зеркало из https://github.com/microsoft/clang-1.git
1342 строки
44 KiB
C++
1342 строки
44 KiB
C++
//===--- Type.cpp - Type representation and manipulation ------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements type-related functionality.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/PrettyPrinter.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace clang;
|
|
|
|
bool QualType::isConstant(QualType T, ASTContext &Ctx) {
|
|
if (T.isConstQualified())
|
|
return true;
|
|
|
|
if (const ArrayType *AT = Ctx.getAsArrayType(T))
|
|
return AT->getElementType().isConstant(Ctx);
|
|
|
|
return false;
|
|
}
|
|
|
|
Type::~Type() { }
|
|
|
|
unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
|
|
QualType ElementType,
|
|
const llvm::APInt &NumElements) {
|
|
llvm::APSInt SizeExtended(NumElements, true);
|
|
unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
|
|
SizeExtended.extend(std::max(SizeTypeBits, SizeExtended.getBitWidth()) * 2);
|
|
|
|
uint64_t ElementSize
|
|
= Context.getTypeSizeInChars(ElementType).getQuantity();
|
|
llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
|
|
TotalSize *= SizeExtended;
|
|
|
|
return TotalSize.getActiveBits();
|
|
}
|
|
|
|
unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
|
|
unsigned Bits = Context.getTypeSize(Context.getSizeType());
|
|
|
|
// GCC appears to only allow 63 bits worth of address space when compiling
|
|
// for 64-bit, so we do the same.
|
|
if (Bits == 64)
|
|
--Bits;
|
|
|
|
return Bits;
|
|
}
|
|
|
|
void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
|
|
ASTContext &Context,
|
|
QualType ET,
|
|
ArraySizeModifier SizeMod,
|
|
unsigned TypeQuals,
|
|
Expr *E) {
|
|
ID.AddPointer(ET.getAsOpaquePtr());
|
|
ID.AddInteger(SizeMod);
|
|
ID.AddInteger(TypeQuals);
|
|
E->Profile(ID, Context, true);
|
|
}
|
|
|
|
void
|
|
DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
|
|
ASTContext &Context,
|
|
QualType ElementType, Expr *SizeExpr) {
|
|
ID.AddPointer(ElementType.getAsOpaquePtr());
|
|
SizeExpr->Profile(ID, Context, true);
|
|
}
|
|
|
|
/// getArrayElementTypeNoTypeQual - If this is an array type, return the
|
|
/// element type of the array, potentially with type qualifiers missing.
|
|
/// This method should never be used when type qualifiers are meaningful.
|
|
const Type *Type::getArrayElementTypeNoTypeQual() const {
|
|
// If this is directly an array type, return it.
|
|
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
|
|
return ATy->getElementType().getTypePtr();
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<ArrayType>(CanonicalType))
|
|
return 0;
|
|
|
|
// If this is a typedef for an array type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<ArrayType>(getUnqualifiedDesugaredType())
|
|
->getElementType().getTypePtr();
|
|
}
|
|
|
|
/// \brief Retrieve the unqualified variant of the given type, removing as
|
|
/// little sugar as possible.
|
|
///
|
|
/// This routine looks through various kinds of sugar to find the
|
|
/// least-desuraged type that is unqualified. For example, given:
|
|
///
|
|
/// \code
|
|
/// typedef int Integer;
|
|
/// typedef const Integer CInteger;
|
|
/// typedef CInteger DifferenceType;
|
|
/// \endcode
|
|
///
|
|
/// Executing \c getUnqualifiedTypeSlow() on the type \c DifferenceType will
|
|
/// desugar until we hit the type \c Integer, which has no qualifiers on it.
|
|
QualType QualType::getUnqualifiedTypeSlow() const {
|
|
QualType Cur = *this;
|
|
while (true) {
|
|
if (!Cur.hasQualifiers())
|
|
return Cur;
|
|
|
|
const Type *CurTy = Cur.getTypePtr();
|
|
switch (CurTy->getTypeClass()) {
|
|
#define ABSTRACT_TYPE(Class, Parent)
|
|
#define TYPE(Class, Parent) \
|
|
case Type::Class: { \
|
|
const Class##Type *Ty = cast<Class##Type>(CurTy); \
|
|
if (!Ty->isSugared()) \
|
|
return Cur.getLocalUnqualifiedType(); \
|
|
Cur = Ty->desugar(); \
|
|
break; \
|
|
}
|
|
#include "clang/AST/TypeNodes.def"
|
|
}
|
|
}
|
|
|
|
return Cur.getUnqualifiedType();
|
|
}
|
|
|
|
/// getDesugaredType - Return the specified type with any "sugar" removed from
|
|
/// the type. This takes off typedefs, typeof's etc. If the outer level of
|
|
/// the type is already concrete, it returns it unmodified. This is similar
|
|
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
|
|
/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
|
|
/// concrete.
|
|
QualType QualType::getDesugaredType(QualType T) {
|
|
QualifierCollector Qs;
|
|
|
|
QualType Cur = T;
|
|
while (true) {
|
|
const Type *CurTy = Qs.strip(Cur);
|
|
switch (CurTy->getTypeClass()) {
|
|
#define ABSTRACT_TYPE(Class, Parent)
|
|
#define TYPE(Class, Parent) \
|
|
case Type::Class: { \
|
|
const Class##Type *Ty = cast<Class##Type>(CurTy); \
|
|
if (!Ty->isSugared()) \
|
|
return Qs.apply(Cur); \
|
|
Cur = Ty->desugar(); \
|
|
break; \
|
|
}
|
|
#include "clang/AST/TypeNodes.def"
|
|
}
|
|
}
|
|
}
|
|
|
|
/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
|
|
/// sugar off the given type. This should produce an object of the
|
|
/// same dynamic type as the canonical type.
