clang-1/lib/AST/Type.cpp

1342 строки
44 KiB
C++

//===--- Type.cpp - Type representation and manipulation ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements type-related functionality.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Type.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace clang;
bool QualType::isConstant(QualType T, ASTContext &Ctx) {
if (T.isConstQualified())
return true;
if (const ArrayType *AT = Ctx.getAsArrayType(T))
return AT->getElementType().isConstant(Ctx);
return false;
}
Type::~Type() { }
unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
QualType ElementType,
const llvm::APInt &NumElements) {
llvm::APSInt SizeExtended(NumElements, true);
unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
SizeExtended.extend(std::max(SizeTypeBits, SizeExtended.getBitWidth()) * 2);
uint64_t ElementSize
= Context.getTypeSizeInChars(ElementType).getQuantity();
llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
TotalSize *= SizeExtended;
return TotalSize.getActiveBits();
}
unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
unsigned Bits = Context.getTypeSize(Context.getSizeType());
// GCC appears to only allow 63 bits worth of address space when compiling
// for 64-bit, so we do the same.
if (Bits == 64)
--Bits;
return Bits;
}
void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
ASTContext &Context,
QualType ET,
ArraySizeModifier SizeMod,
unsigned TypeQuals,
Expr *E) {
ID.AddPointer(ET.getAsOpaquePtr());
ID.AddInteger(SizeMod);
ID.AddInteger(TypeQuals);
E->Profile(ID, Context, true);
}
void
DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
ASTContext &Context,
QualType ElementType, Expr *SizeExpr) {
ID.AddPointer(ElementType.getAsOpaquePtr());
SizeExpr->Profile(ID, Context, true);
}
/// getArrayElementTypeNoTypeQual - If this is an array type, return the
/// element type of the array, potentially with type qualifiers missing.
/// This method should never be used when type qualifiers are meaningful.
const Type *Type::getArrayElementTypeNoTypeQual() const {
// If this is directly an array type, return it.
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
return ATy->getElementType().getTypePtr();
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<ArrayType>(CanonicalType))
return 0;
// If this is a typedef for an array type, strip the typedef off without
// losing all typedef information.
return cast<ArrayType>(getUnqualifiedDesugaredType())
->getElementType().getTypePtr();
}
/// \brief Retrieve the unqualified variant of the given type, removing as
/// little sugar as possible.
///
/// This routine looks through various kinds of sugar to find the
/// least-desuraged type that is unqualified. For example, given:
///
/// \code
/// typedef int Integer;
/// typedef const Integer CInteger;
/// typedef CInteger DifferenceType;
/// \endcode
///
/// Executing \c getUnqualifiedTypeSlow() on the type \c DifferenceType will
/// desugar until we hit the type \c Integer, which has no qualifiers on it.
QualType QualType::getUnqualifiedTypeSlow() const {
QualType Cur = *this;
while (true) {
if (!Cur.hasQualifiers())
return Cur;
const Type *CurTy = Cur.getTypePtr();
switch (CurTy->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Parent)
#define TYPE(Class, Parent) \
case Type::Class: { \
const Class##Type *Ty = cast<Class##Type>(CurTy); \
if (!Ty->isSugared()) \
return Cur.getLocalUnqualifiedType(); \
Cur = Ty->desugar(); \
break; \
}
#include "clang/AST/TypeNodes.def"
}
}
return Cur.getUnqualifiedType();
}
/// getDesugaredType - Return the specified type with any "sugar" removed from
/// the type. This takes off typedefs, typeof's etc. If the outer level of
/// the type is already concrete, it returns it unmodified. This is similar
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
/// concrete.
