But tricky to implement because
|
|
// the array's size has to be the size of RHS, but the type
|
|
// has to be different.
|
|
return RHS;
|
|
}
|
|
if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
|
|
if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
|
|
return getIncompleteArrayType(ResultType,
|
|
ArrayType::ArraySizeModifier(), 0);
|
|
}
|
|
case Type::FunctionNoProto:
|
|
return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
|
|
case Type::Record:
|
|
case Type::Enum:
|
|
return QualType();
|
|
case Type::Builtin:
|
|
// Only exactly equal builtin types are compatible, which is tested above.
|
|
return QualType();
|
|
case Type::Complex:
|
|
// Distinct complex types are incompatible.
|
|
return QualType();
|
|
case Type::Vector:
|
|
// FIXME: The merged type should be an ExtVector!
|
|
if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
|
|
RHSCan->getAs<VectorType>()))
|
|
return LHS;
|
|
return QualType();
|
|
case Type::ObjCObject: {
|
|
// Check if the types are assignment compatible.
|
|
// FIXME: This should be type compatibility, e.g. whether
|
|
// "LHS x; RHS x;" at global scope is legal.
|
|
const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
|
|
const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
|
|
if (canAssignObjCInterfaces(LHSIface, RHSIface))
|
|
return LHS;
|
|
|
|
return QualType();
|
|
}
|
|
case Type::ObjCObjectPointer: {
|
|
if (OfBlockPointer) {
|
|
if (canAssignObjCInterfacesInBlockPointer(
|
|
LHS->getAs<ObjCObjectPointerType>(),
|
|
RHS->getAs<ObjCObjectPointerType>()))
|
|
return LHS;
|
|
return QualType();
|
|
}
|
|
if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
|
|
RHS->getAs<ObjCObjectPointerType>()))
|
|
return LHS;
|
|
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
return QualType();
|
|
}
|
|
|
|
/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
|
|
/// 'RHS' attributes and returns the merged version; including for function
|
|
/// return types.
|
|
QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
|
|
QualType LHSCan = getCanonicalType(LHS),
|
|
RHSCan = getCanonicalType(RHS);
|
|
// If two types are identical, they are compatible.
|
|
if (LHSCan == RHSCan)
|
|
return LHS;
|
|
if (RHSCan->isFunctionType()) {
|
|
if (!LHSCan->isFunctionType())
|
|
return QualType();
|
|
QualType OldReturnType =
|
|
cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
|
|
QualType NewReturnType =
|
|
cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
|
|
QualType ResReturnType =
|
|
mergeObjCGCQualifiers(NewReturnType, OldReturnType);
|
|
if (ResReturnType.isNull())
|
|
return QualType();
|
|
if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
|
|
// id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
|
|
// In either case, use OldReturnType to build the new function type.
|
|
const FunctionType *F = LHS->getAs<FunctionType>();
|
|
if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
|
|
FunctionType::ExtInfo Info = getFunctionExtInfo(LHS);
|
|
QualType ResultType
|
|
= getFunctionType(OldReturnType, FPT->arg_type_begin(),
|
|
FPT->getNumArgs(), FPT->isVariadic(),
|
|
FPT->getTypeQuals(),
|
|
FPT->hasExceptionSpec(),
|
|
FPT->hasAnyExceptionSpec(),
|
|
FPT->getNumExceptions(),
|
|
FPT->exception_begin(),
|
|
Info);
|
|
return ResultType;
|
|
}
|
|
}
|
|
return QualType();
|
|
}
|
|
|
|
// If the qualifiers are different, the types can still be merged.
|
|
Qualifiers LQuals = LHSCan.getLocalQualifiers();
|
|
Qualifiers RQuals = RHSCan.getLocalQualifiers();
|
|
if (LQuals != RQuals) {
|
|
// If any of these qualifiers are different, we have a type mismatch.
|
|
if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
|
|
LQuals.getAddressSpace() != RQuals.getAddressSpace())
|
|
return QualType();
|
|
|
|
// Exactly one GC qualifier difference is allowed: __strong is
|
|
// okay if the other type has no GC qualifier but is an Objective
|
|
// C object pointer (i.e. implicitly strong by default). We fix
|
|
// this by pretending that the unqualified type was actually
|
|
// qualified __strong.
