datadrivenmodel/keras_models.py

82 строки
2.2 KiB
Python
Исходник Обычный вид История

2020-11-09 12:13:00 +03:00
from base import BaseModel
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout, LSTM
from keras import optimizers
from sklearn.metrics import mean_squared_error
from tune_sklearn import TuneGridSearchCV, TuneSearchCV
class KerasNeuralNetModel(BaseModel):
def build_model(self, config=None):
num_hidden_layers = config["num_layers"]
optimizer = config["optimizer"]
learning_rate = config["lr"]
self.model = Sequential()
self.model.add(
Dense(
config["num_units"],
input_dim=self.input_dim,
activation=config["activation"],
kernel_initializer="glorot_normal",
)
)
for i in range(0, num_hidden_layers):
self.model.add(
Dense(
config["num_units"],
activation="relu",
kernel_initializer="glorot_normal",
)
)
self.model.add(
Dense(
self.output_dim,
activation=config["activation"],
kernel_initializer="glorot_normal",
)
)
# opt=optimizers.RMSprop(lr=learning_rate)
self.model.compile(
optimizer=optimizer,
loss="mean_squared_error",
metrics=["mean_squared_error"],
)
print(self.model.summary())
return self.model
def sweep(self, X, y):
optimizers = ["rmsprop", "adam"]
kernel_initializer = ["glorot_uniform", "normal"]
epochs = [5, 10]
param_grid = dict(
optimizer=optimizers, nb_epoch=epochs, kernel_initializer=kernel_initializer
)
grid = TuneGridSearchCV(
estimator=self.model,
param_grid=param_grid,
scoring="neg_mean_squared_error",
)
grid_result = grid.fit(X, y)
return grid_result
if __name__ == "__main__":
config = {
"num_layers": 10,
"num_units": 50,
"lr": 0.01,
"activation": "relu",
"optimizer": "adam",
}
keras_model = KerasNeuralNetModel()
# keras_model.build_model(config=config)
# keras_model.fit(X, y)
2020-11-09 12:13:00 +03:00
# keras_model.sweep(X, y)