QualType QualType::getDesugaredType(QualType T) {
QualifierCollector Qs;
QualType Cur = T;
while (true) {
const Type *CurTy = Qs.strip(Cur);
switch (CurTy->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Parent)
#define TYPE(Class, Parent) \
case Type::Class: { \
const Class##Type *Ty = cast<Class##Type>(CurTy); \
if (!Ty->isSugared()) \
return Qs.apply(Cur); \
Cur = Ty->desugar(); \
break; \
}
#include "clang/AST/TypeNodes.def"
}
}
}
/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
/// sugar off the given type. This should produce an object of the
/// same dynamic type as the canonical type.
const Type *Type::getUnqualifiedDesugaredType() const {
const Type *Cur = this;
while (true) {
switch (Cur->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Parent)
#define TYPE(Class, Parent) \
case Class: { \
const Class##Type *Ty = cast<Class##Type>(Cur); \
if (!Ty->isSugared()) return Cur; \
Cur = Ty->desugar().getTypePtr(); \
break; \
}
#include "clang/AST/TypeNodes.def"
}
}
}
/// isVoidType - Helper method to determine if this is the 'void' type.
bool Type::isVoidType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Void;
return false;
}
bool Type::isDerivedType() const {
switch (CanonicalType->getTypeClass()) {
case Pointer:
case VariableArray:
case ConstantArray:
case IncompleteArray:
case FunctionProto:
case FunctionNoProto:
case LValueReference:
case RValueReference:
case Record:
return true;
default:
return false;
}
}
bool Type::isClassType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isClass();
return false;
}
bool Type::isStructureType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isStruct();
return false;
}
bool Type::isStructureOrClassType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isStruct() || RT->getDecl()->isClass();
return false;
}
bool Type::isVoidPointerType() const {
if (const PointerType *PT = getAs<PointerType>())
return PT->getPointeeType()->isVoidType();
return false;
}
bool Type::isUnionType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isUnion();
return false;
}
bool Type::isComplexType() const {
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
return CT->getElementType()->isFloatingType();
return false;
}
bool Type::isComplexIntegerType() const {
// Check for GCC complex integer extension.
return getAsComplexIntegerType();
}
const ComplexType *Type::getAsComplexIntegerType() const {
if (const ComplexType *Complex = getAs<ComplexType>())
if (Complex->getElementType()->isIntegerType())
return Complex;
return 0;
}
QualType Type::getPointeeType() const {
if (const PointerType *PT = getAs<PointerType>())
return PT->getPointeeType();
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->getPointeeType();
if (const BlockPointerType *BPT = getAs<BlockPointerType>())
return BPT->getPointeeType();
if (const ReferenceType *RT = getAs<ReferenceType>())
return RT->getPointeeType();
return QualType();
}
/// isVariablyModifiedType (C99 6.7.5p3) - Return true for variable length
/// array types and types that contain variable array types in their
/// declarator
bool Type::isVariablyModifiedType() const {
// FIXME: We should really keep a "variably modified" bit in Type, rather
// than walking the type hierarchy to recompute it.
// A VLA is a variably modified type.
if (isVariableArrayType())
return true;
// An array can contain a variably modified type
if (const Type *T = getArrayElementTypeNoTypeQual())
return T->isVariablyModifiedType();
// A pointer can point to a variably modified type.
// Also, C++ references and member pointers can point to a variably modified
// type, where VLAs appear as an extension to C++, and should be treated
// correctly.
if (const PointerType *PT = getAs<PointerType>())
return PT->getPointeeType()->isVariablyModifiedType();
if (const ReferenceType *RT = getAs<ReferenceType>())
return RT->getPointeeType()->isVariablyModifiedType();
if (const MemberPointerType *PT = getAs<MemberPointerType>())
return PT->getPointeeType()->isVariablyModifiedType();
// A function can return a variably modified type
// This one isn't completely obvious, but it follows from the
// definition in C99 6.7.5p3. Because of this rule, it's
// illegal to declare a function returning a variably modified type.
if (const FunctionType *FT = getAs<FunctionType>())
return FT->getResultType()->isVariablyModifiedType();
return false;
}
const RecordType *Type::getAsStructureType() const {
// If this is directly a structure type, return it.
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
if (RT->getDecl()->isStruct())
return RT;
}
// If the canonical form of this type isn't the right kind, reject it.
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
if (!RT->getDecl()->isStruct())
return 0;
// If this is a typedef for a structure type, strip the typedef off without
// losing all typedef information.
return cast<RecordType>(getUnqualifiedDesugaredType());
}
return 0;
}
const RecordType *Type::getAsUnionType() const {
// If this is directly a union type, return it.
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
if (RT->getDecl()->isUnion())
return RT;
}
// If the canonical form of this type isn't the right kind, reject it.
