NPM package for TensorFlow.js models exported from Custom Vision Service
Перейти к файлу
shono ba57d33170 Update the tensorflow library version. 2020-08-17 15:45:20 -07:00
lib Support ObjectDetectionV2 model. 2019-12-04 12:56:39 -08:00
src Bug fixes for compact OD [S1] models. 2020-08-17 15:42:42 -07:00
test Initial commit. 2019-10-30 18:17:03 -07:00
.gitignore Initial commit. 2019-10-30 18:17:03 -07:00
CODE_OF_CONDUCT.md Initial CODE_OF_CONDUCT.md commit 2019-10-29 11:15:41 -07:00
LICENSE Initial LICENSE commit 2019-10-29 11:15:42 -07:00
README.md Update the tensorflow library version. 2020-08-17 15:45:20 -07:00
SECURITY.md Initial SECURITY.md commit 2019-10-29 11:15:44 -07:00
package.json Update the tensorflow library version. 2020-08-17 15:45:20 -07:00
rollup.config.js Initial commit. 2019-10-30 18:17:03 -07:00

README.md

customvision-tfjs

NPM package for TensorFlow.js models exported from Custom Vision Service

This package is for web browsers. If you are looking for a library to run on Node.js environment, please use customvision-tfjs-node.

Install

npm install @microsoft/customvision-tfjs

Or, if you would like to use CDN,

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.1.0/dist/tf.min.js"></script>
<script src="https://unpkg.com/@microsoft/customvision-tfjs"></script>

Usage

<img id="image" src="test_image.jpg" />

Classification

import * as cvstfjs from '@microsoft/customvision-tfjs';

let model = new cvstfjs.ClassificationModel();
await model.loadModelAsync('model.json');
const image = document.getElementById('image');
const result = await model.executeAsync(image);

The result is a 1D-array of probabilities.

Object Detection

import * as cvstfjs from '@microsoft/customvision-tfjs';

let model = new cvstfjs.ObjectDetectionModel();
await model.loadModelAsync('model.json');
const image = document.getElementById('image');
const result = await model.executeAsync(image);

The result has 3 arrays.


[
	[[0.1, 0.3, 0.4, 0.3], [0.2, 0.4, 0.8, 0.9]], // bounding boxes (x1, y1, x2, y2)
	[0.2, 0.3], // probabilities
	[1, 4] // class ids
]

References

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.