|
|
const Type *Type::getUnqualifiedDesugaredType() const {
|
|
const Type *Cur = this;
|
|
|
|
while (true) {
|
|
switch (Cur->getTypeClass()) {
|
|
#define ABSTRACT_TYPE(Class, Parent)
|
|
#define TYPE(Class, Parent) \
|
|
case Class: { \
|
|
const Class##Type *Ty = cast<Class##Type>(Cur); \
|
|
if (!Ty->isSugared()) return Cur; \
|
|
Cur = Ty->desugar().getTypePtr(); \
|
|
break; \
|
|
}
|
|
#include "clang/AST/TypeNodes.def"
|
|
}
|
|
}
|
|
}
|
|
|
|
/// isVoidType - Helper method to determine if this is the 'void' type.
|
|
bool Type::isVoidType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::Void;
|
|
return false;
|
|
}
|
|
|
|
bool Type::isDerivedType() const {
|
|
switch (CanonicalType->getTypeClass()) {
|
|
case Pointer:
|
|
case VariableArray:
|
|
case ConstantArray:
|
|
case IncompleteArray:
|
|
case FunctionProto:
|
|
case FunctionNoProto:
|
|
case LValueReference:
|
|
case RValueReference:
|
|
case Record:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool Type::isClassType() const {
|
|
if (const RecordType *RT = getAs<RecordType>())
|
|
return RT->getDecl()->isClass();
|
|
return false;
|
|
}
|
|
bool Type::isStructureType() const {
|
|
if (const RecordType *RT = getAs<RecordType>())
|
|
return RT->getDecl()->isStruct();
|
|
return false;
|
|
}
|
|
bool Type::isStructureOrClassType() const {
|
|
if (const RecordType *RT = getAs<RecordType>())
|
|
return RT->getDecl()->isStruct() || RT->getDecl()->isClass();
|
|
return false;
|
|
}
|
|
bool Type::isVoidPointerType() const {
|
|
if (const PointerType *PT = getAs<PointerType>())
|
|
return PT->getPointeeType()->isVoidType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isUnionType() const {
|
|
if (const RecordType *RT = getAs<RecordType>())
|
|
return RT->getDecl()->isUnion();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isComplexType() const {
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
|
|
return CT->getElementType()->isFloatingType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isComplexIntegerType() const {
|
|
// Check for GCC complex integer extension.
|
|
return getAsComplexIntegerType();
|
|
}
|
|
|
|
const ComplexType *Type::getAsComplexIntegerType() const {
|
|
if (const ComplexType *Complex = getAs<ComplexType>())
|
|
if (Complex->getElementType()->isIntegerType())
|
|
return Complex;
|
|
return 0;
|
|
}
|
|
|
|
QualType Type::getPointeeType() const {
|
|
if (const PointerType *PT = getAs<PointerType>())
|
|
return PT->getPointeeType();
|
|
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
|
|
return OPT->getPointeeType();
|
|
if (const BlockPointerType *BPT = getAs<BlockPointerType>())
|
|
return BPT->getPointeeType();
|
|
if (const ReferenceType *RT = getAs<ReferenceType>())
|
|
return RT->getPointeeType();
|
|
return QualType();
|
|
}
|
|
|
|
/// isVariablyModifiedType (C99 6.7.5p3) - Return true for variable length
|
|
/// array types and types that contain variable array types in their
|
|
/// declarator
|
|
bool Type::isVariablyModifiedType() const {
|
|
// FIXME: We should really keep a "variably modified" bit in Type, rather
|
|
// than walking the type hierarchy to recompute it.
|
|
|
|
// A VLA is a variably modified type.
|
|
if (isVariableArrayType())
|
|
return true;
|
|
|
|
// An array can contain a variably modified type
|
|
if (const Type *T = getArrayElementTypeNoTypeQual())
|
|
return T->isVariablyModifiedType();
|
|
|
|
// A pointer can point to a variably modified type.
|
|
// Also, C++ references and member pointers can point to a variably modified
|
|
// type, where VLAs appear as an extension to C++, and should be treated
|
|
// correctly.
|
|
if (const PointerType *PT = getAs<PointerType>())
|
|
return PT->getPointeeType()->isVariablyModifiedType();
|
|
if (const ReferenceType *RT = getAs<ReferenceType>())
|
|
return RT->getPointeeType()->isVariablyModifiedType();
|
|
if (const MemberPointerType *PT = getAs<MemberPointerType>())
|
|
return PT->getPointeeType()->isVariablyModifiedType();
|
|
|
|
// A function can return a variably modified type
|
|
// This one isn't completely obvious, but it follows from the
|
|
// definition in C99 6.7.5p3. Because of this rule, it's
|
|
// illegal to declare a function returning a variably modified type.