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
if (!RT->getDecl()->isUnion())
return 0;
// If this is a typedef for a union type, strip the typedef off without
// losing all typedef information.
return cast<RecordType>(getUnqualifiedDesugaredType());
}
return 0;
}
ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
ObjCProtocolDecl * const *Protocols,
unsigned NumProtocols)
: Type(ObjCObject, Canonical, false),
NumProtocols(NumProtocols),
BaseType(Base) {
assert(this->NumProtocols == NumProtocols &&
"bitfield overflow in protocol count");
if (NumProtocols)
memcpy(getProtocolStorage(), Protocols,
NumProtocols * sizeof(ObjCProtocolDecl*));
}
const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
// There is no sugar for ObjCObjectType's, just return the canonical
// type pointer if it is the right class. There is no typedef information to
// return and these cannot be Address-space qualified.
if (const ObjCObjectType *T = getAs<ObjCObjectType>())
if (T->getNumProtocols() && T->getInterface())
return T;
return 0;
}
bool Type::isObjCQualifiedInterfaceType() const {
return getAsObjCQualifiedInterfaceType() != 0;
}
const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
// There is no sugar for ObjCQualifiedIdType's, just return the canonical
// type pointer if it is the right class.
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
if (OPT->isObjCQualifiedIdType())
return OPT;
}
return 0;
}
const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
if (OPT->getInterfaceType())
return OPT;
}
return 0;
}
const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
if (const PointerType *PT = getAs<PointerType>())
if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
return dyn_cast<CXXRecordDecl>(RT->getDecl());
return 0;
}
CXXRecordDecl *Type::getAsCXXRecordDecl() const {
if (const RecordType *RT = getAs<RecordType>())
return dyn_cast<CXXRecordDecl>(RT->getDecl());
else if (const InjectedClassNameType *Injected
= getAs<InjectedClassNameType>())
return Injected->getDecl();
return 0;
}
bool Type::isIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::Int128;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
// Incomplete enum types are not treated as integer types.
// FIXME: In C++, enum types are never integer types.
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
return true;
return false;
}
bool Type::hasIntegerRepresentation() const {
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isIntegerType();
else
return isIntegerType();
}
/// \brief Determine whether this type is an integral type.
///
/// This routine determines whether the given type is an integral type per
/// C++ [basic.fundamental]p7. Although the C standard does not define the
/// term "integral type", it has a similar term "integer type", and in C++
/// the two terms are equivalent. However, C's "integer type" includes
/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
/// parameter is used to determine whether we should be following the C or
/// C++ rules when determining whether this type is an integral/integer type.
///
/// For cases where C permits "an integer type" and C++ permits "an integral
/// type", use this routine.
///
/// For cases where C permits "an integer type" and C++ permits "an integral
/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
///
/// \param Ctx The context in which this type occurs.
///
/// \returns true if the type is considered an integral type, false otherwise.
bool Type::isIntegralType(ASTContext &Ctx) const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::Int128;
if (!Ctx.getLangOptions().CPlusPlus)
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
return true; // Complete enum types are integral in C.
return false;
}
bool Type::isIntegralOrEnumerationType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::Int128;
// Check for a complete enum type; incomplete enum types are not properly an
// enumeration type in the sense required here.
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
return true;
return false;
}
bool Type::isEnumeralType() const {
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
return TT->getDecl()->isEnum();
return false;
}
bool Type::isBooleanType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Bool;
return false;
}
bool Type::isCharType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Char_U ||
BT->getKind() == BuiltinType::UChar ||
BT->getKind() == BuiltinType::Char_S ||
BT->getKind() == BuiltinType::SChar;
return false;
}
bool Type::isWideCharType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::WChar;
return false;
}
/// \brief Determine whether this type is any of the built-in character
/// types.
