dcase-2019/load_dataset.py

205 строки
7.7 KiB
Python
Исходник Обычный вид История

2019-06-11 09:51:56 +03:00
from collections import defaultdict
2019-06-11 04:44:02 +03:00
import os
2019-06-11 09:51:56 +03:00
import joblib
2019-06-11 04:44:02 +03:00
import numpy as np
2019-06-11 09:51:56 +03:00
import pandas as pd
#from sklearn.externals import joblib
2019-06-11 04:44:02 +03:00
import torch
from torch.utils.data.dataset import Dataset
2019-06-11 09:51:56 +03:00
from tqdm import tqdm
import yaml
2019-06-11 04:44:02 +03:00
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
## coarse_number: (start_index, end_index) for entire 37 labels (with 0:8 being coarse labels, 8: being fine)
2019-06-11 09:51:56 +03:00
label_hierarchy = {
1: (8, 12),
2: (12, 17),
3: (17, 18),
4: (18, 22),
5: (22, 27),
6: (27, 31),
7: (31, 36),
8: (36, 37)
}
# label_dict = joblib.load('label_order.pkl')
2019-06-11 04:44:02 +03:00
class AudioDataset(Dataset):
def __init__(self, data_path, with_embeddings=True):
if not os.path.exists(data_path):
raise Exception('data path does not exist')
2019-06-11 09:51:56 +03:00
self.data_path = [
os.path.join(data_path, f) for f in os.listdir(data_path)
]
2019-06-11 04:44:02 +03:00
self.data_len = len(self.data_path)
self.with_embeddings = with_embeddings
def __getitem__(self, index):
self.filename = os.path.basename(self.data_path[index])
desired_spectrogram_shape = (1, 128, 862)
if not self.with_embeddings:
spectrogram, label = joblib.load(self.data_path[index])
spectrogram = np.expand_dims(spectrogram, 0)
if spectrogram.shape != desired_spectrogram_shape:
zero_pad = np.zeros((1, 128, 2))
spectrogram = np.concatenate((spectrogram, zero_pad), axis=2)
spectrogram = spectrogram.astype(np.float32)
spectrogram = torch.from_numpy(spectrogram)
spectrogram = spectrogram.to(device)
label = label.astype(np.float32)
2019-06-11 09:51:56 +03:00
label = torch.from_numpy(label)[
0:8] # [0:8] for coarse-only #[8:] for fine-only
2019-06-11 04:44:02 +03:00
label = label.to(device)
return spectrogram, label
2019-06-11 09:51:56 +03:00
# spectrogram, l3_emb, vgg_emb, label = joblib.load(self.data_path[index])
2019-06-11 04:44:02 +03:00
spectrogram, vgg_emb, label = joblib.load(self.data_path[index])
spectrogram = np.expand_dims(spectrogram, 0)
2019-06-11 09:51:56 +03:00
# l3_emb = l3_emb.reshape((1, 256, 192))
2019-06-11 04:44:02 +03:00
# add zeros to files that were short 2 frames
if spectrogram.shape != desired_spectrogram_shape:
zero_pad = np.zeros((1, 128, 2))
spectrogram = np.concatenate((spectrogram, zero_pad), axis=2)
spectrogram = spectrogram.astype(np.float32)
spectrogram = torch.from_numpy(spectrogram)
2019-06-11 09:51:56 +03:00
# l3_emb = torch.from_numpy(l3_emb)
2019-06-11 04:44:02 +03:00
vgg_emb = torch.from_numpy(vgg_emb.flatten())
label = label.astype(np.float32)
2019-06-11 09:51:56 +03:00
label = torch.from_numpy(label)[
0:8] # [0:8] for coarse-only #[8:] for fine-only
2019-06-11 04:44:02 +03:00
spectrogram = spectrogram.to(device)
2019-06-11 09:51:56 +03:00
# l3_emb = l3_emb.to(device)
2019-06-11 04:44:02 +03:00
vgg_emb = vgg_emb.to(device)
label = label.to(device)
2019-06-11 09:51:56 +03:00
return (spectrogram,
vgg_emb), label #(spectrogram, l3_emb, vgg_emb), label
2019-06-11 04:44:02 +03:00
def __len__(self):
return self.data_len
2019-06-11 09:51:56 +03:00
def get_hierarchy_files(index_to_files_dict, coarse_label_index):
return index_to_files_dict[coarse_label_index]
2019-06-11 04:44:02 +03:00
class AudioDatasetFine(Dataset):
2019-06-11 09:51:56 +03:00
def __init__(self, data_path, coarse_label_index, index_to_files_dict):
2019-06-11 04:44:02 +03:00
if not os.path.exists(data_path):
raise Exception('data path does not exist')
2019-06-11 09:51:56 +03:00
self.base_path = data_path
self.data_path = get_hierarchy_files(index_to_files_dict,
coarse_label_index)
