Use numpy tile instead of matrix (#1170)
Signed-off-by: zethson <lukas.heumos@posteo.net>
This commit is contained in:
Родитель
a65d3d5c56
Коммит
517a9eb587
|
@ -1,7 +1,6 @@
|
|||
from typing import Callable, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
from numpy.matlib import repmat
|
||||
from scipy import stats
|
||||
from sklearn.linear_model import LinearRegression
|
||||
|
||||
|
@ -146,7 +145,7 @@ def marginal_expectation(
|
|||
# baseline_noise_samples.shape[0] * feature_samples.shape[0]. Here, we reduce it to
|
||||
# batch_size * feature_samples.shape[0]. If the batch_size would be set 1, then each baseline_noise_samples is
|
||||
# evaluated one by one in a for-loop.
|
||||
inputs = repmat(feature_samples, batch_size, 1)
|
||||
inputs = np.tile(feature_samples, (batch_size, 1))
|
||||
for offset in range(0, baseline_samples.shape[0], batch_size):
|
||||
# Each batch consist of at most batch_size * feature_samples.shape[0] many samples. If there are multiple
|
||||
# batches, the offset indicates the index of the current baseline_noise_samples that has not been evaluated yet.
|
||||
|
|
Загрузка…
Ссылка в новой задаче