bool Type::isAnyCharacterType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return (BT->getKind() >= BuiltinType::Char_U &&
BT->getKind() <= BuiltinType::Char32) ||
(BT->getKind() >= BuiltinType::Char_S &&
BT->getKind() <= BuiltinType::WChar);
return false;
}
/// isSignedIntegerType - Return true if this is an integer type that is
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
/// an enum decl which has a signed representation
bool Type::isSignedIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Char_S &&
BT->getKind() <= BuiltinType::Int128;
}
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
return ET->getDecl()->getIntegerType()->isSignedIntegerType();
return false;
}
bool Type::hasSignedIntegerRepresentation() const {
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isSignedIntegerType();
else
return isSignedIntegerType();
}
/// isUnsignedIntegerType - Return true if this is an integer type that is
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
/// decl which has an unsigned representation
bool Type::isUnsignedIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::UInt128;
}
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
return false;
}
bool Type::hasUnsignedIntegerRepresentation() const {
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isUnsignedIntegerType();
else
return isUnsignedIntegerType();
}
bool Type::isFloatingType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Float &&
BT->getKind() <= BuiltinType::LongDouble;
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
return CT->getElementType()->isFloatingType();
return false;
}
bool Type::hasFloatingRepresentation() const {
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isFloatingType();
else
return isFloatingType();
}
bool Type::isRealFloatingType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->isFloatingPoint();
return false;
}
bool Type::isRealType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongDouble;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
return TT->getDecl()->isEnum() && TT->getDecl()->isDefinition();
return false;
}
bool Type::isArithmeticType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongDouble;
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
// GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
// If a body isn't seen by the time we get here, return false.
return ET->getDecl()->isDefinition();
return isa<ComplexType>(CanonicalType);
}
bool Type::isScalarType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() != BuiltinType::Void;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
// Enums are scalar types, but only if they are defined. Incomplete enums
// are not treated as scalar types.
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
return true;
return false;
}
return isa<PointerType>(CanonicalType) ||
isa<BlockPointerType>(CanonicalType) ||
isa<MemberPointerType>(CanonicalType) ||
isa<ComplexType>(CanonicalType) ||
isa<ObjCObjectPointerType>(CanonicalType);
}
/// \brief Determines whether the type is a C++ aggregate type or C
/// aggregate or union type.
///
/// An aggregate type is an array or a class type (struct, union, or
/// class) that has no user-declared constructors, no private or
/// protected non-static data members, no base classes, and no virtual
/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
/// includes union types.
bool Type::isAggregateType() const {
if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
return ClassDecl->isAggregate();
return true;
}
return isa<ArrayType>(CanonicalType);
}
/// isConstantSizeType - Return true if this is not a variable sized type,
/// according to the rules of C99 6.7.5p3. It is not legal to call this on
/// incomplete types or dependent types.
bool Type::isConstantSizeType() const {
assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
assert(!isDependentType() && "This doesn't make sense for dependent types");
// The VAT must have a size, as it is known to be complete.
return !isa<VariableArrayType>(CanonicalType);
}
/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
/// - a type that can describe objects, but which lacks information needed to
/// determine its size.
bool Type::isIncompleteType() const {
switch (CanonicalType->getTypeClass()) {
default: return false;
case Builtin:
// Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
// be completed.
return isVoidType();
case Record:
case Enum:
// A tagged type (struct/union/enum/class) is incomplete if the decl is a
// forward declaration, but not a full definition (C99 6.2.5p22).
return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
case ConstantArray:
// An array is incomplete if its element type is incomplete
// (C++ [dcl.array]p1).
// We don't handle variable arrays (they're not allowed in C++) or
// dependent-sized arrays (dependent types are never treated as incomplete).
return cast<ArrayType>(CanonicalType)->getElementType()->isIncompleteType();
case IncompleteArray:
// An array of unknown size is an incomplete type (C99 6.2.5p22).
return true;
case ObjCObject:
return cast<ObjCObjectType>(CanonicalType)->getBaseType()
->isIncompleteType();
case ObjCInterface:
// ObjC interfaces are incomplete if they are @class, not @interface.
return cast<ObjCInterfaceType>(CanonicalType)->getDecl()->isForwardDecl();
}
}
/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10)
bool Type::isPODType() const {
// The compiler shouldn't query this for incomplete types, but the user might.
