Further updates to tracking 01 notebook
This commit is contained in:
Родитель
965e14dbdc
Коммит
07ce0f1893
Различия файлов скрыты, потому что одна или несколько строк слишком длинны
|
@ -10,7 +10,6 @@ class Urls:
|
|||
|
||||
fridge_objects_path = urljoin(base, "odFridgeObjects_FairMOT-Format.zip")
|
||||
carcans_annotations_path = urljoin(base, "carcans_vott-csv-export.zip")
|
||||
carcans_video_path = urljoin(base, "car_cans_8s.mp4")
|
||||
|
||||
@classmethod
|
||||
def all(cls) -> List[str]:
|
||||
|
|
|
@ -2,16 +2,19 @@
|
|||
# Licensed under the MIT License.
|
||||
|
||||
from collections import OrderedDict
|
||||
import numpy as np
|
||||
import os
|
||||
import os.path as osp
|
||||
from typing import Dict, List
|
||||
|
||||
import numpy as np
|
||||
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision.transforms import transforms as T
|
||||
|
||||
from .bbox import TrackingBbox
|
||||
from .references.fairmot.datasets.dataset.jde import JointDataset
|
||||
from .opts import opts
|
||||
from ..common.gpu import db_num_workers
|
||||
from .opts import opts
|
||||
from .references.fairmot.datasets.dataset.jde import JointDataset
|
||||
|
||||
|
||||
|
||||
class TrackingDataset:
|
||||
|
@ -74,10 +77,10 @@ def boxes_to_mot(results: Dict[int, List[TrackingBbox]]) -> None:
|
|||
[
|
||||
bb.frame_id,
|
||||
bb.track_id,
|
||||
bb.top,
|
||||
bb.left,
|
||||
bb.bottom - bb.top,
|
||||
bb.top,
|
||||
bb.right - bb.left,
|
||||
bb.bottom - bb.top,
|
||||
1,
|
||||
-1,
|
||||
-1,
|
||||
|
|
|
@ -1,26 +1,26 @@
|
|||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the MIT License.
|
||||
|
||||
import argparse
|
||||
from collections import OrderedDict, defaultdict
|
||||
from collections import defaultdict
|
||||
from copy import deepcopy
|
||||
import glob
|
||||
import requests
|
||||
import os
|
||||
import os.path as osp
|
||||
import tempfile
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
import motmetrics as mm
|
||||
import numpy as np
|
||||
|
||||
import torch
|
||||
import torch.cuda as cuda
|
||||
import torch.nn as nn
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import motmetrics as mm
|
||||
from .bbox import TrackingBbox
|
||||
from ..common.gpu import torch_device
|
||||
from .dataset import TrackingDataset, boxes_to_mot
|
||||
from .opts import opts
|
||||
|
||||
from .references.fairmot.datasets.dataset.jde import LoadImages, LoadVideo
|
||||
from .references.fairmot.models.model import (
|
||||
|
@ -32,12 +32,6 @@ from .references.fairmot.tracker.multitracker import JDETracker
|
|||
from .references.fairmot.tracking_utils.evaluation import Evaluator
|
||||
from .references.fairmot.trains.train_factory import train_factory
|
||||
|
||||
from .bbox import TrackingBbox
|
||||
from .dataset import TrackingDataset, boxes_to_mot
|
||||
from .opts import opts
|
||||
from .plot import draw_boxes, assign_colors
|
||||
from ..common.gpu import torch_device
|
||||
|
||||
|
||||
def _get_gpu_str():
|
||||
if cuda.is_available():
|
||||
|
@ -47,79 +41,43 @@ def _get_gpu_str():
|
|||
return "-1" # cpu
|
||||
|
||||
|
||||
def write_video(results: Dict[int, List[TrackingBbox]],
|
||||
input_video: str,
|
||||
output_video: str) -> None:
|
||||
"""
|
||||
Plot the predicted tracks on the input video. Write the output to {output_path}.