|
|
if (const FunctionType *FT = getAs<FunctionType>())
|
|
return FT->getResultType()->isVariablyModifiedType();
|
|
|
|
return false;
|
|
}
|
|
|
|
const RecordType *Type::getAsStructureType() const {
|
|
// If this is directly a structure type, return it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
|
|
if (RT->getDecl()->isStruct())
|
|
return RT;
|
|
}
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
|
|
if (!RT->getDecl()->isStruct())
|
|
return 0;
|
|
|
|
// If this is a typedef for a structure type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<RecordType>(getUnqualifiedDesugaredType());
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const RecordType *Type::getAsUnionType() const {
|
|
// If this is directly a union type, return it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
|
|
if (RT->getDecl()->isUnion())
|
|
return RT;
|
|
}
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
|
|
if (!RT->getDecl()->isUnion())
|
|
return 0;
|
|
|
|
// If this is a typedef for a union type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<RecordType>(getUnqualifiedDesugaredType());
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
|
|
ObjCProtocolDecl * const *Protocols,
|
|
unsigned NumProtocols)
|
|
: Type(ObjCObject, Canonical, false),
|
|
NumProtocols(NumProtocols),
|
|
BaseType(Base) {
|
|
assert(this->NumProtocols == NumProtocols &&
|
|
"bitfield overflow in protocol count");
|
|
if (NumProtocols)
|
|
memcpy(getProtocolStorage(), Protocols,
|
|
NumProtocols * sizeof(ObjCProtocolDecl*));
|
|
}
|
|
|
|
const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
|
|
// There is no sugar for ObjCObjectType's, just return the canonical
|
|
// type pointer if it is the right class. There is no typedef information to
|
|
// return and these cannot be Address-space qualified.
|
|
if (const ObjCObjectType *T = getAs<ObjCObjectType>())
|
|
if (T->getNumProtocols() && T->getInterface())
|
|
return T;
|
|
return 0;
|
|
}
|
|
|
|
bool Type::isObjCQualifiedInterfaceType() const {
|
|
return getAsObjCQualifiedInterfaceType() != 0;
|
|
}
|
|
|
|
const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
|
|
// There is no sugar for ObjCQualifiedIdType's, just return the canonical
|
|
// type pointer if it is the right class.
|
|
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
|
|
if (OPT->isObjCQualifiedIdType())
|
|
return OPT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
|
|
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
|
|
if (OPT->getInterfaceType())
|
|
return OPT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
|
|
if (const PointerType *PT = getAs<PointerType>())
|
|
if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
|
|
return dyn_cast<CXXRecordDecl>(RT->getDecl());
|
|
return 0;
|
|
}
|
|
|
|
CXXRecordDecl *Type::getAsCXXRecordDecl() const {
|
|
if (const RecordType *RT = getAs<RecordType>())
|
|
return dyn_cast<CXXRecordDecl>(RT->getDecl());
|
|
else if (const InjectedClassNameType *Injected
|
|
= getAs<InjectedClassNameType>())
|
|
return Injected->getDecl();
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool Type::isIntegerType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::Int128;
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
// Incomplete enum types are not treated as integer types.
|
|
// FIXME: In C++, enum types are never integer types.
|
|
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool Type::hasIntegerRepresentation() const {
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isIntegerType();
|
|
else
|
|
return isIntegerType();
|
|
}
|
|
|
|
/// \brief Determine whether this type is an integral type.
|
|
///
|
|
/// This routine determines whether the given type is an integral type per
|
|
/// C++ [basic.fundamental]p7. Although the C standard does not define the
|
|
/// term "integral type", it has a similar term "integer type", and in C++
|
|
/// the two terms are equivalent. However, C's "integer type" includes
|
|
/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
|
|
/// parameter is used to determine whether we should be following the C or
|
|
/// C++ rules when determining whether this type is an integral/integer type.
|
|
///
|
|
/// For cases where C permits "an integer type" and C++ permits "an integral
|
|
/// type", use this routine.
|
|
///
|
|
/// For cases where C permits "an integer type" and C++ permits "an integral
|
|
/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
|
|
///
|
|
/// \param Ctx The context in which this type occurs.
|
|
///
|
|
/// \returns true if the type is considered an integral type, false otherwise.
|
|
bool Type::isIntegralType(ASTContext &Ctx) const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::Int128;
|
|
|
|
if (!Ctx.getLangOptions().CPlusPlus)
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
|
|
return true; // Complete enum types are integral in C.
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Type::isIntegralOrEnumerationType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::Int128;
|
|
|
|
// Check for a complete enum type; incomplete enum types are not properly an
|
|
// enumeration type in the sense required here.
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Type::isEnumeralType() const {
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
return TT->getDecl()->isEnum();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isBooleanType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::Bool;
|
|
return false;
|
|
}
|
|
|
|
bool Type::isCharType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::Char_U ||
|
|
BT->getKind() == BuiltinType::UChar ||
|
|
BT->getKind() == BuiltinType::Char_S ||
|
|
BT->getKind() == BuiltinType::SChar;
|
|
return false;
|
|
}
|
|
|
|
bool Type::isWideCharType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::WChar;
|
|
return false;
|
|
}
|
|
|
|
/// \brief Determine whether this type is any of the built-in character
|
|
/// types.
|
|
bool Type::isAnyCharacterType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return (BT->getKind() >= BuiltinType::Char_U &&
|
|
BT->getKind() <= BuiltinType::Char32) ||
|
|
(BT->getKind() >= BuiltinType::Char_S &&
|
|
BT->getKind() <= BuiltinType::WChar);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isSignedIntegerType - Return true if this is an integer type that is
|
|
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
|
|
/// an enum decl which has a signed representation
|
|
bool Type::isSignedIntegerType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
|
|
return BT->getKind() >= BuiltinType::Char_S &&
|
|
BT->getKind() <= BuiltinType::Int128;
|
|
}
|
|
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
|
|
return ET->getDecl()->getIntegerType()->isSignedIntegerType();
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Type::hasSignedIntegerRepresentation() const {
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isSignedIntegerType();
|
|
else
|
|
return isSignedIntegerType();
|
|
}
|
|
|
|
/// isUnsignedIntegerType - Return true if this is an integer type that is
|
|
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
|
|
/// decl which has an unsigned representation
|
|
bool Type::isUnsignedIntegerType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::UInt128;
|
|
}
|
|
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
|
|
return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Type::hasUnsignedIntegerRepresentation() const {
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isUnsignedIntegerType();
|
|
else
|
|
return isUnsignedIntegerType();
|
|
}
|
|
|
|
bool Type::isFloatingType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Float &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
|
|
return CT->getElementType()->isFloatingType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::hasFloatingRepresentation() const {
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isFloatingType();
|
|
else
|
|
return isFloatingType();
|
|
}
|
|
|
|
bool Type::isRealFloatingType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->isFloatingPoint();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isRealType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
return TT->getDecl()->isEnum() && TT->getDecl()->isDefinition();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isArithmeticType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
|
|
// GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
|
|
// If a body isn't seen by the time we get here, return false.
