minor updates to readme for docs
This commit is contained in:
Родитель
1018459ee5
Коммит
bf6bbabce2
|
@ -98,7 +98,7 @@ estimate (if any). Here's a sample output of the linear regression estimator.
|
|||
|
||||
.. image:: /docs/images/regression_output.png
|
||||
|
||||
For detailed code examples, check out the Jupyter notebooks in `docs/source/ <docs/source/>`_, or try them online at `Binder <https://mybinder.org/v2/gh/microsoft/dowhy/master?filepath=docs%2Fsource%2F>`_.
|
||||
For detailed code examples, check out the Jupyter notebooks in `docs/source/ <https://github.com/microsoft/dowhy/tree/master/docs/source/>`_, or try them online at `Binder <https://mybinder.org/v2/gh/microsoft/dowhy/master?filepath=docs%2Fsource%2F>`_.
|
||||
|
||||
|
||||
A High-level Pandas API
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Overview\n",
|
||||
"# Do-sampler Introduction\n",
|
||||
"by Adam Kelleher\n",
|
||||
"\n",
|
||||
"The \"do-sampler\" is a new feature in do-why. While most potential-outcomes oriented estimators focus on estimating the specific contrast $E[Y_0 - Y_1]$, Pearlian inference focuses on more fundamental quantities like the joint distribution of a set of outcomes Y, $P(Y)$, which can be used to derive other statistics of interest.\n",
|
||||
|
|
Загрузка…
Ссылка в новой задаче