|
||||
|
||||
Args:
|
||||
results: dictionary mapping frame id to a list of predicted TrackingBboxes
|
||||
input_video: path to the input video
|
||||
output_video: path to write out the output video
|
||||
"""
|
||||
results = OrderedDict(sorted(results.items()))
|
||||
# read video and initialize new tracking video
|
||||
def _get_frame(input_video: str, frame_id: int):
|
||||
video = cv2.VideoCapture()
|
||||
video.open(input_video)
|
||||
|
||||
image_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
image_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
fourcc = cv2.VideoWriter_fourcc(*"MP4V")
|
||||
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
|
||||
writer = cv2.VideoWriter(
|
||||
output_video, fourcc, frame_rate, (image_width, image_height)
|
||||
)
|
||||
|
||||
# assign bbox color per id
|
||||
unique_ids = list(
|
||||
set([bb.track_id for frame in results.values() for bb in frame])
|
||||
)
|
||||
color_map = assign_colors(unique_ids)
|
||||
|
||||
# create images and add to video writer, adapted from https://github.com/ZQPei/deep_sort_pytorch
|
||||
frame_idx = 0
|
||||
while video.grab():
|
||||
_, cur_image = video.retrieve()
|
||||
cur_tracks = results[frame_idx]
|
||||
if len(cur_tracks) > 0:
|
||||
cur_image = draw_boxes(cur_image, cur_tracks, color_map)
|
||||
writer.write(cur_image)
|
||||
frame_idx += 1
|
||||
|
||||
print(f"Output saved to {output_video}.")
|
||||
video.set(cv2.CAP_PROP_POS_FRAMES, frame_id)
|
||||
_, im = video.read()
|
||||
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
|
||||
return im
|
||||
|
||||
|
||||
def savetxt_results(results: Dict[int, List[TrackingBbox]],
|
||||
exp_name: str = 'results',
|
||||
root_path: str = None,
|
||||
result_filename: str = 'results.txt') -> str:
|
||||
"""Save tracking results to txt in tmp directory or provided path.
|
||||
def savetxt_results(
|
||||
results: Dict[int, List[TrackingBbox]],
|
||||
exp_name: str,
|
||||
root_path: str,
|
||||
result_filename: str,
|
||||
) -> str:
|
||||
"""Save tracking results to txt in provided path.
|
||||
|
||||
Args:
|
||||
results: prediction results from predict() function, i.e. Dict[int, List[TrackingBbox]]
|
||||
exp_name: subfolder for each experiment
|
||||
root_path: results saved root path. Default: None
|
||||
result_filename: saved prediction results txt file; End with '.txt'
|
||||
root_path: root path for results saved
|
||||
result_filename: saved prediction results txt file; end with '.txt'
|
||||
Returns:
|
||||
result_path: saved prediction results txt file path
|
||||
"""
|
||||
if not root_path:
|
||||
with tempfile.TemporaryDirectory() as tmpdir1:
|
||||
os.makedirs(osp.join(tmpdir1, exp_name))
|
||||
result_path = osp.join(tmpdir1, exp_name, result_filename)
|
||||
else:
|
||||
result_path = osp.join(root_path, exp_name, result_filename)
|
||||
|
||||
# Save results in MOT format for evaluation
|
||||
# Convert prediction results to mot format
|
||||
bboxes_mot = boxes_to_mot(results)
|
||||
|
||||
# Save results
|
||||
result_path = osp.join(root_path, exp_name, result_filename)
|
||||
np.savetxt(result_path, bboxes_mot, delimiter=",", fmt="%s")
|
||||
|
||||
return result_path
|
||||
|
||||
|
||||
def evaluate_mot(gt_root_path: str,
|
||||
exp_name: str,
|
||||
result_path: str) -> object:
|
||||
def evaluate_mot(gt_root_path: str, exp_name: str, result_path: str) -> object:
|
||||
""" eval code that calls on 'motmetrics' package in referenced FairMOT script, to produce MOT metrics on inference, given ground-truth.