|
|
return ET->getDecl()->isDefinition();
|
|
return isa<ComplexType>(CanonicalType);
|
|
}
|
|
|
|
bool Type::isScalarType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() != BuiltinType::Void;
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
|
|
// Enums are scalar types, but only if they are defined. Incomplete enums
|
|
// are not treated as scalar types.
|
|
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
|
|
return true;
|
|
return false;
|
|
}
|
|
return isa<PointerType>(CanonicalType) ||
|
|
isa<BlockPointerType>(CanonicalType) ||
|
|
isa<MemberPointerType>(CanonicalType) ||
|
|
isa<ComplexType>(CanonicalType) ||
|
|
isa<ObjCObjectPointerType>(CanonicalType);
|
|
}
|
|
|
|
/// \brief Determines whether the type is a C++ aggregate type or C
|
|
/// aggregate or union type.
|
|
///
|
|
/// An aggregate type is an array or a class type (struct, union, or
|
|
/// class) that has no user-declared constructors, no private or
|
|
/// protected non-static data members, no base classes, and no virtual
|
|
/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
|
|
/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
|
|
/// includes union types.
|
|
bool Type::isAggregateType() const {
|
|
if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
|
|
if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
|
|
return ClassDecl->isAggregate();
|
|
|
|
return true;
|
|
}
|
|
|
|
return isa<ArrayType>(CanonicalType);
|
|
}
|
|
|
|
/// isConstantSizeType - Return true if this is not a variable sized type,
|
|
/// according to the rules of C99 6.7.5p3. It is not legal to call this on
|
|
/// incomplete types or dependent types.
|
|
bool Type::isConstantSizeType() const {
|
|
assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
|
|
assert(!isDependentType() && "This doesn't make sense for dependent types");
|
|
// The VAT must have a size, as it is known to be complete.
|
|
return !isa<VariableArrayType>(CanonicalType);
|
|
}
|
|
|
|
/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
|
|
/// - a type that can describe objects, but which lacks information needed to
|
|
/// determine its size.
|
|
bool Type::isIncompleteType() const {
|
|
switch (CanonicalType->getTypeClass()) {
|
|
default: return false;
|
|
case Builtin:
|
|
// Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
|
|
// be completed.
|
|
return isVoidType();
|
|
case Record:
|
|
case Enum:
|
|
// A tagged type (struct/union/enum/class) is incomplete if the decl is a
|
|
// forward declaration, but not a full definition (C99 6.2.5p22).
|
|
return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
|
|
case ConstantArray:
|
|
// An array is incomplete if its element type is incomplete
|
|
// (C++ [dcl.array]p1).
|
|
// We don't handle variable arrays (they're not allowed in C++) or
|
|
// dependent-sized arrays (dependent types are never treated as incomplete).
|
|
return cast<ArrayType>(CanonicalType)->getElementType()->isIncompleteType();
|
|
case IncompleteArray:
|
|
// An array of unknown size is an incomplete type (C99 6.2.5p22).
|
|
return true;
|
|
case ObjCObject:
|
|
return cast<ObjCObjectType>(CanonicalType)->getBaseType()
|
|
->isIncompleteType();
|
|
case ObjCInterface:
|
|
// ObjC interfaces are incomplete if they are @class, not @interface.
|
|
return cast<ObjCInterfaceType>(CanonicalType)->getDecl()->isForwardDecl();
|
|
}
|
|
}
|
|
|
|
/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10)
|
|
bool Type::isPODType() const {
|
|
// The compiler shouldn't query this for incomplete types, but the user might.
|
|
// We return false for that case.
|
|
if (isIncompleteType())
|
|
return false;
|
|
|
|
switch (CanonicalType->getTypeClass()) {
|
|
// Everything not explicitly mentioned is not POD.
|
|
default: return false;
|
|
case VariableArray:
|
|
case ConstantArray:
|
|
// IncompleteArray is caught by isIncompleteType() above.
|
|
return cast<ArrayType>(CanonicalType)->getElementType()->isPODType();
|
|
|
|
case Builtin:
|
|
case Complex:
|
|
case Pointer:
|
|
case MemberPointer:
|
|
case Vector:
|
|
case ExtVector:
|
|
case ObjCObjectPointer:
|
|
case BlockPointer:
|
|
return true;
|
|
|
|
case Enum:
|
|
return true;
|
|
|
|
case Record:
|
|
if (CXXRecordDecl *ClassDecl
|
|
= dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
|
|
return ClassDecl->isPOD();
|
|
|
|
// C struct/union is POD.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool Type::isLiteralType() const {
|
|
if (isIncompleteType())
|
|
return false;
|
|
|
|
// C++0x [basic.types]p10:
|
|
// A type is a literal type if it is:
|
|
switch (CanonicalType->getTypeClass()) {
|
|
// We're whitelisting
|
|
default: return false;
|
|
|
|
// -- a scalar type
|
|
case Builtin:
|
|
case Complex:
|
|
case Pointer:
|
|
case MemberPointer:
|
|
case Vector:
|
|
case ExtVector:
|
|
case ObjCObjectPointer:
|
|
case Enum:
|
|
return true;
|
|
|
|
// -- a class type with ...