# TODO: option to assign all extra files to a negative class!
2019-06-11 04:44:02 +03:00
self.data_len = len(self.data_path)
self.coarse_label_index = coarse_label_index
2019-06-11 09:51:56 +03:00
print(f'Data len: {self.data_len}')
2019-06-11 04:44:02 +03:00
def __getitem__(self, index):
self.filename = os.path.basename(self.data_path[index])
desired_shape = (1, 128, 862)
# spectrogram, l3_emb, vgg_emb, label = joblib.load(self.data_path[index])
2019-06-11 09:51:56 +03:00
spectrogram, vgg_emb, label = joblib.load(
os.path.join(self.base_path, self.data_path[index]))
2019-06-11 04:44:02 +03:00
label_start, label_end = label_hierarchy[self.coarse_label_index + 1]
2019-06-11 09:51:56 +03:00
label = label[label_start:label_end]
2019-06-11 04:44:02 +03:00
spectrogram = np.expand_dims(spectrogram, 0)
2019-06-11 09:51:56 +03:00
# l3_emb = l3_emb.reshape((1, 256, 192))
2019-06-11 04:44:02 +03:00
# add zeros to files that were short 2 frames
if spectrogram.shape != desired_shape:
zero_pad = np.zeros((1, 128, 2))
spectrogram = np.concatenate((spectrogram, zero_pad), axis=2)
spectrogram = spectrogram.astype(np.float32)
spectrogram = torch.from_numpy(spectrogram)
2019-06-11 09:51:56 +03:00
# l3_emb = torch.from_numpy(l3_emb)
2019-06-11 04:44:02 +03:00
vgg_emb = torch.from_numpy(vgg_emb.flatten())
label = label.astype(np.float32)
2019-06-11 09:51:56 +03:00
label = torch.from_numpy(
label) # [0:8] for coarse-only #[8:] for fine-only
2019-06-11 04:44:02 +03:00
spectrogram = spectrogram.to(device)
2019-06-11 09:51:56 +03:00
# l3_emb = l3_emb.to(device)
2019-06-11 04:44:02 +03:00
vgg_emb = vgg_emb.to(device)
label = label.to(device)
2019-06-11 09:51:56 +03:00
return (spectrogram, vgg_emb), label #l3_emb,
2019-06-11 04:44:02 +03:00
def __len__(self):
return self.data_len
2019-06-11 09:51:56 +03:00
# TODO: Deprecated. Use a precomputed index_to_files_dict instead, as in get_hierarchy_files above.
2019-06-11 04:44:02 +03:00
def load_dataset_from_path(path, coarse_label_index):
2019-06-11 09:51:56 +03:00
print(
'Warning: load_dataset_from_path is deprecated. Use precomputed index_to_files_dict instead.'
)
2019-06-11 04:44:02 +03:00
all_files = [os.path.join(path, f) for f in os.listdir(path)]
X = []
Y = []
desired_shape = (1, 128, 862)
for f in all_files:
spectrogram, l3_emb, vgg_emb, label = joblib.load(f)
if label[coarse_label_index] == 1:
spectrogram = np.expand_dims(spectrogram, 0)
l3_emb = l3_emb.reshape((1, 256, 192))
label_start, label_end = label_hierarchy[coarse_label_index + 1]
2019-06-11 09:51:56 +03:00
label = label[label_start:label_end]
2019-06-11 04:44:02 +03:00
# add zeros to files that were short 2 frames
if spectrogram.shape != desired_shape:
zero_pad = np.zeros((1, 128, 2))
spectrogram = np.concatenate((spectrogram, zero_pad), axis=2)
spectrogram = spectrogram.astype(np.float32)
l3_emb = l3_emb.astype(np.float32)
vgg_emb = vgg_emb.astype(np.float32)
label = label.astype(np.float32)
spectrogram = torch.from_numpy(spectrogram)
l3_emb = torch.from_numpy(l3_emb)
vgg_emb = torch.from_numpy(vgg_emb.flatten())
label = torch.from_numpy(label)
spectrogram = spectrogram.to(device)
l3_emb = l3_emb.to(device)
vgg_emb = vgg_emb.to(device)
label = label.to(device)
X.append((spectrogram, l3_emb, vgg_emb))
Y.append(label)
return X, Y
2019-06-11 09:51:56 +03:00
TRAIN_WEIGHTS = [
3.29014598540146, 6.733552631578948, 46.97959183673469, 20.76851851851852,
6.633116883116883, 51.24444444444445, 3.817622950819672, 21.17924528301887,
122.73684210526316, 20.568807339449542, 11.988950276243093,
155.73333333333332, 234.1, 35.734375, 179.84615384615384,
390.8333333333333, 101.21739130434783, 46.97959183673469,
96.95833333333333, 260.22222222222223, 292.875, 782.6666666666666,
17.511811023622048, 586.75, 28.759493670886076, 28.02469135802469,
260.22222222222223, 137.2941176470588, 0, 0, 292.875, 4.6650602409638555,
137.2941176470588, 1174.5, 0, 586.75, 21.17924528301887
]
TEST_WEIGHTS = [
1.248730964467005, 12.424242424242424, 54.375, 25.058823529411764, 4.5375,
19.136363636363637, 1.4748603351955307, 72.83333333333333, 442.0,
11.305555555555555, 4.753246753246753, 0, 0, 220.5, 0, 0, 0, 54.375, 220.5,
442.0, 442.0, 442.0, 16.03846153846154, 0, 8.844444444444445, 43.3, 0,
39.27272727272727, 0, 442.0, 0, 1.9731543624161074, 43.3, 0, 0, 0,
72.83333333333333
]