|
||||
Args:
|
||||
gt_root_path: path of dataset containing GT annotations in MOTchallenge format (xywh)
|
||||
|
@ -137,15 +95,14 @@ def evaluate_mot(gt_root_path: str,
|
|||
return mot_accumulator
|
||||
|
||||
|
||||
def mot_summary(accumulators: list,
|
||||
exp_names: list) -> str:
|
||||
def mot_summary(accumulators: list, exp_names: list) -> str:
|
||||
"""Given a list of MOTAccumulators, get total summary by method in 'motmetrics', containing metrics scores
|
||||
|
||||
Args:
|
||||
accumulators: list of MOTAccumulators
|
||||
exp_names: list of experiment names (str) corresponds to MOTAccumulators
|
||||
Returns:
|
||||
strsummary: pandas.DataFrame output by method in 'motmetrics', containing metrics scores
|
||||
strsummary: str output by method in 'motmetrics', containing metrics scores
|
||||
"""
|
||||
metrics = mm.metrics.motchallenge_metrics
|
||||
mh = mm.metrics.create()
|
||||
|
@ -154,7 +111,7 @@ def mot_summary(accumulators: list,
|
|||
strsummary = mm.io.render_summary(
|
||||
summary,
|
||||
formatters=mh.formatters,
|
||||
namemap=mm.io.motchallenge_metric_names
|
||||
namemap=mm.io.motchallenge_metric_names,
|
||||
)
|
||||
|
||||
return strsummary
|
||||
|
@ -164,11 +121,11 @@ class TrackingLearner(object):
|
|||
"""Tracking Learner for Multi-Object Tracking"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dataset: Optional[TrackingDataset] = None,
|
||||
model_path: Optional[str] = None,
|
||||
arch: str = "dla_34",
|
||||
head_conv: int = None,
|
||||
self,
|
||||
dataset: Optional[TrackingDataset] = None,
|
||||
model_path: Optional[str] = None,
|
||||
arch: str = "dla_34",
|
||||
head_conv: int = None,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize learner object.
|
||||
|
@ -209,7 +166,7 @@ class TrackingLearner(object):
|
|||
self.opt.load_model = model_path
|
||||
|
||||
def fit(
|
||||
self, lr: float = 1e-4, lr_step: str = "20,27", num_epochs: int = 30
|
||||
self, lr: float = 1e-4, lr_step: str = "20,27", num_epochs: int = 30
|
||||
) -> None:
|
||||
"""
|
||||
The main training loop.
|
||||
|
@ -238,10 +195,12 @@ class TrackingLearner(object):
|
|||
# initialize dataloader
|
||||
train_loader = self.dataset.train_dl
|
||||
|
||||
self.model = create_model(
|
||||
self.opt.arch, self.opt.heads, self.opt.head_conv
|
||||
)
|
||||
self.model = load_model(self.model, opt_fit.load_model)
|
||||
self.optimizer = torch.optim.Adam(self.model.parameters(), opt_fit.lr)
|
||||
start_epoch = 0
|
||||
self.model = create_model(self.opt.arch, self.opt.heads, self.opt.head_conv)
|
||||
self.model = load_model(self.model, opt_fit.load_model)
|
||||
|
||||
Trainer = train_factory[opt_fit.task]
|
||||
trainer = Trainer(opt_fit.opt, self.model, self.optimizer)
|
||||
|
@ -252,7 +211,7 @@ class TrackingLearner(object):
|
|||
|
||||
# training loop
|
||||
for epoch in range(
|
||||
start_epoch + 1, start_epoch + opt_fit.num_epochs + 1
|
||||
start_epoch + 1, start_epoch + opt_fit.num_epochs + 1
|
||||
):
|
||||
print(
|
||||
"=" * 5,
|
||||
|
@ -262,7 +221,10 @@ class TrackingLearner(object):
|
|||
self.epoch = epoch
|
||||
log_dict_train, _ = trainer.train(epoch, train_loader)
|
||||
for k, v in log_dict_train.items():
|
||||
print(f"{k}: {v}")
|
||||
if k == "time":
|
||||
print(f"{k}:{v} min")
|
||||
else:
|
||||
print(f"{k}: {v}")
|
||||
if epoch in opt_fit.lr_step:
|
||||
lr = opt_fit.lr * (0.1 ** (opt_fit.lr_step.index(epoch) + 1))
|
||||
for param_group in optimizer.param_groups:
|
||||
|
@ -309,7 +271,7 @@ class TrackingLearner(object):