// We return false for that case.
if (isIncompleteType())
return false;
switch (CanonicalType->getTypeClass()) {
// Everything not explicitly mentioned is not POD.
default: return false;
case VariableArray:
case ConstantArray:
// IncompleteArray is caught by isIncompleteType() above.
return cast<ArrayType>(CanonicalType)->getElementType()->isPODType();
case Builtin:
case Complex:
case Pointer:
case MemberPointer:
case Vector:
case ExtVector:
case ObjCObjectPointer:
case BlockPointer:
return true;
case Enum:
return true;
case Record:
if (CXXRecordDecl *ClassDecl
= dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
return ClassDecl->isPOD();
// C struct/union is POD.
return true;
}
}
bool Type::isLiteralType() const {
if (isIncompleteType())
return false;
// C++0x [basic.types]p10:
// A type is a literal type if it is:
switch (CanonicalType->getTypeClass()) {
// We're whitelisting
default: return false;
// -- a scalar type
case Builtin:
case Complex:
case Pointer:
case MemberPointer:
case Vector:
case ExtVector:
case ObjCObjectPointer:
case Enum:
return true;
// -- a class type with ...
case Record:
// FIXME: Do the tests
return false;
// -- an array of literal type
// Extension: variable arrays cannot be literal types, since they're
// runtime-sized.
case ConstantArray:
return cast<ArrayType>(CanonicalType)->getElementType()->isLiteralType();
}
}
bool Type::isPromotableIntegerType() const {
if (const BuiltinType *BT = getAs<BuiltinType>())
switch (BT->getKind()) {
case BuiltinType::Bool:
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Short:
case BuiltinType::UShort:
return true;
default:
return false;
}
// Enumerated types are promotable to their compatible integer types
// (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
if (const EnumType *ET = getAs<EnumType>()){
if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull())
return false;
const BuiltinType *BT
= ET->getDecl()->getPromotionType()->getAs<BuiltinType>();
return BT->getKind() == BuiltinType::Int
|| BT->getKind() == BuiltinType::UInt;
}
return false;
}
bool Type::isNullPtrType() const {
if (const BuiltinType *BT = getAs<BuiltinType>())
return BT->getKind() == BuiltinType::NullPtr;
return false;
}
bool Type::isSpecifierType() const {
// Note that this intentionally does not use the canonical type.
switch (getTypeClass()) {
case Builtin:
case Record:
case Enum:
case Typedef:
case Complex:
case TypeOfExpr:
case TypeOf:
case TemplateTypeParm:
case SubstTemplateTypeParm:
case TemplateSpecialization:
case Elaborated:
case DependentName:
case DependentTemplateSpecialization:
case ObjCInterface:
case ObjCObject:
case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
return true;
default:
return false;
}
}
TypeWithKeyword::~TypeWithKeyword() {
}
ElaboratedTypeKeyword
TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
switch (TypeSpec) {
default: return ETK_None;
case TST_typename: return ETK_Typename;
case TST_class: return ETK_Class;
case TST_struct: return ETK_Struct;
case TST_union: return ETK_Union;
case TST_enum: return ETK_Enum;
}
}
TagTypeKind
TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
switch(TypeSpec) {
case TST_class: return TTK_Class;
case TST_struct: return TTK_Struct;
case TST_union: return TTK_Union;
case TST_enum: return TTK_Enum;
default: llvm_unreachable("Type specifier is not a tag type kind.");
}
}
ElaboratedTypeKeyword
TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
switch (Kind) {
case TTK_Class: return ETK_Class;
case TTK_Struct: return ETK_Struct;
case TTK_Union: return ETK_Union;
case TTK_Enum: return ETK_Enum;
}
llvm_unreachable("Unknown tag type kind.");
}
TagTypeKind
TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
switch (Keyword) {
case ETK_Class: return TTK_Class;
case ETK_Struct: return TTK_Struct;
case ETK_Union: return TTK_Union;
case ETK_Enum: return TTK_Enum;
case ETK_None: // Fall through.