|
|
Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
|
|
Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
|
|
assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
|
|
|
|
if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
|
|
return QualType();
|
|
|
|
if (GC_L == Qualifiers::Strong)
|
|
return LHS;
|
|
if (GC_R == Qualifiers::Strong)
|
|
return RHS;
|
|
return QualType();
|
|
}
|
|
|
|
if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
|
|
QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
|
|
if (ResQT == LHSBaseQT)
|
|
return LHS;
|
|
if (ResQT == RHSBaseQT)
|
|
return RHS;
|
|
}
|
|
return QualType();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Integer Predicates
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
unsigned ASTContext::getIntWidth(QualType T) {
|
|
if (T->isBooleanType())
|
|
return 1;
|
|
if (EnumType *ET = dyn_cast<EnumType>(T))
|
|
T = ET->getDecl()->getIntegerType();
|
|
// For builtin types, just use the standard type sizing method
|
|
return (unsigned)getTypeSize(T);
|
|
}
|
|
|
|
QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
|
|
assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
|
|
|
|
// Turn <4 x signed int> -> <4 x unsigned int>
|
|
if (const VectorType *VTy = T->getAs<VectorType>())
|
|
return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
|
|
VTy->getNumElements(), VTy->getAltiVecSpecific());
|
|
|
|
// For enums, we return the unsigned version of the base type.
|
|
if (const EnumType *ETy = T->getAs<EnumType>())
|
|
T = ETy->getDecl()->getIntegerType();
|
|
|
|
const BuiltinType *BTy = T->getAs<BuiltinType>();
|
|
assert(BTy && "Unexpected signed integer type");
|
|
switch (BTy->getKind()) {
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::SChar:
|
|
return UnsignedCharTy;
|
|
case BuiltinType::Short:
|
|
return UnsignedShortTy;
|
|
case BuiltinType::Int:
|
|
return UnsignedIntTy;
|
|
case BuiltinType::Long:
|
|
return UnsignedLongTy;
|
|
case BuiltinType::LongLong:
|
|
return UnsignedLongLongTy;
|
|
case BuiltinType::Int128:
|
|
return UnsignedInt128Ty;
|
|
default:
|
|
assert(0 && "Unexpected signed integer type");
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
ExternalASTSource::~ExternalASTSource() { }
|
|
|
|
void ExternalASTSource::PrintStats() { }
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Builtin Type Computation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
|
|
/// pointer over the consumed characters. This returns the resultant type.
|
|
static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
|
|
ASTContext::GetBuiltinTypeError &Error,
|
|
bool AllowTypeModifiers = true) {
|
|
// Modifiers.
|
|
int HowLong = 0;
|
|
bool Signed = false, Unsigned = false;
|
|
|
|
// Read the modifiers first.
|
|
bool Done = false;
|
|
while (!Done) {
|
|
switch (*Str++) {
|
|
default: Done = true; --Str; break;
|
|
case 'S':
|
|
assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
|
|
assert(!Signed && "Can't use 'S' modifier multiple times!");
|
|
Signed = true;
|
|
break;
|
|
case 'U':
|
|
assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
|
|
assert(!Unsigned && "Can't use 'S' modifier multiple times!");
|
|
Unsigned = true;
|
|
break;
|
|
case 'L':
|
|
assert(HowLong <= 2 && "Can't have LLLL modifier");
|
|
++HowLong;
|
|
break;
|
|
}
|
|
}
|
|
|
|
QualType Type;
|
|
|
|
// Read the base type.
