Updated sensitivity plots and notebook for add common cause refuter (#260)

* updated sensitivity plots for add common cause refuter

* updated random common cause to include p-value and better docs for notebook

* updated getting started notebook
This commit is contained in:
Amit Sharma 2021-10-24 22:20:46 +05:30 коммит произвёл GitHub
Родитель 1bb3ac0b1e
Коммит 2a7a044091
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
3 изменённых файлов: 286 добавлений и 113 удалений

Различия файлов скрыты, потому что одна или несколько строк слишком длинны

Просмотреть файл

@ -41,7 +41,7 @@ class AddUnobservedCommonCause(CausalRefuter):
self.kappa_t = kwargs["effect_strength_on_treatment"] if "effect_strength_on_treatment" in kwargs else None
self.kappa_y = kwargs["effect_strength_on_outcome"] if "effect_strength_on_outcome" in kwargs else None
self.simulated_method_name = kwargs["simulated_method_name"] if "simulated_method_name" in kwargs else "linear_based"
self.plotmethod = kwargs['plotmethod'] if "plotmethod" in kwargs else "colormesh"
self.logger = logging.getLogger(__name__)
def refute_estimate(self):
@ -52,7 +52,7 @@ class AddUnobservedCommonCause(CausalRefuter):
:return: CausalRefuter: An object that contains the estimated effect and a new effect and the name of the refutation used.
"""
if not isinstance(self.kappa_t, np.ndarray) and not isinstance(self.kappa_y, np.ndarray): # Deal with single value inputs
if not isinstance(self.kappa_t, (list, np.ndarray)) and not isinstance(self.kappa_y, (list,np.ndarray)): # Deal with single value inputs
new_data = copy.deepcopy(self._data)
new_data = self.include_confounders_effect(new_data, self.kappa_t, self.kappa_y)
new_estimator = CausalEstimator.get_estimator_object(new_data, self._target_estimand, self._estimate)
@ -66,23 +66,24 @@ class AddUnobservedCommonCause(CausalRefuter):
else: # Deal with multiple value inputs
if isinstance(self.kappa_t, np.ndarray) and isinstance(self.kappa_y, np.ndarray): # Deal with range inputs
if isinstance(self.kappa_t, (list, np.ndarray)) and isinstance(self.kappa_y, (list, np.ndarray)): # Deal with range inputs
# Get a 2D matrix of values
x,y = np.meshgrid(self.kappa_t, self.kappa_y) # x,y are both MxN
#x,y = np.meshgrid(self.kappa_t, self.kappa_y) # x,y are both MxN
results_matrix = np.random.rand(len(x),len(y)) # Matrix to hold all the results of NxM
print(results_matrix.shape)
results_matrix = np.random.rand(len(self.kappa_t),len(self.kappa_y)) # Matrix to hold all the results of NxM
orig_data = copy.deepcopy(self._data)
for i in range(0,len(x[0])):
for j in range(0,len(y)):
new_data = self.include_confounders_effect(orig_data, x[0][i], y[j][0])
#for i in range(0,len(x[0])):
# for j in range(0,len(y)):
for i in range(len(self.kappa_t)):
for j in range(len(self.kappa_y)):
#new_data = self.include_confounders_effect(orig_data, x[0][i], y[j][0])
new_data = self.include_confounders_effect(orig_data, self.kappa_t[i], self.kappa_y[j])
new_estimator = CausalEstimator.get_estimator_object(new_data, self._target_estimand, self._estimate)
new_effect = new_estimator.estimate_effect()
refute = CausalRefutation(self._estimate.value, new_effect.value,
refutation_type="Refute: Add an Unobserved Common Cause")
self.logger.debug(refute)
results_matrix[i][j] = refute.estimated_effect # Populate the results
results_matrix[i][j] = refute.new_effect # Populate the results
import matplotlib
import matplotlib.pyplot as plt
@ -90,11 +91,28 @@ class AddUnobservedCommonCause(CausalRefuter):
left, bottom, width, height = 0.1, 0.1, 0.8, 0.8
ax = fig.add_axes([left, bottom, width, height])
cp = plt.contourf(x, y, results_matrix)
plt.colorbar(cp)
oe = self._estimate.value
contour_levels = [oe/4.0, oe/2.0, (3.0/4)*oe, oe]
contour_levels.extend([0, np.min(results_matrix), np.max(results_matrix)])
if self.plotmethod=="contour":
cp = plt.contourf(self.kappa_y, self.kappa_t, results_matrix,
levels=sorted(contour_levels))
# Adding a label on the contour line for the original estimate
fmt = {}
trueeffect_index = np.where(cp.levels==oe)[0][0]
fmt[cp.levels[trueeffect_index]] = "Estimated Effect"
# Label every other level using strings
plt.clabel(cp,[cp.levels[trueeffect_index]],inline=True, fmt=fmt)
plt.colorbar(cp)
elif self.plotmethod=="colormesh":
cp = plt.pcolormesh(self.kappa_y, self.kappa_t, results_matrix,
shading="nearest")
plt.colorbar(cp, ticks=contour_levels)
ax.yaxis.set_ticks(self.kappa_t)
ax.xaxis.set_ticks(self.kappa_y)
ax.set_title('Effect of Unobserved Common Cause')
ax.set_xlabel('Value of Linear Constant on Treatment')
ax.set_ylabel('Value of Linear Constant on Outcome')
ax.set_ylabel('Value of Linear Constant on Treatment')
ax.set_xlabel('Value of Linear Constant on Outcome')
plt.show()
refute.new_effect = results_matrix
@ -102,7 +120,7 @@ class AddUnobservedCommonCause(CausalRefuter):
refute.add_refuter(self)
return refute
elif isinstance(self.kappa_t, np.ndarray):
elif isinstance(self.kappa_t, (list, np.ndarray)):
outcomes = np.random.rand(len(self.kappa_t))
orig_data = copy.deepcopy(self._data)
@ -113,7 +131,7 @@ class AddUnobservedCommonCause(CausalRefuter):
refute = CausalRefutation(self._estimate.value, new_effect.value,
refutation_type="Refute: Add an Unobserved Common Cause")
self.logger.debug(refute)
outcomes[i] = refute.estimated_effect # Populate the results
outcomes[i] = refute.new_effect # Populate the results
import matplotlib
import matplotlib.pyplot as plt
@ -122,16 +140,17 @@ class AddUnobservedCommonCause(CausalRefuter):
ax = fig.add_axes([left, bottom, width, height])
plt.plot(self.kappa_t, outcomes)
plt.axhline(self._estimate.value, linestyle='--',color="gray")
ax.set_title('Effect of Unobserved Common Cause')
ax.set_xlabel('Value of Linear Constant on Treatment')
ax.set_ylabel('New Effect')
ax.set_ylabel('Estimated Effect after adding the common cause')
plt.show()
refute.new_effect = outcomes
refute.add_refuter(self)
return refute
elif isinstance(self.kappa_y, np.ndarray):
elif isinstance(self.kappa_y, (list, np.ndarray)):
outcomes = np.random.rand(len(self.kappa_y))
orig_data = copy.deepcopy(self._data)
@ -142,7 +161,7 @@ class AddUnobservedCommonCause(CausalRefuter):
refute = CausalRefutation(self._estimate.value, new_effect.value,
refutation_type="Refute: Add an Unobserved Common Cause")
self.logger.debug(refute)
outcomes[i] = refute.estimated_effect # Populate the results
outcomes[i] = refute.new_effect # Populate the results
import matplotlib
import matplotlib.pyplot as plt
@ -151,9 +170,10 @@ class AddUnobservedCommonCause(CausalRefuter):
ax = fig.add_axes([left, bottom, width, height])
plt.plot(self.kappa_y, outcomes)
plt.axhline(self._estimate.value, linestyle='--',color="gray")
ax.set_title('Effect of Unobserved Common Cause')
ax.set_xlabel('Value of Linear Constant on Outcome')
ax.set_ylabel('New Effect')
ax.set_ylabel('Estimated Effect after adding the common cause')
plt.show()
refute.new_effect = outcomes

