datadrivenmodel/loaders.py

183 строки
6.0 KiB
Python

import os
import pandas as pd
from typing import List
import logging
logger = logging.getLogger("data_loaders")
logger.setLevel(logging.INFO)
class CsvReader(object):
def split(
self,
df,
iteration_col,
episode_col,
iteration_order,
lagger_str,
current_row,
feature_cols,
label_cols,
augmented_cols,
):
"""Split the dataset by features and labels
Parameters
----------
df : [type]
[description]
iteration_col : [type]
[description]
episode_col : [type]
[description]
iteration_order : [type]
[description]
lagger_str : [type]
[description]
current_row : [type]
[description]
feature_cols : [type]
[description]
label_cols : [type]
[description]
Returns
-------
[type]
[description]
"""
logger.info(
f"Iteration order set to {iteration_order} so using {current_row} from {lagger_str} {iteration_order} row"
)
# We group by episode and iteration indices to make dataset episodic
df = df.sort_values(by=[episode_col, iteration_col])
# Create a lagged dataframe for capturing inputs and outputs
lagged_df = df.groupby(by=episode_col, as_index=False).shift(
iteration_order * -1
)
lagged_df = lagged_df.drop([iteration_col], axis=1)
features_df = lagged_df[feature_cols]
# if iteration order is less than 1
# then the actions, configs should not be lagged
# only states should be lagged
if iteration_order < 0:
features_df[augmented_cols] = df[augmented_cols]
# eventually we will join the labels_df with the features_df
# if any columns are matching then rename them
if bool(set(feature_cols) & set(label_cols)):
features_df = features_df.rename(columns=lambda x: lagger_str[:4] + "_" + x)
logger.info(
f"{lagger_str.title()} states are being added to same row with prefix {lagger_str[:4]}"
)
self.feature_cols = list(features_df.columns.values)
self.label_cols = list(label_cols)
logger.info(f"Feature columns are: {self.feature_cols}")
logger.info(f"Label columns are: {self.label_cols}")
# joined_df = df.join(features_df)
vars_to_keep = (
[episode_col, iteration_col] + self.feature_cols + self.label_cols
)
return df.join(features_df)[vars_to_keep]
def read(
self,
df: pd.DataFrame,
iteration_order: int = -1,
episode_col: str = "episode",
iteration_col: str = "iteration",
feature_cols: List[str] = ["state_x_position"],
label_cols: List[str] = ["state_x_position"],
augmented_cols: List[str] = ["action_command"],
):
"""Read episodic data where each row contains either inputs and its preceding output output or the causal inputs/outputs relationship
Parameters
----------
df : pdf.DataFrame
[description]
iteration_order : int, optional
[description], by default -1
episode_col : str, optional
[description], by default "episode"
iteration_col : str, optional
[description], by default "iteration"
feature_cols : Union[List, str], optional
[description], by default "state_"
Returns
-------
[type]
[description]
"""
# CASE 1: rows are of the form {st+1, at}
# Append st into next row
# if iteration_order < 0 then drop the iteration - iteration_order iteration from each episode
# and append previous state columns into each row: {st+1, at} -> {st, at, st+1}
if all([episode_col, iteration_col, iteration_order < 0]):
lagger_str = "previous"
current_row = "inputs"
joined_df = self.split(
df,
iteration_col,
episode_col,
iteration_order,
lagger_str,
current_row,
feature_cols,
label_cols,
augmented_cols,
)
# skip the first row of each episode since we do not have its st
joined_df = (
joined_df.groupby(by=episode_col, as_index=False)
.apply(lambda x: x.iloc[iteration_order * -1 :])
.reset_index()
)
return joined_df.drop(["level_0", "level_1"], axis=1)
# CASE 2: rows of the form {st, at}
# Append st+1 from next row into current row {st, at, st+1}
elif all([episode_col, iteration_col, iteration_order > 0]):
lagger_str = "next"
current_row = "outputs"
joined_df = self.split(
df,
iteration_col,
episode_col,
iteration_order,
lagger_str,
current_row,
feature_cols,
label_cols,
augmented_cols,
)
# truncate before the end of iteration_order for complete observations only
joined_df = (
joined_df.groupby(by=episode_col, as_index=False)
.apply(lambda x: x.iloc[: iteration_order * -1])
.reset_index()
)
return joined_df.drop(["level_0", "level_1"], axis=1)
else:
return df
if __name__ == "__main__":
data_dir = "csv_data"
logger.info(f"Using data saved in directory {data_dir}")
csv_reader = CsvReader()
df = pd.read_csv(os.path.join(data_dir, "cartpole-log.csv"), nrows=1000)
df = csv_reader.read(df, iteration_order=-1)
df2 = pd.read_csv(os.path.join(data_dir, "cartpole_at_st.csv"), nrows=1000)
df2 = csv_reader.read(df2, iteration_order=1)