|
|
case Record:
|
|
// FIXME: Do the tests
|
|
return false;
|
|
|
|
// -- an array of literal type
|
|
// Extension: variable arrays cannot be literal types, since they're
|
|
// runtime-sized.
|
|
case ConstantArray:
|
|
return cast<ArrayType>(CanonicalType)->getElementType()->isLiteralType();
|
|
}
|
|
}
|
|
|
|
bool Type::isPromotableIntegerType() const {
|
|
if (const BuiltinType *BT = getAs<BuiltinType>())
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Bool:
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::SChar:
|
|
case BuiltinType::UChar:
|
|
case BuiltinType::Short:
|
|
case BuiltinType::UShort:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
// Enumerated types are promotable to their compatible integer types
|
|
// (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
|
|
if (const EnumType *ET = getAs<EnumType>()){
|
|
if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull())
|
|
return false;
|
|
|
|
const BuiltinType *BT
|
|
= ET->getDecl()->getPromotionType()->getAs<BuiltinType>();
|
|
return BT->getKind() == BuiltinType::Int
|
|
|| BT->getKind() == BuiltinType::UInt;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Type::isNullPtrType() const {
|
|
if (const BuiltinType *BT = getAs<BuiltinType>())
|
|
return BT->getKind() == BuiltinType::NullPtr;
|
|
return false;
|
|
}
|
|
|
|
bool Type::isSpecifierType() const {
|
|
// Note that this intentionally does not use the canonical type.
|
|
switch (getTypeClass()) {
|
|
case Builtin:
|
|
case Record:
|
|
case Enum:
|
|
case Typedef:
|
|
case Complex:
|
|
case TypeOfExpr:
|
|
case TypeOf:
|
|
case TemplateTypeParm:
|
|
case SubstTemplateTypeParm:
|
|
case TemplateSpecialization:
|
|
case Elaborated:
|
|
case DependentName:
|
|
case DependentTemplateSpecialization:
|
|
case ObjCInterface:
|
|
case ObjCObject:
|
|
case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
TypeWithKeyword::~TypeWithKeyword() {
|
|
}
|
|
|
|
ElaboratedTypeKeyword
|
|
TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
|
|
switch (TypeSpec) {
|
|
default: return ETK_None;
|
|
case TST_typename: return ETK_Typename;
|
|
case TST_class: return ETK_Class;
|
|
case TST_struct: return ETK_Struct;
|
|
case TST_union: return ETK_Union;
|
|
case TST_enum: return ETK_Enum;
|
|
}
|
|
}
|
|
|
|
TagTypeKind
|
|
TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
|
|
switch(TypeSpec) {
|
|
case TST_class: return TTK_Class;
|
|
case TST_struct: return TTK_Struct;
|
|
case TST_union: return TTK_Union;
|
|
case TST_enum: return TTK_Enum;
|
|
default: llvm_unreachable("Type specifier is not a tag type kind.");
|
|
}
|
|
}
|
|
|
|
ElaboratedTypeKeyword
|
|
TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
|
|
switch (Kind) {
|
|
case TTK_Class: return ETK_Class;
|
|
case TTK_Struct: return ETK_Struct;
|
|
case TTK_Union: return ETK_Union;
|
|
case TTK_Enum: return ETK_Enum;
|
|
}
|
|
llvm_unreachable("Unknown tag type kind.");
|
|
}
|
|
|
|
TagTypeKind
|
|
TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
|
|
switch (Keyword) {
|
|
case ETK_Class: return TTK_Class;
|
|
case ETK_Struct: return TTK_Struct;
|
|
case ETK_Union: return TTK_Union;
|
|
case ETK_Enum: return TTK_Enum;
|
|
case ETK_None: // Fall through.
