docker/network_test.go

291 строка
7.0 KiB
Go
Исходник Обычный вид История

2013-02-22 06:34:35 +04:00
package docker
import (
"net"
"os"
2013-02-22 06:34:35 +04:00
"testing"
)
func TestIptables(t *testing.T) {
if err := iptables("-L"); err != nil {
t.Fatal(err)
}
path := os.Getenv("PATH")
os.Setenv("PATH", "")
defer os.Setenv("PATH", path)
if err := iptables("-L"); err == nil {
t.Fatal("Not finding iptables in the PATH should cause an error")
}
}
2013-04-06 00:03:24 +04:00
func TestPortAllocation(t *testing.T) {
allocator, err := newPortAllocator()
if err != nil {
t.Fatal(err)
}
if port, err := allocator.Acquire(80); err != nil {
t.Fatal(err)
} else if port != 80 {
t.Fatalf("Acquire(80) should return 80, not %d", port)
}
port, err := allocator.Acquire(0)
if err != nil {
t.Fatal(err)
}
if port <= 0 {
t.Fatalf("Acquire(0) should return a non-zero port")
}
if _, err := allocator.Acquire(port); err == nil {
t.Fatalf("Acquiring a port already in use should return an error")
}
if newPort, err := allocator.Acquire(0); err != nil {
t.Fatal(err)
} else if newPort == port {
t.Fatalf("Acquire(0) allocated the same port twice: %d", port)
}
if _, err := allocator.Acquire(80); err == nil {
t.Fatalf("Acquiring a port already in use should return an error")
}
if err := allocator.Release(80); err != nil {
t.Fatal(err)
}
if _, err := allocator.Acquire(80); err != nil {
t.Fatal(err)
}
}
2013-02-22 06:34:35 +04:00
func TestNetworkRange(t *testing.T) {
// Simple class C test
_, network, _ := net.ParseCIDR("192.168.0.1/24")
first, last := networkRange(network)
if !first.Equal(net.ParseIP("192.168.0.0")) {
t.Error(first.String())
}
if !last.Equal(net.ParseIP("192.168.0.255")) {
t.Error(last.String())
}
if size := networkSize(network.Mask); size != 256 {
t.Error(size)
2013-02-22 06:34:35 +04:00
}
// Class A test
_, network, _ = net.ParseCIDR("10.0.0.1/8")
first, last = networkRange(network)
if !first.Equal(net.ParseIP("10.0.0.0")) {
t.Error(first.String())
}
if !last.Equal(net.ParseIP("10.255.255.255")) {
t.Error(last.String())
}
if size := networkSize(network.Mask); size != 16777216 {
t.Error(size)
2013-02-22 06:34:35 +04:00
}
// Class A, random IP address
_, network, _ = net.ParseCIDR("10.1.2.3/8")
first, last = networkRange(network)
if !first.Equal(net.ParseIP("10.0.0.0")) {
t.Error(first.String())
}
if !last.Equal(net.ParseIP("10.255.255.255")) {
t.Error(last.String())
}
// 32bit mask
_, network, _ = net.ParseCIDR("10.1.2.3/32")
first, last = networkRange(network)
if !first.Equal(net.ParseIP("10.1.2.3")) {
t.Error(first.String())
}
if !last.Equal(net.ParseIP("10.1.2.3")) {
t.Error(last.String())
}
if size := networkSize(network.Mask); size != 1 {
t.Error(size)
2013-02-22 06:34:35 +04:00
}
// 31bit mask
_, network, _ = net.ParseCIDR("10.1.2.3/31")
first, last = networkRange(network)
if !first.Equal(net.ParseIP("10.1.2.2")) {
t.Error(first.String())
}
if !last.Equal(net.ParseIP("10.1.2.3")) {
t.Error(last.String())
}
if size := networkSize(network.Mask); size != 2 {
t.Error(size)
2013-02-22 06:34:35 +04:00
}
// 26bit mask
_, network, _ = net.ParseCIDR("10.1.2.3/26")
first, last = networkRange(network)
if !first.Equal(net.ParseIP("10.1.2.0")) {
t.Error(first.String())
}
if !last.Equal(net.ParseIP("10.1.2.63")) {
t.Error(last.String())
}
if size := networkSize(network.Mask); size != 64 {
t.Error(size)
2013-02-22 06:34:35 +04:00
}
}
func TestConversion(t *testing.T) {
ip := net.ParseIP("127.0.0.1")
i := ipToInt(ip)
2013-02-22 06:34:35 +04:00
if i == 0 {
t.Fatal("converted to zero")
}
2013-06-04 22:00:22 +04:00
conv := intToIP(i)
2013-02-22 06:34:35 +04:00
if !ip.Equal(conv) {
t.Error(conv.String())
}
}
2013-02-25 22:45:23 +04:00
func TestIPAllocator(t *testing.T) {
expectedIPs := []net.IP{
0: net.IPv4(127, 0, 0, 2),
1: net.IPv4(127, 0, 0, 3),
2: net.IPv4(127, 0, 0, 4),
3: net.IPv4(127, 0, 0, 5),
4: net.IPv4(127, 0, 0, 6),
}
gwIP, n, _ := net.ParseCIDR("127.0.0.1/29")
alloc := newIPAllocator(&net.IPNet{IP: gwIP, Mask: n.Mask})
// Pool after initialisation (f = free, u = used)
// 2(f) - 3(f) - 4(f) - 5(f) - 6(f)
// ↑
// Check that we get 5 IPs, from 127.0.0.2–127.0.0.6, in that
// order.