|
|||
print(f"Model saved to {path}")
|
||||
|
||||
def evaluate(
|
||||
self, results: Dict[int, List[TrackingBbox]], gt_root_path: str
|
||||
self, results: Dict[int, List[TrackingBbox]], gt_root_path: str
|
||||
) -> str:
|
||||
|
||||
"""
|
||||
|
@ -324,14 +286,25 @@ class TrackingLearner(object):
|
|||
"""
|
||||
|
||||
# Implementation inspired from code found here: https://github.com/ifzhang/FairMOT/blob/master/src/track.py
|
||||
result_path = savetxt_results(results, exp_name="single_vid")
|
||||
result_path = savetxt_results(
|
||||
results, "single_vid", gt_root_path, "results.txt"
|
||||
)
|
||||
# Save tracking results in tmp
|
||||
mot_accumulator = evaluate_mot(gt_root_path, "single_vid", result_path)
|
||||
strsummary = mot_summary([mot_accumulator], ("single_vid",))
|
||||
return strsummary
|
||||
|
||||
def eval_mot(self, conf_thres: float, track_buffer: int, im_size: Tuple[int, int], data_root: str,
|
||||
seqs: list, result_root: str, exp_name: str, run_eval: bool = True) -> str:
|
||||
def eval_mot(
|
||||
self,
|
||||
conf_thres: float,
|
||||
track_buffer: int,
|
||||
im_size: Tuple[int, int],
|
||||
data_root: str,
|
||||
seqs: list,
|
||||
result_root: str,
|
||||
exp_name: str,
|
||||
run_eval: bool = True,
|
||||
) -> str:
|
||||
"""
|
||||
Call the prediction function, saves the tracking results to txt file and provides the evaluation results with motmetrics format.
|
||||
Args:
|
||||
|
@ -351,24 +324,26 @@ class TrackingLearner(object):
|
|||
os.makedirs(eval_path)
|
||||
accumulators = []
|
||||
for seq in seqs:
|
||||
im_path = osp.join(data_root, seq, 'img1')
|
||||
result_filename = '{}.txt'.format(seq)
|
||||
im_path = osp.join(data_root, seq, "img1")
|
||||
result_filename = "{}.txt".format(seq)
|
||||
result_path = osp.join(result_root, exp_name, result_filename)
|
||||
with open(osp.join(data_root, seq, 'seqinfo.ini')) as seqinfo_file:
|
||||
with open(osp.join(data_root, seq, "seqinfo.ini")) as seqinfo_file:
|
||||
meta_info = seqinfo_file.read()
|
||||
# frame_rate is set from seqinfo.ini by frameRate
|
||||
frame_rate = int(
|
||||
meta_info[meta_info.find('frameRate') + 10:meta_info.find('\nseqLength')])
|
||||
meta_info[
|
||||
meta_info.find("frameRate")
|
||||
+ 10 : meta_info.find("\nseqLength")
|
||||
]
|
||||
)
|
||||
if not osp.exists(result_path):
|
||||
# Run tracking.
|
||||
eval_results = self.predict(
|
||||
im_path,
|
||||
conf_thres,
|
||||
track_buffer,
|
||||
im_size,
|
||||
frame_rate)
|
||||
result_path = savetxt_results(eval_results, exp_name, result_root,
|
||||
result_filename)
|
||||
im_path, conf_thres, track_buffer, im_size, frame_rate
|
||||
)
|
||||
result_path = savetxt_results(
|
||||
eval_results, exp_name, result_root, result_filename
|
||||
)
|
||||
print(f"Saved tracking results to {result_path}")
|
||||
if run_eval:
|
||||
# eval
|
||||
|
@ -382,14 +357,14 @@ class TrackingLearner(object):
|
|||
return strsummary
|
||||
|
||||
def predict(
|
||||
self,
|
||||
im_or_video_path: str,
|
||||
conf_thres: float = 0.6,
|
||||
det_thres: float = 0.3,
|
||||
nms_thres: float = 0.4,
|
||||
track_buffer: int = 30,
|
||||
min_box_area: float = 200,
|
||||
frame_rate: int = 30,
|
||||
self,
|
||||
im_or_video_path: str,
|
||||
conf_thres: float = 0.6,
|
||||
det_thres: float = 0.3,
|
||||
nms_thres: float = 0.4,
|
||||
track_buffer: int = 30,
|
||||
min_box_area: float = 200,
|
||||
frame_rate: int = 30,
|
||||
) -> Dict[int, List[TrackingBbox]]:
|
||||
"""
|
||||
Run inference on an image or video path.
