3e0631e0dc
* DOCKER: add Dockerfile * DOCKER: update dockerfile * DOCKER: update dockerfile * DOCKER: path * DOCKER: add cv docker file * remove the tracking pipeline yml file * README updates (#358) * Updating environment.yml file in master (#323) * readme updates * mv media to scenarios folder * fixes * Update README.md * simplification of language, removing redundancy * added target audience section * Update SETUP.md * Update README.md * Update environment.yml * Update SETUP.md * env-update (#359) * Hyperdrive notebook updates (#356) All tests are passing (except for unrelated AML deployment notebooks) * transforms fix (#360) * Updating environment.yml file in master (#323) * fix for dataset transformations * remove extra cython in conda * pr comments' * refactor to use transform in class param * remove todo * update to transformer * added functionality to show transformations and updated notebook * Update FAQ.md * Adding contrib placeholder (#370) * DOCKER: update readme * adding missing lib dir * add i3d * Adding hard negative sampling notebook (#367) * DOCKER: use create instead of update * Add example gif to action recognition readme (#374) * code clean up * add i3d * code clean up * add action_recognition README content * add instructions and headers * fix conflicts * DOCKER: remove base env bin path * save/load detection code for deployment (#380) * Updating environment.yml file in master (#323) * save/load * load/save * load/save * remove cython duplicate * remove comment * docstring * tests for loading/saving * label bug * Syntax issues on lines 07 & 115 (#378) * Updating environment.yml file in master (#323) * update maximum time * Restore example figures (#357) * Staging (#365) * README updates (#358) * Updating environment.yml file in master (#323) * readme updates * mv media to scenarios folder * fixes * Update README.md * simplification of language, removing redundancy * added target audience section * Update SETUP.md * Update README.md * Update environment.yml * Update SETUP.md * env-update (#359) * Hyperdrive notebook updates (#356) All tests are passing (except for unrelated AML deployment notebooks) * Syntax issues on lines 07 & 115 * Update README.md * Update environment.yml * detection deploy model.py update (#381) * Updating environment.yml file in master (#323) * save/load * load/save * load/save * remove cython duplicate * remove comment * docstring * tests for loading/saving * label bug * initial notebook * minor update to model.py * revert hns nb * rm nb * ap at iou 0.5 (#385) * Updating environment.yml file in master (#323) * added ap_iou_05 * remove cython * bug fix * windows testing fix and other testing bugs (#383) * Update azure-pipeline-windows-cpu.yml * Update azure-pipeline-windows-gpu.yml * Update test_integration_similarity_notebooks.py * Update test_detection_notebooks.py * 00 notebook (#386) * Updating environment.yml file in master (#323) * 00 notebook update * remove extra dependency * remove cython * remove typo * Update 10_image_annotation.ipynb Added link to Azure annotation tool |
||
---|---|---|
.. | ||
Dockerfile | ||
README.md |
README.md
Docker Support
The Dockerfile in this directory will build Docker images with all the dependencies and code needed to run example notebooks or unit tests included in this repository.
Multiple environments are supported by using multistage builds. In order to efficiently build the Docker images in this way, Docker BuildKit is necessary.
The following examples show how to build and run the Docker image for CPU and GPU environments. Note on some platforms, one needs to manually specify the environment variable for DOCKER_BUILDKIT
to make sure the build runs well. For example, on a Windows machine, this can be done by the powershell command as below, before building the image
$env:DOCKER_BUILDKIT=1
Once the container is running you can access Jupyter notebooks at http://localhost:8888.
Building and Running with Docker
CPU environment
DOCKER_BUILDKIT=1 docker build -t computervision:cpu --build-arg ENV="cpu" .
docker run -p 8888:8888 -d computervision:cpu
GPU environment
DOCKER_BUILDKIT=1 docker build -t computervision:gpu --build-arg ENV="gpu" .
docker run --runtime=nvidia -p 8888:8888 -d computervision:gpu
Build Arguments
There are several build arguments which can change how the image is built. Similar to the ENV
build argument these are specified during the docker build command.
Build Arg | Description |
---|---|
ENV | Environment to use, options: cpu, gpu |
BRANCH | Git branch of the repo to use (defaults to master ) |
ANACONDA | Anaconda installation script (defaults to miniconda3 4.6.14) |
Example using the staging branch:
DOCKER_BUILDKIT=1 docker build -t computervision:cpu --build-arg ENV="cpu" --build-arg BRANCH="staging" .
In order to see detailed progress with BuildKit you can provide a flag during the build command: --progress=plain
Running tests with docker
docker run -it computervision:cpu pytests tests/unit