
Introducing Data Accelerator
An easy to configure streaming pipeline for Apache Spark

Noteworthy Capabilities
• Frictionless configuration

• Code free rules and alerting

• Fast development feedback loop

• Establish a proof of concept in an Afternoon

Primary Use
ETL and Alerting for streaming pipelines on Apache Spark

Deployment Options
• Docker Image for Linux, Mac, and Windows

• ARM Template for Azure

• GitHub build and deploy

Where to get started
• Github page (Linked)

• Landing page (Docs, Linked)

• Stack Exchange (Linked)

Summary
Data Accelerator is an easy way to set up and run a streaming pipeline on Apache Spark. Within the

Tools product group at Microsoft we have used an instance of Data Accelerator to process events at

a Microsoft scale since the fall of 2017. Data Accelerator isn’t just a pipe between an EventHub and a

database, however, Data Accelerator allows us to reshape incoming events while continuing to

stream, then route different parts of the same event into different data stores, and provide health

monitoring and alerting over the status of the whole pipeline. And we’ve built a friction free

configuration and code-free rules authoring experience that translates your work down into Scala,

https://github.com/Microsoft/data-accelerator
https://github.com/Microsoft/data-accelerator/wiki
https://stackoverflow.com/questions/tagged/data-accelerator

so you don’t have to. The editing experience is pulled directly from the Visual Studio Code, complete

with IntelliSense suggestions when editing our Spark-SQL syntax. On those days where you want to

get into the nitty gritty refining rules and alerts, we’ve built a fast debug feedback loop to validate

your queries and rules in real-time rather than the more typical “7 minutes and 20 clicks” loop of

sending your query to a cluster in the cloud and waiting to discover you’ve put a semicolon in the

wrong place. We’ve found Data Accelerator to make it easy to onboard new data sources, develop

new rules and alerts, and quickly work through proof of concepts deployments, all while smoothly

handling Microsoft scale Challenges.

Because of all that, we think some of you will find Data Accelerator interesting and we hope some

find it useful enough to work with and even contribute back to the project. We can’t wait to see what

comes next.

The Problem we set out to solve:
We built Data Accelerator to address a specific problem:

How do you deal with a heterogeneous event stream from a variety of different input sources

in a way that promotes quick discovery of data insights.

When to use Data Accelerator:
• You are looking to set up a streaming data pipeline on Spark and want to see the end to end

running before the afternoon is done.

• You are in a heavy development / exploration / prototype cycle and need the fast develop-

debug experience.

• You are looking to get into Spark streaming but don’t want to configure and glue together the

interop to support all the individual components or pick up another language before

committing.

Data Accelerator’s Capabilities:

Reshaping incoming events: Data Accelerator can support many different data sources, which leads

to dealing with many different types of events. The flexibility of the data input within Data

Accelerator supports processing across event variations between sources as well as within each

source. It is often preferable to normalize incoming data prior to subsequent storage and analysis.

Through combination of event and schema, Data Accelerator can recognize and modify events or

event parts as they continue streaming through the pipeline. Reshaped events can be split, merged,

with values modified or dropped.

Implicit schema detection: Hand editing JSON transformation definitions for various events can be

tedious and error prone, certainly in a system with potentially thousands of minor variations in

incoming data shape. There is a “Get Schema” feature within Data Accelerator that will sample the

configured input data and generate candidate schema for the different detected events. This feature

gets things running quickly and is a big time-saver when incorporating new data sources into an

existing pipeline.

Rules engine: The telemetry pipeline Data Accelerator fits into connects many inputs, different Azure

Event Hubs, Blobs, and IoT Hubs, to many outputs such as: hot, warm, and cold storage, email, Blobs,

other event hubs and finally to an in-deployment web-based status dashboard. Because it operates

over a heterogeneous and many input to many output data stream there was a need for a robust rules

engine to ensure each event received the appropriate treatment while transiting the pipeline. The

rules engine in Data Accelerator also supports Azure Functions and User Defined Functions (UDFs)

to flavor or modify events as they are ingested. For instance, you could reference a custom image

recognition library to convert events from a camera into an on/off status change event, or

accumulator, or leverage a time window to only indicate a status change event if some pre-condition

is already met. These modifications are managed within the pipeline rather than waiting on some

round trip processing, potentially providing greater responsiveness and/or reduced storage

requirements as portions of the event stream may be identified as irrelevant and dropped before

they are written to more persistent storage outputs. Data Accelerator includes the capability to

operate within an event; shaping different parts of a single event in different ways before sending the

resulting forms to different output destinations. For others working with Streaming on Apache Spark

with data sources from different release eras and/or brownfield development this capability should

be welcome.

SQL-Spark syntax with Scala code-generation: A word on programming with Data Accelerator. The

conventional wisdom is that working with Scala is hard. Even if Scala were easy, however, other

languages and syntax are far more popular, meaning you are more likely to find developers fluent in

SQL than Scala today. The base syntax of rules or queries within Data Accelerator is a lightly extended

SQL-Spark syntax. Couple of keywords have been added, essentially as macros, for otherwise

complex operations that are frequently performed, supporting operations such as:

• Time Windows – manage aggregators and look-forward/back windows

• Create and Upsert Table – manage a temporary table

• Output – direct query output to various pre-configured storage

options

Data Accelerator also supports hooks for incorporating arbitrary reference data, UDFs, and Azure

Functions. This permits refining SQL-Spark queries with existing assets and code capabilities you

may already have developed in your organization.

Fast debug loop: As developers at Microsoft, the typical debug loop of modify some code,

submit/deploy to a cloud-based execution environment, and wait on an outcome really drove us nuts.

Data Accelerator can operate with a much faster feedback loop: Live Query samples the data, keeps

a sample, then plays the query over that sample in the spark kernel returning a result in seconds.

This develop-debug loop is essentially real-time and a huge productivity boost. For cases where live

data is not available or reasonable, Data Accelerator works with an event simulator to provide an

experience that is good enough to improve the viability of candidate code changes when you do

submit them to your production environment.

Code-free configuration: While configuration files and the command line maybe the preferred

configuration and deployment operations once a system is in production, Data Accelerator provides

a code-free designer experience for setup and configuration which we’ve found useful for
prototyping new pipelines. While this won’t be for everyone, it certainly provides something more

to hold onto for those who are not accustomed to configuring and running headless data pipelines.

Data Accelerator’s capability to deploy at immense scale encouraged development of this experience,

as simple commands can have dramatic consequences when streaming the volumes of data the

pipeline can move.

