update: fixing gboost multivariate regression save

This commit is contained in:
Ali Zaidi 2020-12-18 10:42:56 -08:00
Родитель aef7b89d13
Коммит 73cfd9915d
2 изменённых файлов: 6 добавлений и 8 удалений

10
base.py
Просмотреть файл

@ -38,7 +38,7 @@ class BaseModel(abc.ABC):
output_col: Union[str, List[str]] = "state",
iteration_order: int = -1,
max_rows: Union[int, None] = None,
) -> Tuple[np.array, np.array]:
) -> Tuple[np.ndarray, np.ndarray]:
"""Read CSV data into two datasets for modeling
Parameters
@ -99,10 +99,10 @@ class BaseModel(abc.ABC):
def load_pickle_data(self, x_path: str, y_path: str):
X = pickle.load(x_path)
y = pickle.load(y_path)
X = pickle.load(open(x_path, "rb"))
y = pickle.load(open(y_path, "rb"))
pass
return X, y
def scalar(self, X, y):
@ -157,7 +157,7 @@ class BaseModel(abc.ABC):
self.scale_data = scale_data
self.model = pickle.load(open(filename, "rb"))
def evaluate(self, test_data: np.array):
def evaluate(self, test_data: np.ndarray):
if not self.model:
raise Exception("No model found, please run fit first")

Просмотреть файл

@ -17,8 +17,6 @@ import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# TODO: why doesn't multioutputregressor work properly?
class GBoostModel(BaseModel):
def build_model(self, model_type: str = "xgboost", scale_data: bool = False):
@ -139,4 +137,4 @@ if __name__ == "__main__":
xgm.fit(X, y, fit_separate=False)
yhat = xgm.predict(X)
# xgm.save_model(dir_path="models/gbm_pole")
# xgm.save_model(dir_path="models/xgbm_pole_multi.pkl")