|
|
switch (*Str++) {
|
|
default: assert(0 && "Unknown builtin type letter!");
|
|
case 'v':
|
|
assert(HowLong == 0 && !Signed && !Unsigned &&
|
|
"Bad modifiers used with 'v'!");
|
|
Type = Context.VoidTy;
|
|
break;
|
|
case 'f':
|
|
assert(HowLong == 0 && !Signed && !Unsigned &&
|
|
"Bad modifiers used with 'f'!");
|
|
Type = Context.FloatTy;
|
|
break;
|
|
case 'd':
|
|
assert(HowLong < 2 && !Signed && !Unsigned &&
|
|
"Bad modifiers used with 'd'!");
|
|
if (HowLong)
|
|
Type = Context.LongDoubleTy;
|
|
else
|
|
Type = Context.DoubleTy;
|
|
break;
|
|
case 's':
|
|
assert(HowLong == 0 && "Bad modifiers used with 's'!");
|
|
if (Unsigned)
|
|
Type = Context.UnsignedShortTy;
|
|
else
|
|
Type = Context.ShortTy;
|
|
break;
|
|
case 'i':
|
|
if (HowLong == 3)
|
|
Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
|
|
else if (HowLong == 2)
|
|
Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
|
|
else if (HowLong == 1)
|
|
Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
|
|
else
|
|
Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
|
|
break;
|
|
case 'c':
|
|
assert(HowLong == 0 && "Bad modifiers used with 'c'!");
|
|
if (Signed)
|
|
Type = Context.SignedCharTy;
|
|
else if (Unsigned)
|
|
Type = Context.UnsignedCharTy;
|
|
else
|
|
Type = Context.CharTy;
|
|
break;
|
|
case 'b': // boolean
|
|
assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
|
|
Type = Context.BoolTy;
|
|
break;
|
|
case 'z': // size_t.
|
|
assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
|
|
Type = Context.getSizeType();
|
|
break;
|
|
case 'F':
|
|
Type = Context.getCFConstantStringType();
|
|
break;
|
|
case 'a':
|
|
Type = Context.getBuiltinVaListType();
|
|
assert(!Type.isNull() && "builtin va list type not initialized!");
|
|
break;
|
|
case 'A':
|
|
// This is a "reference" to a va_list; however, what exactly
|
|
// this means depends on how va_list is defined. There are two
|
|
// different kinds of va_list: ones passed by value, and ones
|
|
// passed by reference. An example of a by-value va_list is
|
|
// x86, where va_list is a char*. An example of by-ref va_list
|
|
// is x86-64, where va_list is a __va_list_tag[1]. For x86,
|
|
// we want this argument to be a char*&; for x86-64, we want
|
|
// it to be a __va_list_tag*.
|
|
Type = Context.getBuiltinVaListType();
|
|
assert(!Type.isNull() && "builtin va list type not initialized!");
|
|
if (Type->isArrayType()) {
|
|
Type = Context.getArrayDecayedType(Type);
|
|
} else {
|
|
Type = Context.getLValueReferenceType(Type);
|
|
}
|
|
break;
|
|
case 'V': {
|
|
char *End;
|
|
unsigned NumElements = strtoul(Str, &End, 10);
|
|
assert(End != Str && "Missing vector size");
|
|
|
|
Str = End;
|
|
|
|
QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
|
|
// FIXME: Don't know what to do about AltiVec.
|
|
Type = Context.getVectorType(ElementType, NumElements,
|
|
VectorType::NotAltiVec);
|
|
break;
|
|
}
|
|
case 'X': {
|
|
QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
|
|
Type = Context.getComplexType(ElementType);
|
|
break;
|
|
}
|
|
case 'P':
|
|
Type = Context.getFILEType();
|
|
if (Type.isNull()) {
|
|
Error = ASTContext::GE_Missing_stdio;
|
|
return QualType();
|
|
}
|
|
break;
|
|
case 'J':
|
|
if (Signed)
|
|
Type = Context.getsigjmp_bufType();
|
|
else
|
|
Type = Context.getjmp_bufType();
|
|
|
|
if (Type.isNull()) {
|
|
Error = ASTContext::GE_Missing_setjmp;
|
|
return QualType();
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!AllowTypeModifiers)
|
|
return Type;
|
|
|
|
Done = false;
|
|
while (!Done) {
|
|
switch (char c = *Str++) {
|
|
default: Done = true; --Str; break;
|
|
case '*':
|
|
case '&':
|
|
{
|
|
// Both pointers and references can have their pointee types
|
|
// qualified with an address space.
|
|
char *End;
|
|
unsigned AddrSpace = strtoul(Str, &End, 10);
|
|
if (End != Str && AddrSpace != 0) {
|
|
Type = Context.getAddrSpaceQualType(Type, AddrSpace);
|
|
Str = End;
|
|
}
|
|
}
|
|
if (c == '*')
|
|
Type = Context.getPointerType(Type);
|
|
else
|
|
Type = Context.getLValueReferenceType(Type);
|
|
break;
|
|
// FIXME: There's no way to have a built-in with an rvalue ref arg.