|
||||
|
@ -440,7 +415,7 @@ class TrackingLearner(object):
|
|||
vertical = tlwh[2] / tlwh[3] > 1.6
|
||||
if tlwh[2] * tlwh[3] > opt_pred.min_box_area and not vertical:
|
||||
bb = TrackingBbox(
|
||||
tlbr[1], tlbr[0], tlbr[3], tlbr[2], frame_id, tid
|
||||
tlbr[0], tlbr[1], tlbr[2], tlbr[3], frame_id, tid
|
||||
)
|
||||
online_bboxes.append(bb)
|
||||
out[frame_id] = online_bboxes
|
||||
|
@ -470,28 +445,28 @@ class TrackingLearner(object):
|
|||
# if path is to a root directory of images
|
||||
|
||||
if (
|
||||
osp.isdir(im_or_video_path)
|
||||
and len(
|
||||
list(
|
||||
filter(
|
||||
lambda x: osp.splitext(x)[1].lower() in im_format,
|
||||
sorted(glob.glob("%s/*.*" % im_or_video_path)),
|
||||
osp.isdir(im_or_video_path)
|
||||
and len(
|
||||
list(
|
||||
filter(
|
||||
lambda x: osp.splitext(x)[1].lower() in im_format,
|
||||
sorted(glob.glob("%s/*.*" % im_or_video_path)),
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
> 0
|
||||
> 0
|
||||
):
|
||||
return LoadImages(im_or_video_path)
|
||||
# if path is to a single video file
|
||||
elif (
|
||||
osp.isfile(im_or_video_path)
|
||||
and osp.splitext(im_or_video_path)[1] in video_format
|
||||
osp.isfile(im_or_video_path)
|
||||
and osp.splitext(im_or_video_path)[1] in video_format
|
||||
):
|
||||
return LoadVideo(im_or_video_path)
|
||||
# if path is to a single image file
|
||||
elif (
|
||||
osp.isfile(im_or_video_path)
|
||||
and osp.splitext(im_or_video_path)[1] in im_format
|
||||
osp.isfile(im_or_video_path)
|
||||
and osp.splitext(im_or_video_path)[1] in im_format
|
||||
):
|
||||
return LoadImages(im_or_video_path)
|
||||
else:
|
||||
|
|
|
@ -1,12 +1,131 @@
|
|||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the MIT License.
|
||||
|
||||
import os.path as osp
|
||||
from collections import OrderedDict
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import cv2
|
||||
import decord
|
||||
import io
|
||||
import IPython.display
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from time import sleep
|
||||
|
||||
from .bbox import TrackingBbox
|
||||
from .model import _get_frame
|
||||
|
||||
|
||||
def plot_single_frame(
|
||||
results: Dict[int, List[TrackingBbox]], input_video: str, frame_id: int
|
||||
) -> None:
|
||||
"""
|
||||
Plot the bounding box and id on a wanted frame. Display as image to front end.
|
||||
|
||||
Args:
|
||||
results: dictionary mapping frame id to a list of predicted TrackingBboxes
|
||||
input_video: path to the input video
|
||||
frame_id: frame_id for frame to show tracking result
|
||||
"""
|
||||
results = OrderedDict(sorted(results.items()))
|
||||
|
||||
# Assign bbox color per id
|
||||
unique_ids = list(
|
||||
set([bb.track_id for frame in results.values() for bb in frame])
|
||||
)
|
||||
color_map = assign_colors(unique_ids)
|
||||
|
||||
# Get frame from video
|
||||
im = _get_frame(input_video, frame_id)
|
||||
|
||||
# Extract tracking results for wanted frame, and draw bboxes+tracking id, display frame
|
||||
cur_tracks = results[frame_id]
|
||||
if len(cur_tracks) > 0:
|
||||
im = draw_boxes(im, cur_tracks, color_map)
|
||||
im = Image.fromarray(im)
|
||||
IPython.display.display(im)
|
||||
|
||||
|
||||
def play_video(
|
||||
results: Dict[int, List[TrackingBbox]], input_video: str
|
||||
) -> None:
|
||||
"""
|
||||
Plot the predicted tracks on the input video. Displays to front-end as sequence of images stringed together in a video.
