Change default parameters of ICC for speedup
Taking less samples to estimate ICC. This might lead to higher variance in the estimate, but speeds it up by multiple factors. Signed-off-by: Patrick Bloebaum <bloebp@amazon.com>
This commit is contained in:
Родитель
474c5844ec
Коммит
9b9d6093fb
|
@ -219,9 +219,9 @@ def intrinsic_causal_influence(
|
|||
prediction_model: Union[PredictionModel, ClassificationModel, str] = "approx",
|
||||
attribution_func: Optional[Callable[[np.ndarray, np.ndarray], float]] = None,
|
||||
num_training_samples: int = 100000,
|
||||
num_samples_randomization: int = 1000,
|
||||
num_samples_baseline: int = 2000,
|
||||
max_batch_size: int = 250,
|
||||
num_samples_randomization: int = 250,
|
||||
num_samples_baseline: int = 1000,
|
||||
max_batch_size: int = -1,
|
||||
auto_assign_quality: auto.AssignmentQuality = auto.AssignmentQuality.GOOD,
|
||||
shapley_config: Optional[ShapleyConfig] = None,
|
||||
) -> Dict[Any, float]:
|
||||
|
|
Загрузка…
Ссылка в новой задаче