case ETK_Typename:
llvm_unreachable("Elaborated type keyword is not a tag type kind.");
}
llvm_unreachable("Unknown elaborated type keyword.");
}
bool
TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
switch (Keyword) {
case ETK_None:
case ETK_Typename:
return false;
case ETK_Class:
case ETK_Struct:
case ETK_Union:
case ETK_Enum:
return true;
}
llvm_unreachable("Unknown elaborated type keyword.");
}
const char*
TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
switch (Keyword) {
default: llvm_unreachable("Unknown elaborated type keyword.");
case ETK_None: return "";
case ETK_Typename: return "typename";
case ETK_Class: return "class";
case ETK_Struct: return "struct";
case ETK_Union: return "union";
case ETK_Enum: return "enum";
}
}
ElaboratedType::~ElaboratedType() {}
DependentNameType::~DependentNameType() {}
DependentTemplateSpecializationType::~DependentTemplateSpecializationType() {}
DependentTemplateSpecializationType::DependentTemplateSpecializationType(
ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS, const IdentifierInfo *Name,
unsigned NumArgs, const TemplateArgument *Args,
QualType Canon)
: TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true),
NNS(NNS), Name(Name), NumArgs(NumArgs) {
assert(NNS && NNS->isDependent() &&
"DependentTemplateSpecializatonType requires dependent qualifier");
for (unsigned I = 0; I != NumArgs; ++I)
new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
}
void
DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
ASTContext &Context,
ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *Qualifier,
const IdentifierInfo *Name,
unsigned NumArgs,
const TemplateArgument *Args) {
ID.AddInteger(Keyword);
ID.AddPointer(Qualifier);
ID.AddPointer(Name);
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
Args[Idx].Profile(ID, Context);
}
bool Type::isElaboratedTypeSpecifier() const {
ElaboratedTypeKeyword Keyword;
if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
Keyword = Elab->getKeyword();
else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
Keyword = DepName->getKeyword();
else if (const DependentTemplateSpecializationType *DepTST =
dyn_cast<DependentTemplateSpecializationType>(this))
Keyword = DepTST->getKeyword();
else
return false;
return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
}
const char *Type::getTypeClassName() const {
switch (TC) {
default: assert(0 && "Type class not in TypeNodes.def!");
#define ABSTRACT_TYPE(Derived, Base)
#define TYPE(Derived, Base) case Derived: return #Derived;
#include "clang/AST/TypeNodes.def"
}
}
const char *BuiltinType::getName(const LangOptions &LO) const {
switch (getKind()) {
default: assert(0 && "Unknown builtin type!");
case Void: return "void";
case Bool: return LO.Bool ? "bool" : "_Bool";
case Char_S: return "char";
case Char_U: return "char";
case SChar: return "signed char";
case Short: return "short";
case Int: return "int";
case Long: return "long";
case LongLong: return "long long";
case Int128: return "__int128_t";
case UChar: return "unsigned char";
case UShort: return "unsigned short";
case UInt: return "unsigned int";
case ULong: return "unsigned long";
case ULongLong: return "unsigned long long";
case UInt128: return "__uint128_t";
case Float: return "float";
case Double: return "double";
case LongDouble: return "long double";
case WChar: return "wchar_t";
case Char16: return "char16_t";
case Char32: return "char32_t";
case NullPtr: return "nullptr_t";
case Overload: return "<overloaded function type>";
case Dependent: return "<dependent type>";
case UndeducedAuto: return "auto";
case ObjCId: return "id";
case ObjCClass: return "Class";
case ObjCSel: return "SEL";
}
}
void FunctionType::ANCHOR() {} // Key function for FunctionType.
QualType QualType::getNonLValueExprType(ASTContext &Context) const {
if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
return RefType->getPointeeType();
// C++0x [basic.lval]:
// Class prvalues can have cv-qualified types; non-class prvalues always
// have cv-unqualified types.
//
// See also C99 6.3.2.1p2.
if (!Context.getLangOptions().CPlusPlus ||
(!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
return getUnqualifiedType();
return *this;
}
llvm::StringRef FunctionType::getNameForCallConv(CallingConv CC) {
switch (CC) {
case CC_Default: llvm_unreachable("no name for default cc");
default: return "";
case CC_C: return "cdecl";
case CC_X86StdCall: return "stdcall";
case CC_X86FastCall: return "fastcall";
case CC_X86ThisCall: return "thiscall";
}
}
void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
arg_type_iterator ArgTys,
unsigned NumArgs, bool isVariadic,
unsigned TypeQuals, bool hasExceptionSpec,
bool anyExceptionSpec, unsigned NumExceptions,
exception_iterator Exs,
const FunctionType::ExtInfo &Info) {
ID.AddPointer(Result.getAsOpaquePtr());
for (unsigned i = 0; i != NumArgs; ++i)
ID.AddPointer(ArgTys[i].getAsOpaquePtr());
ID.AddInteger(isVariadic);
ID.AddInteger(TypeQuals);
ID.AddInteger(hasExceptionSpec);
if (hasExceptionSpec) {
ID.AddInteger(anyExceptionSpec);
for (unsigned i = 0; i != NumExceptions; ++i)
ID.AddPointer(Exs[i].getAsOpaquePtr());
}
ID.AddInteger(Info.getNoReturn());
ID.AddInteger(Info.getRegParm());
ID.AddInteger(Info.getCC());
}
void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getResultType(), arg_type_begin(), NumArgs, isVariadic(),
getTypeQuals(), hasExceptionSpec(), hasAnyExceptionSpec(),
getNumExceptions(), exception_begin(),
getExtInfo());
}
/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
/// potentially looking through *all* consequtive typedefs. This returns the
/// sum of the type qualifiers, so if you have:
/// typedef const int A;
/// typedef volatile A B;
/// looking through the typedefs for B will give you "const volatile A".