|
|
case 'C':
|
|
Type = Type.withConst();
|
|
break;
|
|
case 'D':
|
|
Type = Context.getVolatileType(Type);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return Type;
|
|
}
|
|
|
|
/// GetBuiltinType - Return the type for the specified builtin.
|
|
QualType ASTContext::GetBuiltinType(unsigned id,
|
|
GetBuiltinTypeError &Error) {
|
|
const char *TypeStr = BuiltinInfo.GetTypeString(id);
|
|
|
|
llvm::SmallVector<QualType, 8> ArgTypes;
|
|
|
|
Error = GE_None;
|
|
QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
|
|
if (Error != GE_None)
|
|
return QualType();
|
|
while (TypeStr[0] && TypeStr[0] != '.') {
|
|
QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
|
|
if (Error != GE_None)
|
|
return QualType();
|
|
|
|
// Do array -> pointer decay. The builtin should use the decayed type.
|
|
if (Ty->isArrayType())
|
|
Ty = getArrayDecayedType(Ty);
|
|
|
|
ArgTypes.push_back(Ty);
|
|
}
|
|
|
|
assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
|
|
"'.' should only occur at end of builtin type list!");
|
|
|
|
// handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
|
|
if (ArgTypes.size() == 0 && TypeStr[0] == '.')
|
|
return getFunctionNoProtoType(ResType);
|
|
|
|
// FIXME: Should we create noreturn types?
|
|
return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
|
|
TypeStr[0] == '.', 0, false, false, 0, 0,
|
|
FunctionType::ExtInfo());
|
|
}
|
|
|
|
QualType
|
|
ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
|
|
// Perform the usual unary conversions. We do this early so that
|
|
// integral promotions to "int" can allow us to exit early, in the
|
|
// lhs == rhs check. Also, for conversion purposes, we ignore any
|
|
// qualifiers. For example, "const float" and "float" are
|
|
// equivalent.
|
|
if (lhs->isPromotableIntegerType())
|
|
lhs = getPromotedIntegerType(lhs);
|
|
else
|
|
lhs = lhs.getUnqualifiedType();
|
|
if (rhs->isPromotableIntegerType())
|
|
rhs = getPromotedIntegerType(rhs);
|
|
else
|
|
rhs = rhs.getUnqualifiedType();
|
|
|
|
// If both types are identical, no conversion is needed.
|
|
if (lhs == rhs)
|
|
return lhs;
|
|
|
|
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
|
|
// The caller can deal with this (e.g. pointer + int).
|
|
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
|
|
return lhs;
|
|
|
|
// At this point, we have two different arithmetic types.
|
|
|
|
// Handle complex types first (C99 6.3.1.8p1).
|
|
if (lhs->isComplexType() || rhs->isComplexType()) {
|
|
// if we have an integer operand, the result is the complex type.
|
|
if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
|
|
// convert the rhs to the lhs complex type.
|
|
return lhs;
|
|
}
|
|
if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
|
|
// convert the lhs to the rhs complex type.
|
|
return rhs;
|
|
}
|
|
// This handles complex/complex, complex/float, or float/complex.
|
|
// When both operands are complex, the shorter operand is converted to the
|
|
// type of the longer, and that is the type of the result. This corresponds
|
|
// to what is done when combining two real floating-point operands.
|
|
// The fun begins when size promotion occur across type domains.
|
|
// From H&S 6.3.4: When one operand is complex and the other is a real
|
|
// floating-point type, the less precise type is converted, within it's
|
|
// real or complex domain, to the precision of the other type. For example,
|
|
// when combining a "long double" with a "double _Complex", the
|
|
// "double _Complex" is promoted to "long double _Complex".
|
|
int result = getFloatingTypeOrder(lhs, rhs);
|
|
|
|
if (result > 0) { // The left side is bigger, convert rhs.
|
|
rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
|
|
} else if (result < 0) { // The right side is bigger, convert lhs.
|
|
lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
|
|
}
|
|
// At this point, lhs and rhs have the same rank/size. Now, make sure the
|
|
// domains match. This is a requirement for our implementation, C99
|
|
// does not require this promotion.