|
|
case ETK_Typename:
|
|
llvm_unreachable("Elaborated type keyword is not a tag type kind.");
|
|
}
|
|
llvm_unreachable("Unknown elaborated type keyword.");
|
|
}
|
|
|
|
bool
|
|
TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
|
|
switch (Keyword) {
|
|
case ETK_None:
|
|
case ETK_Typename:
|
|
return false;
|
|
case ETK_Class:
|
|
case ETK_Struct:
|
|
case ETK_Union:
|
|
case ETK_Enum:
|
|
return true;
|
|
}
|
|
llvm_unreachable("Unknown elaborated type keyword.");
|
|
}
|
|
|
|
const char*
|
|
TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
|
|
switch (Keyword) {
|
|
default: llvm_unreachable("Unknown elaborated type keyword.");
|
|
case ETK_None: return "";
|
|
case ETK_Typename: return "typename";
|
|
case ETK_Class: return "class";
|
|
case ETK_Struct: return "struct";
|
|
case ETK_Union: return "union";
|
|
case ETK_Enum: return "enum";
|
|
}
|
|
}
|
|
|
|
ElaboratedType::~ElaboratedType() {}
|
|
DependentNameType::~DependentNameType() {}
|
|
DependentTemplateSpecializationType::~DependentTemplateSpecializationType() {}
|
|
|
|
DependentTemplateSpecializationType::DependentTemplateSpecializationType(
|
|
ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifier *NNS, const IdentifierInfo *Name,
|
|
unsigned NumArgs, const TemplateArgument *Args,
|
|
QualType Canon)
|
|
: TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true),
|
|
NNS(NNS), Name(Name), NumArgs(NumArgs) {
|
|
assert(NNS && NNS->isDependent() &&
|
|
"DependentTemplateSpecializatonType requires dependent qualifier");
|
|
for (unsigned I = 0; I != NumArgs; ++I)
|
|
new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
|
|
}
|
|
|
|
void
|
|
DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
|
|
ASTContext &Context,
|
|
ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifier *Qualifier,
|
|
const IdentifierInfo *Name,
|
|
unsigned NumArgs,
|
|
const TemplateArgument *Args) {
|
|
ID.AddInteger(Keyword);
|
|
ID.AddPointer(Qualifier);
|
|
ID.AddPointer(Name);
|
|
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
|
|
Args[Idx].Profile(ID, Context);
|
|
}
|
|
|
|
bool Type::isElaboratedTypeSpecifier() const {
|
|
ElaboratedTypeKeyword Keyword;
|
|
if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
|
|
Keyword = Elab->getKeyword();
|
|
else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
|
|
Keyword = DepName->getKeyword();
|
|
else if (const DependentTemplateSpecializationType *DepTST =
|
|
dyn_cast<DependentTemplateSpecializationType>(this))
|
|
Keyword = DepTST->getKeyword();
|
|
else
|
|
return false;
|
|
|
|
return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
|
|
}
|
|
|
|
const char *Type::getTypeClassName() const {
|
|
switch (TC) {
|
|
default: assert(0 && "Type class not in TypeNodes.def!");
|
|
#define ABSTRACT_TYPE(Derived, Base)
|
|
#define TYPE(Derived, Base) case Derived: return #Derived;
|
|
#include "clang/AST/TypeNodes.def"
|
|
}
|
|
}
|
|
|
|
const char *BuiltinType::getName(const LangOptions &LO) const {
|
|
switch (getKind()) {
|
|
default: assert(0 && "Unknown builtin type!");
|
|
case Void: return "void";
|
|
case Bool: return LO.Bool ? "bool" : "_Bool";
|
|
case Char_S: return "char";
|
|
case Char_U: return "char";
|
|
case SChar: return "signed char";
|
|
case Short: return "short";
|
|
case Int: return "int";
|
|
case Long: return "long";
|
|
case LongLong: return "long long";
|
|
case Int128: return "__int128_t";
|
|
case UChar: return "unsigned char";
|
|
case UShort: return "unsigned short";
|
|
case UInt: return "unsigned int";
|
|
case ULong: return "unsigned long";
|
|
case ULongLong: return "unsigned long long";
|
|
case UInt128: return "__uint128_t";
|
|
case Float: return "float";
|
|
case Double: return "double";
|
|
case LongDouble: return "long double";
|
|
case WChar: return "wchar_t";
|
|
case Char16: return "char16_t";
|
|
case Char32: return "char32_t";
|
|
case NullPtr: return "nullptr_t";
|
|
case Overload: return "<overloaded function type>";
|
|
case Dependent: return "<dependent type>";
|
|
case UndeducedAuto: return "auto";
|
|
case ObjCId: return "id";
|
|
case ObjCClass: return "Class";
|
|
case ObjCSel: return "SEL";
|
|
}
|
|
}
|
|
|
|
void FunctionType::ANCHOR() {} // Key function for FunctionType.
|
|
|
|
QualType QualType::getNonLValueExprType(ASTContext &Context) const {
|
|
if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
|
|
return RefType->getPointeeType();
|
|
|
|
// C++0x [basic.lval]:
|
|
// Class prvalues can have cv-qualified types; non-class prvalues always
|
|
// have cv-unqualified types.
|
|
//
|
|
// See also C99 6.3.2.1p2.
|
|
if (!Context.getLangOptions().CPlusPlus ||
|
|
(!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
|
|
return getUnqualifiedType();
|
|
|
|
return *this;
|
|
}
|
|
|
|
llvm::StringRef FunctionType::getNameForCallConv(CallingConv CC) {
|
|
switch (CC) {
|
|
case CC_Default: llvm_unreachable("no name for default cc");
|
|
default: return "";
|
|
|
|
case CC_C: return "cdecl";
|
|
case CC_X86StdCall: return "stdcall";
|
|
case CC_X86FastCall: return "fastcall";
|
|
case CC_X86ThisCall: return "thiscall";
|
|
}
|
|
}
|
|
|
|
void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
|
|
arg_type_iterator ArgTys,
|
|
unsigned NumArgs, bool isVariadic,
|
|
unsigned TypeQuals, bool hasExceptionSpec,
|
|
bool anyExceptionSpec, unsigned NumExceptions,
|
|
exception_iterator Exs,
|
|
const FunctionType::ExtInfo &Info) {
|
|
ID.AddPointer(Result.getAsOpaquePtr());
|
|
for (unsigned i = 0; i != NumArgs; ++i)
|
|
ID.AddPointer(ArgTys[i].getAsOpaquePtr());
|
|
ID.AddInteger(isVariadic);
|
|
ID.AddInteger(TypeQuals);
|
|
ID.AddInteger(hasExceptionSpec);
|
|
if (hasExceptionSpec) {
|
|
ID.AddInteger(anyExceptionSpec);
|
|
for (unsigned i = 0; i != NumExceptions; ++i)
|
|
ID.AddPointer(Exs[i].getAsOpaquePtr());
|
|
}
|
|
ID.AddInteger(Info.getNoReturn());
|
|
ID.AddInteger(Info.getRegParm());
|
|
ID.AddInteger(Info.getCC());
|
|
}
|
|
|
|
void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID) {
|
|
Profile(ID, getResultType(), arg_type_begin(), NumArgs, isVariadic(),
|
|
getTypeQuals(), hasExceptionSpec(), hasAnyExceptionSpec(),
|
|
getNumExceptions(), exception_begin(),
|
|
getExtInfo());
|
|
}
|
|
|
|
/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
|
|
/// potentially looking through *all* consequtive typedefs. This returns the
|
|
/// sum of the type qualifiers, so if you have:
|
|
/// typedef const int A;
|
|
/// typedef volatile A B;
|
|
/// looking through the typedefs for B will give you "const volatile A".