///
QualType TypedefType::LookThroughTypedefs() const {
// Usually, there is only a single level of typedefs, be fast in that case.
QualType FirstType = getDecl()->getUnderlyingType();
if (!isa<TypedefType>(FirstType))
return FirstType;
// Otherwise, do the fully general loop.
QualifierCollector Qs;
QualType CurType;
const TypedefType *TDT = this;
do {
CurType = TDT->getDecl()->getUnderlyingType();
TDT = dyn_cast<TypedefType>(Qs.strip(CurType));
} while (TDT);
return Qs.apply(CurType);
}
QualType TypedefType::desugar() const {
return getDecl()->getUnderlyingType();
}
TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
: Type(TypeOfExpr, can, E->isTypeDependent()), TOExpr(E) {
}
QualType TypeOfExprType::desugar() const {
return getUnderlyingExpr()->getType();
}
void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
ASTContext &Context, Expr *E) {
E->Profile(ID, Context, true);
}
DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
: Type(Decltype, can, E->isTypeDependent()), E(E),
UnderlyingType(underlyingType) {
}
DependentDecltypeType::DependentDecltypeType(ASTContext &Context, Expr *E)
: DecltypeType(E, Context.DependentTy), Context(Context) { }
void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
ASTContext &Context, Expr *E) {
E->Profile(ID, Context, true);
}
TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
: Type(TC, can, D->isDependentType()),
decl(const_cast<TagDecl*>(D)) {}
static TagDecl *getInterestingTagDecl(TagDecl *decl) {
for (TagDecl::redecl_iterator I = decl->redecls_begin(),
E = decl->redecls_end();
I != E; ++I) {
if (I->isDefinition() || I->isBeingDefined())
return *I;
}
// If there's no definition (not even in progress), return what we have.
return decl;
}
TagDecl *TagType::getDecl() const {
return getInterestingTagDecl(decl);
}
bool TagType::isBeingDefined() const {
return getDecl()->isBeingDefined();
}
CXXRecordDecl *InjectedClassNameType::getDecl() const {
return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
}
bool RecordType::classof(const TagType *TT) {
return isa<RecordDecl>(TT->getDecl());
}
bool EnumType::classof(const TagType *TT) {
return isa<EnumDecl>(TT->getDecl());
}
static bool isDependent(const TemplateArgument &Arg) {
switch (Arg.getKind()) {
case TemplateArgument::Null:
assert(false && "Should not have a NULL template argument");
return false;
case TemplateArgument::Type:
return Arg.getAsType()->isDependentType();
case TemplateArgument::Template:
return Arg.getAsTemplate().isDependent();
case TemplateArgument::Declaration:
if (DeclContext *DC = dyn_cast<DeclContext>(Arg.getAsDecl()))
return DC->isDependentContext();
return Arg.getAsDecl()->getDeclContext()->isDependentContext();
case TemplateArgument::Integral:
// Never dependent
return false;
case TemplateArgument::Expression:
return (Arg.getAsExpr()->isTypeDependent() ||
Arg.getAsExpr()->isValueDependent());
case TemplateArgument::Pack:
for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
PEnd = Arg.pack_end();
P != PEnd; ++P) {
if (isDependent(*P))
return true;
}
return false;
}
return false;
}
bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgumentListInfo &Args) {
return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size());
}
bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N) {
for (unsigned i = 0; i != N; ++i)
if (isDependent(Args[i].getArgument()))
return true;
return false;
}
bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N) {
for (unsigned i = 0; i != N; ++i)
if (isDependent(Args[i]))
return true;
return false;
}
TemplateSpecializationType::
TemplateSpecializationType(TemplateName T,
const TemplateArgument *Args,
unsigned NumArgs, QualType Canon)
: Type(TemplateSpecialization,
Canon.isNull()? QualType(this, 0) : Canon,