|
|
if (lhs != rhs) { // Domains don't match, we have complex/float mix.
|
|
if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
|
|
return rhs;
|
|
} else { // handle "_Complex double, double".
|
|
return lhs;
|
|
}
|
|
}
|
|
return lhs; // The domain/size match exactly.
|
|
}
|
|
// Now handle "real" floating types (i.e. float, double, long double).
|
|
if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
|
|
// if we have an integer operand, the result is the real floating type.
|
|
if (rhs->isIntegerType()) {
|
|
// convert rhs to the lhs floating point type.
|
|
return lhs;
|
|
}
|
|
if (rhs->isComplexIntegerType()) {
|
|
// convert rhs to the complex floating point type.
|
|
return getComplexType(lhs);
|
|
}
|
|
if (lhs->isIntegerType()) {
|
|
// convert lhs to the rhs floating point type.
|
|
return rhs;
|
|
}
|
|
if (lhs->isComplexIntegerType()) {
|
|
// convert lhs to the complex floating point type.
|
|
return getComplexType(rhs);
|
|
}
|
|
// We have two real floating types, float/complex combos were handled above.
|
|
// Convert the smaller operand to the bigger result.
|
|
int result = getFloatingTypeOrder(lhs, rhs);
|
|
if (result > 0) // convert the rhs
|
|
return lhs;
|
|
assert(result < 0 && "illegal float comparison");
|
|
return rhs; // convert the lhs
|
|
}
|
|
if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
|
|
// Handle GCC complex int extension.
|
|
const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
|
|
const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
|
|
|
|
if (lhsComplexInt && rhsComplexInt) {
|
|
if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
|
|
rhsComplexInt->getElementType()) >= 0)
|
|
return lhs; // convert the rhs
|
|
return rhs;
|
|
} else if (lhsComplexInt && rhs->isIntegerType()) {
|
|
// convert the rhs to the lhs complex type.
|
|
return lhs;
|
|
} else if (rhsComplexInt && lhs->isIntegerType()) {
|
|
// convert the lhs to the rhs complex type.
|
|
return rhs;
|
|
}
|
|
}
|
|
// Finally, we have two differing integer types.
|
|
// The rules for this case are in C99 6.3.1.8
|
|
int compare = getIntegerTypeOrder(lhs, rhs);
|
|
bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
|
|
rhsSigned = rhs->hasSignedIntegerRepresentation();
|
|
QualType destType;
|
|
if (lhsSigned == rhsSigned) {
|
|
// Same signedness; use the higher-ranked type
|
|
destType = compare >= 0 ? lhs : rhs;
|
|
} else if (compare != (lhsSigned ? 1 : -1)) {
|
|
// The unsigned type has greater than or equal rank to the
|
|
// signed type, so use the unsigned type
|
|
destType = lhsSigned ? rhs : lhs;
|
|
} else if (getIntWidth(lhs) != getIntWidth(rhs)) {
|
|
// The two types are different widths; if we are here, that
|
|
// means the signed type is larger than the unsigned type, so
|
|
// use the signed type.
|
|
destType = lhsSigned ? lhs : rhs;
|
|
} else {
|
|
// The signed type is higher-ranked than the unsigned type,
|
|
// but isn't actually any bigger (like unsigned int and long
|
|
// on most 32-bit systems). Use the unsigned type corresponding
|
|
// to the signed type.
|
|
destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
|
|
}
|
|
return destType;
|
|
}
|
|
|
|
GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
|
|
GVALinkage External = GVA_StrongExternal;
|
|
|
|
Linkage L = FD->getLinkage();
|
|
if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
|
|
FD->getType()->getLinkage() == UniqueExternalLinkage)
|
|
L = UniqueExternalLinkage;
|
|
|
|
switch (L) {
|
|
case NoLinkage:
|
|
case InternalLinkage:
|
|
case UniqueExternalLinkage:
|
|
return GVA_Internal;
|
|
|
|
case ExternalLinkage:
|
|
switch (FD->getTemplateSpecializationKind()) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitSpecialization:
|
|
External = GVA_StrongExternal;
|
|
break;
|
|
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
return GVA_ExplicitTemplateInstantiation;
|
|
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
case TSK_ImplicitInstantiation:
|
|
External = GVA_TemplateInstantiation;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!FD->isInlined())
|
|
return External;
|
|
|
|
if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
|
|
// GNU or C99 inline semantics. Determine whether this symbol should be
|
|
// externally visible.