Просмотреть файл

@ -1,6 +1,7 @@
import copy
import numpy as np
import logging
from dowhy.causal_refuter import CausalRefutation
from dowhy.causal_refuter import CausalRefuter
@ -10,21 +11,53 @@ class RandomCommonCause(CausalRefuter):
"""Refute an estimate by introducing a randomly generated confounder
(that may have been unobserved).
:param num_simulations: The number of simulations to be run, which is ``CausalRefuter.DEFAULT_NUM_SIMULATIONS`` by default
:type num_simulations: int, optional
:param random_state: The seed value to be added if we wish to repeat the same random behavior. If we with to repeat the same behavior we push the same seed in the psuedo-random generator
:type random_state: int, RandomState, optional
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._num_simulations = kwargs.pop("num_simulations", CausalRefuter.DEFAULT_NUM_SIMULATIONS )
self._random_state = kwargs.pop("random_state",None)
self.logger = logging.getLogger(__name__)
def refute_estimate(self):
num_rows = self._data.shape[0]
new_data = self._data.assign(w_random=np.random.randn(num_rows))
sample_estimates = np.zeros(self._num_simulations)
self.logger.info("Refutation over {} simulated datasets, each with a random common cause added"
.format(self._num_simulations))
new_backdoor_variables = self._target_estimand.get_backdoor_variables() + ['w_random']
identified_estimand = copy.deepcopy(self._target_estimand)
# Adding a new backdoor variable to the identified estimand
identified_estimand.set_backdoor_variables(new_backdoor_variables)
for index in range(self._num_simulations):
if self._random_state is None:
new_data = self._data.assign(w_random=np.random.randn(num_rows))
else:
new_data = self._data.assign(w_random=self._random_state.normal(size=num_rows
))
new_estimator = CausalEstimator.get_estimator_object(new_data, identified_estimand, self._estimate)
new_effect = new_estimator.estimate_effect()
sample_estimates[index] = new_effect.value
refute = CausalRefutation(
self._estimate.value,
np.mean(sample_estimates),
refutation_type="Refute: Add a random common cause"
)
# We want to see if the estimate falls in the same distribution as the one generated by the refuter
# Ideally that should be the case as choosing a subset should not have a significant effect on the ability
# of the treatment to affect the outcome
refute.add_significance_test_results(
self.test_significance(self._estimate, sample_estimates)
)
new_estimator = CausalEstimator.get_estimator_object(new_data, identified_estimand, self._estimate)
new_effect = new_estimator.estimate_effect()
refute = CausalRefutation(self._estimate.value, new_effect.value,
refutation_type="Refute: Add a Random Common Cause")
refute.add_refuter(self)
return refute