|
|
///
|
|
QualType TypedefType::LookThroughTypedefs() const {
|
|
// Usually, there is only a single level of typedefs, be fast in that case.
|
|
QualType FirstType = getDecl()->getUnderlyingType();
|
|
if (!isa<TypedefType>(FirstType))
|
|
return FirstType;
|
|
|
|
// Otherwise, do the fully general loop.
|
|
QualifierCollector Qs;
|
|
|
|
QualType CurType;
|
|
const TypedefType *TDT = this;
|
|
do {
|
|
CurType = TDT->getDecl()->getUnderlyingType();
|
|
TDT = dyn_cast<TypedefType>(Qs.strip(CurType));
|
|
} while (TDT);
|
|
|
|
return Qs.apply(CurType);
|
|
}
|
|
|
|
QualType TypedefType::desugar() const {
|
|
return getDecl()->getUnderlyingType();
|
|
}
|
|
|
|
TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
|
|
: Type(TypeOfExpr, can, E->isTypeDependent()), TOExpr(E) {
|
|
}
|
|
|
|
QualType TypeOfExprType::desugar() const {
|
|
return getUnderlyingExpr()->getType();
|
|
}
|
|
|
|
void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
|
|
ASTContext &Context, Expr *E) {
|
|
E->Profile(ID, Context, true);
|
|
}
|
|
|
|
DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
|
|
: Type(Decltype, can, E->isTypeDependent()), E(E),
|
|
UnderlyingType(underlyingType) {
|
|
}
|
|
|
|
DependentDecltypeType::DependentDecltypeType(ASTContext &Context, Expr *E)
|
|
: DecltypeType(E, Context.DependentTy), Context(Context) { }
|
|
|
|
void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
|
|
ASTContext &Context, Expr *E) {
|
|
E->Profile(ID, Context, true);
|
|
}
|
|
|
|
TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
|
|
: Type(TC, can, D->isDependentType()),
|
|
decl(const_cast<TagDecl*>(D)) {}
|
|
|
|
static TagDecl *getInterestingTagDecl(TagDecl *decl) {
|
|
for (TagDecl::redecl_iterator I = decl->redecls_begin(),
|
|
E = decl->redecls_end();
|
|
I != E; ++I) {
|
|
if (I->isDefinition() || I->isBeingDefined())
|
|
return *I;
|
|
}
|
|
// If there's no definition (not even in progress), return what we have.
|
|
return decl;
|
|
}
|
|
|
|
TagDecl *TagType::getDecl() const {
|
|
return getInterestingTagDecl(decl);
|
|
}
|
|
|
|
bool TagType::isBeingDefined() const {
|
|
return getDecl()->isBeingDefined();
|
|
}
|
|
|
|
CXXRecordDecl *InjectedClassNameType::getDecl() const {
|
|
return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
|
|
}
|
|
|
|
bool RecordType::classof(const TagType *TT) {
|
|
return isa<RecordDecl>(TT->getDecl());
|
|
}
|
|
|
|
bool EnumType::classof(const TagType *TT) {
|
|
return isa<EnumDecl>(TT->getDecl());
|
|
}
|
|
|
|
static bool isDependent(const TemplateArgument &Arg) {
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
assert(false && "Should not have a NULL template argument");
|
|
return false;
|
|
|
|
case TemplateArgument::Type:
|
|
return Arg.getAsType()->isDependentType();
|
|
|
|
case TemplateArgument::Template:
|
|
return Arg.getAsTemplate().isDependent();
|
|
|
|
case TemplateArgument::Declaration:
|
|
if (DeclContext *DC = dyn_cast<DeclContext>(Arg.getAsDecl()))
|
|
return DC->isDependentContext();
|
|
return Arg.getAsDecl()->getDeclContext()->isDependentContext();
|
|
|
|
case TemplateArgument::Integral:
|
|
// Never dependent
|
|
return false;
|
|
|
|
case TemplateArgument::Expression:
|
|
return (Arg.getAsExpr()->isTypeDependent() ||
|
|
Arg.getAsExpr()->isValueDependent());
|
|
|
|
case TemplateArgument::Pack:
|
|
for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
|
|
PEnd = Arg.pack_end();
|
|
P != PEnd; ++P) {
|
|
if (isDependent(*P))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool TemplateSpecializationType::
|
|
anyDependentTemplateArguments(const TemplateArgumentListInfo &Args) {
|
|
return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size());
|
|
}
|
|
|
|
bool TemplateSpecializationType::
|
|
anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N) {
|
|
for (unsigned i = 0; i != N; ++i)
|
|
if (isDependent(Args[i].getArgument()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool TemplateSpecializationType::
|
|
anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N) {
|
|
for (unsigned i = 0; i != N; ++i)
|
|
if (isDependent(Args[i]))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
TemplateSpecializationType::
|
|
TemplateSpecializationType(TemplateName T,
|
|
const TemplateArgument *Args,
|
|
unsigned NumArgs, QualType Canon)
|
|
: Type(TemplateSpecialization,
|
|
Canon.isNull()? QualType(this, 0) : Canon,
|
|