|
||||
|
||||
Args:
|
||||
results: dictionary mapping frame id to a list of predicted TrackingBboxes
|
||||
input_video: path to the input video
|
||||
"""
|
||||
|
||||
results = OrderedDict(sorted(results.items()))
|
||||
|
||||
# assign bbox color per id
|
||||
unique_ids = list(
|
||||
set([bb.track_id for frame in results.values() for bb in frame])
|
||||
)
|
||||
color_map = assign_colors(unique_ids)
|
||||
|
||||
# read video and initialize new tracking video
|
||||
video_reader = decord.VideoReader(input_video)
|
||||
|
||||
# set up ipython jupyter display
|
||||
d_video = IPython.display.display("", display_id=1)
|
||||
|
||||
# Read each frame, add bbox+track id, display frame
|
||||
for frame_idx in range(len(results)):
|
||||
im = video_reader.next().asnumpy()
|
||||
cur_tracks = results[frame_idx]
|
||||
if len(cur_tracks) > 0:
|
||||
cur_image = draw_boxes(im, cur_tracks, color_map)
|
||||
|
||||
f = io.BytesIO()
|
||||
im = Image.fromarray(im)
|
||||
im.save(f, "jpeg")
|
||||
d_video.update(IPython.display.Image(data=f.getvalue()))
|
||||
sleep(0.000001)
|
||||
|
||||
|
||||
def write_video(
|
||||
results: Dict[int, List[TrackingBbox]], input_video: str, output_video: str
|
||||
) -> None:
|
||||
"""
|
||||
Plot the predicted tracks on the input video. Write the output to {output_path}.
|
||||
|
||||
Args:
|
||||
results: dictionary mapping frame id to a list of predicted TrackingBboxes
|
||||
input_video: path to the input video
|
||||
output_video: path to write out the output video
|
||||
"""
|
||||
results = OrderedDict(sorted(results.items()))
|
||||
# read video and initialize new tracking video
|
||||
video = cv2.VideoCapture()
|
||||
video.open(input_video)
|
||||
|
||||
im_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
im_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
fourcc = cv2.VideoWriter_fourcc(*"MP4V")
|
||||
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
|
||||
writer = cv2.VideoWriter(
|
||||
output_video, fourcc, frame_rate, (im_width, im_height)
|
||||
)
|
||||
|
||||
# assign bbox color per id
|
||||
unique_ids = list(
|
||||
set([bb.track_id for frame in results.values() for bb in frame])
|
||||
)
|
||||
color_map = assign_colors(unique_ids)
|
||||
|
||||
# create images and add to video writer, adapted from https://github.com/ZQPei/deep_sort_pytorch
|
||||
frame_idx = 0
|
||||
while video.grab():
|
||||
_, im = video.retrieve()
|
||||
cur_tracks = results[frame_idx]
|
||||
if len(cur_tracks) > 0:
|
||||
im = draw_boxes(im, cur_tracks, color_map)
|
||||
writer.write(im)
|
||||
frame_idx += 1
|
||||
|
||||
print(f"Output saved to {output_video}.")
|
||||
|
||||
|
||||
def draw_boxes(
|
||||
|
@ -65,7 +184,7 @@ def assign_colors(id_list: List[int],) -> Dict[int, Tuple[int, int, int]]:
|
|||
|
||||
# adapted from https://github.com/ZQPei/deep_sort_pytorch
|
||||
for i in id_list2:
|
||||
color = [int((p * ((i + 1) ** 5 - i + 1)) % 255) for p in palette]
|
||||
color = [int((p * ((i + 1) ** 4 - i + 1)) % 255) for p in palette]
|
||||
color_list.append(tuple(color))
|
||||
|
||||
color_map = dict(zip(id_list, color_list))
|
||||
|
|
Загрузка…
Ссылка в новой задаче