T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)),
Template(T), NumArgs(NumArgs) {
assert((!Canon.isNull() ||
T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)) &&
"No canonical type for non-dependent class template specialization");
TemplateArgument *TemplateArgs
= reinterpret_cast<TemplateArgument *>(this + 1);
for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
}
void
TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
TemplateName T,
const TemplateArgument *Args,
unsigned NumArgs,
ASTContext &Context) {
T.Profile(ID);
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
Args[Idx].Profile(ID, Context);
}
QualType QualifierCollector::apply(QualType QT) const {
if (!hasNonFastQualifiers())
return QT.withFastQualifiers(getFastQualifiers());
assert(Context && "extended qualifiers but no context!");
return Context->getQualifiedType(QT, *this);
}
QualType QualifierCollector::apply(const Type *T) const {
if (!hasNonFastQualifiers())
return QualType(T, getFastQualifiers());
assert(Context && "extended qualifiers but no context!");
return Context->getQualifiedType(T, *this);
}
void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
QualType BaseType,
ObjCProtocolDecl * const *Protocols,
unsigned NumProtocols) {
ID.AddPointer(BaseType.getAsOpaquePtr());
for (unsigned i = 0; i != NumProtocols; i++)
ID.AddPointer(Protocols[i]);
}
void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
}
/// \brief Determine the linkage of this type.
Linkage Type::getLinkage() const {
if (this != CanonicalType.getTypePtr())
return CanonicalType->getLinkage();
if (!LinkageKnown) {
CachedLinkage = getLinkageImpl();
LinkageKnown = true;
}
return static_cast<clang::Linkage>(CachedLinkage);
}
Linkage Type::getLinkageImpl() const {
// C++ [basic.link]p8:
// Names not covered by these rules have no linkage.
return NoLinkage;
}
void Type::ClearLinkageCache() {
if (this != CanonicalType.getTypePtr())
CanonicalType->ClearLinkageCache();
else
LinkageKnown = false;
}
Linkage BuiltinType::getLinkageImpl() const {
// C++ [basic.link]p8:
// A type is said to have linkage if and only if:
// - it is a fundamental type (3.9.1); or
return ExternalLinkage;
}
Linkage TagType::getLinkageImpl() const {
// C++ [basic.link]p8:
// - it is a class or enumeration type that is named (or has a name for
// linkage purposes (7.1.3)) and the name has linkage; or
// - it is a specialization of a class template (14); or
return getDecl()->getLinkage();
}
// C++ [basic.link]p8:
// - it is a compound type (3.9.2) other than a class or enumeration,
// compounded exclusively from types that have linkage; or
Linkage ComplexType::getLinkageImpl() const {
return ElementType->getLinkage();
}
Linkage PointerType::getLinkageImpl() const {
return PointeeType->getLinkage();
}
Linkage BlockPointerType::getLinkageImpl() const {
return PointeeType->getLinkage();
}
Linkage ReferenceType::getLinkageImpl() const {
return PointeeType->getLinkage();
}
Linkage MemberPointerType::getLinkageImpl() const {
return minLinkage(Class->getLinkage(), PointeeType->getLinkage());
}
Linkage ArrayType::getLinkageImpl() const {
return ElementType->getLinkage();
}
Linkage VectorType::getLinkageImpl() const {
return ElementType->getLinkage();
}
Linkage FunctionNoProtoType::getLinkageImpl() const {
return getResultType()->getLinkage();
}
Linkage FunctionProtoType::getLinkageImpl() const {
Linkage L = getResultType()->getLinkage();
for (arg_type_iterator A = arg_type_begin(), AEnd = arg_type_end();
A != AEnd; ++A)
L = minLinkage(L, (*A)->getLinkage());
return L;
}
Linkage ObjCObjectType::getLinkageImpl() const {
return ExternalLinkage;
}
Linkage ObjCObjectPointerType::getLinkageImpl() const {
return ExternalLinkage;
}