|
|
if (FD->isInlineDefinitionExternallyVisible())
|
|
return External;
|
|
|
|
// C99 inline semantics, where the symbol is not externally visible.
|
|
return GVA_C99Inline;
|
|
}
|
|
|
|
// C++0x [temp.explicit]p9:
|
|
// [ Note: The intent is that an inline function that is the subject of
|
|
// an explicit instantiation declaration will still be implicitly
|
|
// instantiated when used so that the body can be considered for
|
|
// inlining, but that no out-of-line copy of the inline function would be
|
|
// generated in the translation unit. -- end note ]
|
|
if (FD->getTemplateSpecializationKind()
|
|
== TSK_ExplicitInstantiationDeclaration)
|
|
return GVA_C99Inline;
|
|
|
|
return GVA_CXXInline;
|
|
}
|
|
|
|
GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
|
|
// If this is a static data member, compute the kind of template
|
|
// specialization. Otherwise, this variable is not part of a
|
|
// template.
|
|
TemplateSpecializationKind TSK = TSK_Undeclared;
|
|
if (VD->isStaticDataMember())
|
|
TSK = VD->getTemplateSpecializationKind();
|
|
|
|
Linkage L = VD->getLinkage();
|
|
if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
|
|
VD->getType()->getLinkage() == UniqueExternalLinkage)
|
|
L = UniqueExternalLinkage;
|
|
|
|
switch (L) {
|
|
case NoLinkage:
|
|
case InternalLinkage:
|
|
case UniqueExternalLinkage:
|
|
return GVA_Internal;
|
|
|
|
case ExternalLinkage:
|
|
switch (TSK) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitSpecialization:
|
|
return GVA_StrongExternal;
|
|
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
llvm_unreachable("Variable should not be instantiated");
|
|
// Fall through to treat this like any other instantiation.
|
|
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
return GVA_ExplicitTemplateInstantiation;
|
|
|
|
case TSK_ImplicitInstantiation:
|
|
return GVA_TemplateInstantiation;
|
|
}
|
|
}
|
|
|
|
return GVA_StrongExternal;
|
|
}
|
|
|
|
bool ASTContext::DeclMustBeEmitted(const Decl *D) {
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
if (!VD->isFileVarDecl())
|
|
return false;
|
|
} else if (!isa<FunctionDecl>(D))
|
|
return false;
|
|
|
|
// Weak references don't produce any output by themselves.
|
|
if (D->hasAttr<WeakRefAttr>())
|
|
return false;
|
|
|
|
// Aliases and used decls are required.
|
|
if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
|
|
return true;
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
// Forward declarations aren't required.
|
|
if (!FD->isThisDeclarationADefinition())
|
|
return false;
|
|
|
|
// Constructors and destructors are required.
|
|
if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
|
|
return true;
|
|
|
|
// The key function for a class is required.
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
|
const CXXRecordDecl *RD = MD->getParent();
|
|
if (MD->isOutOfLine() && RD->isDynamicClass()) {
|
|
const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
|
|
if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
|
|
return true;
|
|
}
|
|
}
|
|
|
|
GVALinkage Linkage = GetGVALinkageForFunction(FD);
|
|
|
|
// static, static inline, always_inline, and extern inline functions can
|
|
// always be deferred. Normal inline functions can be deferred in C99/C++.
|
|
// Implicit template instantiations can also be deferred in C++.
|
|
if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
|
|
Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
const VarDecl *VD = cast<VarDecl>(D);
|
|
assert(VD->isFileVarDecl() && "Expected file scoped var");
|
|
|
|
if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
|
|
return false;
|
|
|
|
// Always emit volatiles.
|
|
if (VD->getType().isVolatileQualified())
|
|
return true;
|
|
|
|
// Structs that have non-trivial constructors or destructors are required.
|
|
|
|
// FIXME: Handle references.
|
|
if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
|
|
if (RD->hasDefinition() &&
|
|
(!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
GVALinkage L = GetGVALinkageForVariable(VD);
|
|
if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
|
|
if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
CXXABI::~CXXABI() {}
|