T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)),
|
|
Template(T), NumArgs(NumArgs) {
|
|
assert((!Canon.isNull() ||
|
|
T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)) &&
|
|
"No canonical type for non-dependent class template specialization");
|
|
|
|
TemplateArgument *TemplateArgs
|
|
= reinterpret_cast<TemplateArgument *>(this + 1);
|
|
for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
|
|
new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
|
|
}
|
|
|
|
void
|
|
TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
|
|
TemplateName T,
|
|
const TemplateArgument *Args,
|
|
unsigned NumArgs,
|
|
ASTContext &Context) {
|
|
T.Profile(ID);
|
|
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
|
|
Args[Idx].Profile(ID, Context);
|
|
}
|
|
|
|
QualType QualifierCollector::apply(QualType QT) const {
|
|
if (!hasNonFastQualifiers())
|
|
return QT.withFastQualifiers(getFastQualifiers());
|
|
|
|
assert(Context && "extended qualifiers but no context!");
|
|
return Context->getQualifiedType(QT, *this);
|
|
}
|
|
|
|
QualType QualifierCollector::apply(const Type *T) const {
|
|
if (!hasNonFastQualifiers())
|
|
return QualType(T, getFastQualifiers());
|
|
|
|
assert(Context && "extended qualifiers but no context!");
|
|
return Context->getQualifiedType(T, *this);
|
|
}
|
|
|
|
void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
|
|
QualType BaseType,
|
|
ObjCProtocolDecl * const *Protocols,
|
|
unsigned NumProtocols) {
|
|
ID.AddPointer(BaseType.getAsOpaquePtr());
|
|
for (unsigned i = 0; i != NumProtocols; i++)
|
|
ID.AddPointer(Protocols[i]);
|
|
}
|
|
|
|
void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
|
|
Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
|
|
}
|
|
|
|
/// \brief Determine the linkage of this type.
|
|
Linkage Type::getLinkage() const {
|
|
if (this != CanonicalType.getTypePtr())
|
|
return CanonicalType->getLinkage();
|
|
|
|
if (!LinkageKnown) {
|
|
CachedLinkage = getLinkageImpl();
|
|
LinkageKnown = true;
|
|
}
|
|
|
|
return static_cast<clang::Linkage>(CachedLinkage);
|
|
}
|
|
|
|
Linkage Type::getLinkageImpl() const {
|
|
// C++ [basic.link]p8:
|
|
// Names not covered by these rules have no linkage.
|
|
return NoLinkage;
|
|
}
|
|
|
|
void Type::ClearLinkageCache() {
|
|
if (this != CanonicalType.getTypePtr())
|
|
CanonicalType->ClearLinkageCache();
|
|
else
|
|
LinkageKnown = false;
|
|
}
|
|
|
|
Linkage BuiltinType::getLinkageImpl() const {
|
|
// C++ [basic.link]p8:
|
|
// A type is said to have linkage if and only if:
|
|
// - it is a fundamental type (3.9.1); or
|
|
return ExternalLinkage;
|
|
}
|
|
|
|
Linkage TagType::getLinkageImpl() const {
|
|
// C++ [basic.link]p8:
|
|
// - it is a class or enumeration type that is named (or has a name for
|
|
// linkage purposes (7.1.3)) and the name has linkage; or
|
|
// - it is a specialization of a class template (14); or
|
|
return getDecl()->getLinkage();
|
|
}
|
|
|
|
// C++ [basic.link]p8:
|
|
// - it is a compound type (3.9.2) other than a class or enumeration,
|
|
// compounded exclusively from types that have linkage; or
|
|
Linkage ComplexType::getLinkageImpl() const {
|
|
return ElementType->getLinkage();
|
|
}
|
|
|
|
Linkage PointerType::getLinkageImpl() const {
|
|
return PointeeType->getLinkage();
|
|
}
|
|
|
|
Linkage BlockPointerType::getLinkageImpl() const {
|
|
return PointeeType->getLinkage();
|
|
}
|
|
|
|
Linkage ReferenceType::getLinkageImpl() const {
|
|
return PointeeType->getLinkage();
|
|
}
|
|
|
|
Linkage MemberPointerType::getLinkageImpl() const {
|
|
return minLinkage(Class->getLinkage(), PointeeType->getLinkage());
|
|
}
|
|
|
|
Linkage ArrayType::getLinkageImpl() const {
|
|
return ElementType->getLinkage();
|
|
}
|
|
|
|
Linkage VectorType::getLinkageImpl() const {
|
|
return ElementType->getLinkage();
|
|
}
|
|
|
|
Linkage FunctionNoProtoType::getLinkageImpl() const {
|
|
return getResultType()->getLinkage();
|
|
}
|
|
|
|
Linkage FunctionProtoType::getLinkageImpl() const {
|
|
Linkage L = getResultType()->getLinkage();
|
|
for (arg_type_iterator A = arg_type_begin(), AEnd = arg_type_end();
|
|
A != AEnd; ++A)
|
|
L = minLinkage(L, (*A)->getLinkage());
|
|
|
|
return L;
|
|
}
|
|
|
|
Linkage ObjCObjectType::getLinkageImpl() const {
|
|
return ExternalLinkage;
|
|
}
|
|
|
|
Linkage ObjCObjectPointerType::getLinkageImpl() const {
|
|
return ExternalLinkage;
|
|
}
|