Use numpy tile instead of matrix (#1170)

Signed-off-by: zethson <lukas.heumos@posteo.net>
This commit is contained in:
Lukas Heumos 2024-05-04 09:44:39 -07:00 коммит произвёл GitHub
Родитель a65d3d5c56
Коммит 517a9eb587
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: B5690EEEBB952194
1 изменённых файлов: 1 добавлений и 2 удалений

Просмотреть файл

@ -1,7 +1,6 @@
from typing import Callable, List, Optional, Union
import numpy as np
from numpy.matlib import repmat
from scipy import stats
from sklearn.linear_model import LinearRegression
@ -146,7 +145,7 @@ def marginal_expectation(
# baseline_noise_samples.shape[0] * feature_samples.shape[0]. Here, we reduce it to
# batch_size * feature_samples.shape[0]. If the batch_size would be set 1, then each baseline_noise_samples is
# evaluated one by one in a for-loop.
inputs = repmat(feature_samples, batch_size, 1)
inputs = np.tile(feature_samples, (batch_size, 1))
for offset in range(0, baseline_samples.shape[0], batch_size):
# Each batch consist of at most batch_size * feature_samples.shape[0] many samples. If there are multiple
# batches, the offset indicates the index of the current baseline_noise_samples that has not been evaluated yet.