2013-02-25 22:45:23 +04:00
for i := 0; i < 5; i++ {
ip, err := alloc.Acquire()
2013-02-25 22:45:23 +04:00
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, expectedIPs[i], ip)
2013-02-25 22:45:23 +04:00
}
// Before loop begin
// 2(f) - 3(f) - 4(f) - 5(f) - 6(f)
// ↑
// After i = 0
// 2(u) - 3(f) - 4(f) - 5(f) - 6(f)
// ↑
// After i = 1
// 2(u) - 3(u) - 4(f) - 5(f) - 6(f)
// ↑
// After i = 2
// 2(u) - 3(u) - 4(u) - 5(f) - 6(f)
// ↑
// After i = 3
// 2(u) - 3(u) - 4(u) - 5(u) - 6(f)
// ↑
// After i = 4
// 2(u) - 3(u) - 4(u) - 5(u) - 6(u)
// ↑
// Check that there are no more IPs
_, err := alloc.Acquire()
2013-02-25 22:45:23 +04:00
if err == nil {
t.Fatal("There shouldn't be any IP addresses at this point")
}
// Release some IPs in non-sequential order
alloc.Release(expectedIPs[3])
// 2(u) - 3(u) - 4(u) - 5(f) - 6(u)
// ↑
alloc.Release(expectedIPs[2])
// 2(u) - 3(u) - 4(f) - 5(f) - 6(u)
// ↑
alloc.Release(expectedIPs[4])
// 2(u) - 3(u) - 4(f) - 5(f) - 6(f)
// ↑
// Make sure that IPs are reused in sequential order, starting
// with the first released IP
newIPs := make([]net.IP, 3)
for i := 0; i < 3; i++ {
ip, err := alloc.Acquire()
if err != nil {
t.Fatal(err)
}
newIPs[i] = ip
}
// Before loop begin
// 2(u) - 3(u) - 4(f) - 5(f) - 6(f)
// ↑
// After i = 0
// 2(u) - 3(u) - 4(f) - 5(u) - 6(f)
// ↑
// After i = 1
// 2(u) - 3(u) - 4(f) - 5(u) - 6(u)
// ↑
// After i = 2
// 2(u) - 3(u) - 4(u) - 5(u) - 6(u)
// ↑
assertIPEquals(t, expectedIPs[3], newIPs[0])
assertIPEquals(t, expectedIPs[4], newIPs[1])
assertIPEquals(t, expectedIPs[2], newIPs[2])
_, err = alloc.Acquire()
if err == nil {
t.Fatal("There shouldn't be any IP addresses at this point")
2013-02-25 22:45:23 +04:00
}
}
func assertIPEquals(t *testing.T, ip1, ip2 net.IP) {
if !ip1.Equal(ip2) {
t.Fatalf("Expected IP %s, got %s", ip1, ip2)
2013-02-25 22:45:23 +04:00
}
}
func AssertOverlap(CIDRx string, CIDRy string, t *testing.T) {
_, netX, _ := net.ParseCIDR(CIDRx)
_, netY, _ := net.ParseCIDR(CIDRy)
if !networkOverlaps(netX, netY) {
t.Errorf("%v and %v should overlap", netX, netY)
}
}
func AssertNoOverlap(CIDRx string, CIDRy string, t *testing.T) {
_, netX, _ := net.ParseCIDR(CIDRx)
_, netY, _ := net.ParseCIDR(CIDRy)
if networkOverlaps(netX, netY) {
t.Errorf("%v and %v should not overlap", netX, netY)
}
}
func TestNetworkOverlaps(t *testing.T) {
//netY starts at same IP and ends within netX
AssertOverlap("172.16.0.1/24", "172.16.0.1/25", t)
//netY starts within netX and ends at same IP
AssertOverlap("172.16.0.1/24", "172.16.0.128/25", t)
//netY starts and ends within netX
AssertOverlap("172.16.0.1/24", "172.16.0.64/25", t)
//netY starts at same IP and ends outside of netX
AssertOverlap("172.16.0.1/24", "172.16.0.1/23", t)
//netY starts before and ends at same IP of netX
AssertOverlap("172.16.1.1/24", "172.16.0.1/23", t)
//netY starts before and ends outside of netX
AssertOverlap("172.16.1.1/24", "172.16.0.1/23", t)
//netY starts and ends before netX
AssertNoOverlap("172.16.1.1/25", "172.16.0.1/24", t)
//netX starts and ends before netY
AssertNoOverlap("172.16.1.1/25", "172.16.2.1/24", t)
}