denoised-smoothing/code/archs/memnet.py

79 строки
2.6 KiB
Python
Исходник Постоянная ссылка Обычный вид История

2020-03-05 06:20:11 +03:00
"""MemNet"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class MemNet(nn.Module):
def __init__(self, in_channels, channels, num_memblock, num_resblock):
super(MemNet, self).__init__()
self.image_channels = in_channels
self.feature_extractor = BNReLUConv(in_channels, channels)
self.reconstructor = BNReLUConv(channels, in_channels)
self.dense_memory = nn.ModuleList(
[MemoryBlock(channels, num_resblock, i+1) for i in range(num_memblock)]
)
def forward(self, x):
# x = x.contiguous()
residual = x
out = self.feature_extractor(x)
ys = [out]
for memory_block in self.dense_memory:
out = memory_block(out, ys)
out = self.reconstructor(out)
out = out + residual
return out
class MemoryBlock(nn.Module):
"""Note: num_memblock denotes the number of MemoryBlock currently"""
def __init__(self, channels, num_resblock, num_memblock):
super(MemoryBlock, self).__init__()
self.recursive_unit = nn.ModuleList(
[ResidualBlock(channels) for i in range(num_resblock)]
)
self.gate_unit = BNReLUConv((num_resblock+num_memblock) * channels, channels, 1, 1, 0)
def forward(self, x, ys):
"""ys is a list which contains long-term memory coming from previous memory block
xs denotes the short-term memory coming from recursive unit
"""
xs = []
residual = x
for layer in self.recursive_unit:
x = layer(x)
xs.append(x)
gate_out = self.gate_unit(torch.cat(xs+ys, 1))
ys.append(gate_out)
return gate_out
class ResidualBlock(torch.nn.Module):
"""ResidualBlock
introduced in: https://arxiv.org/abs/1512.03385
x - Relu - Conv - Relu - Conv - x
"""
def __init__(self, channels, k=3, s=1, p=1):
super(ResidualBlock, self).__init__()
self.relu_conv1 = BNReLUConv(channels, channels, k, s, p)
self.relu_conv2 = BNReLUConv(channels, channels, k, s, p)
def forward(self, x):
residual = x
out = self.relu_conv1(x)
out = self.relu_conv2(out)
out = out + residual
return out
class BNReLUConv(nn.Sequential):
def __init__(self, in_channels, channels, k=3, s=1, p=1, inplace=True):
super(BNReLUConv, self).__init__()
self.add_module('bn', nn.BatchNorm2d(in_channels))
self.add_module('relu', nn.ReLU(inplace=inplace))
self.add_module('conv', nn.Conv2d(in_channels, channels, k, s, p, bias=False))