reran all notebooks and fixed a few minor busg
This commit is contained in:
Родитель
aca5825aa8
Коммит
c29f299498
|
@ -59,22 +59,22 @@
|
||||||
"<table class=\"simpletable\">\n",
|
"<table class=\"simpletable\">\n",
|
||||||
"<caption>IV2SLS Regression Results</caption>\n",
|
"<caption>IV2SLS Regression Results</caption>\n",
|
||||||
"<tr>\n",
|
"<tr>\n",
|
||||||
" <th>Dep. Variable:</th> <td>income</td> <th> R-squared: </th> <td> 0.891</td>\n",
|
" <th>Dep. Variable:</th> <td>income</td> <th> R-squared: </th> <td> 0.899</td>\n",
|
||||||
"</tr>\n",
|
"</tr>\n",
|
||||||
"<tr>\n",
|
"<tr>\n",
|
||||||
" <th>Model:</th> <td>IV2SLS</td> <th> Adj. R-squared: </th> <td> 0.891</td>\n",
|
" <th>Model:</th> <td>IV2SLS</td> <th> Adj. R-squared: </th> <td> 0.899</td>\n",
|
||||||
"</tr>\n",
|
"</tr>\n",
|
||||||
"<tr>\n",
|
"<tr>\n",
|
||||||
" <th>Method:</th> <td>Two Stage</td> <th> F-statistic: </th> <td> 142.4</td>\n",
|
" <th>Method:</th> <td>Two Stage</td> <th> F-statistic: </th> <td> 160.6</td>\n",
|
||||||
"</tr>\n",
|
"</tr>\n",
|
||||||
"<tr>\n",
|
"<tr>\n",
|
||||||
" <th></th> <td>Least Squares</td> <th> Prob (F-statistic):</th> <td>8.70e-31</td>\n",
|
" <th></th> <td>Least Squares</td> <th> Prob (F-statistic):</th> <td>3.05e-34</td>\n",
|
||||||
"</tr>\n",
|
"</tr>\n",
|
||||||
"<tr>\n",
|
"<tr>\n",
|
||||||
" <th>Date:</th> <td>Fri, 08 Nov 2019</td> <th> </th> <td> </td> \n",
|
" <th>Date:</th> <td>Tue, 07 Jan 2020</td> <th> </th> <td> </td> \n",
|
||||||
"</tr>\n",
|
"</tr>\n",
|
||||||
"<tr>\n",
|
"<tr>\n",
|
||||||
" <th>Time:</th> <td>22:37:01</td> <th> </th> <td> </td> \n",
|
" <th>Time:</th> <td>14:32:06</td> <th> </th> <td> </td> \n",
|
||||||
"</tr>\n",
|
"</tr>\n",
|
||||||
"<tr>\n",
|
"<tr>\n",
|
||||||
" <th>No. Observations:</th> <td> 1000</td> <th> </th> <td> </td> \n",
|
" <th>No. Observations:</th> <td> 1000</td> <th> </th> <td> </td> \n",
|
||||||
|
@ -91,24 +91,24 @@
|
||||||
" <td></td> <th>coef</th> <th>std err</th> <th>t</th> <th>P>|t|</th> <th>[0.025</th> <th>0.975]</th> \n",
|
" <td></td> <th>coef</th> <th>std err</th> <th>t</th> <th>P>|t|</th> <th>[0.025</th> <th>0.975]</th> \n",
|
||||||
"</tr>\n",
|
"</tr>\n",
|
||||||
"<tr>\n",
|
"<tr>\n",
|
||||||
" <th>Intercept</th> <td> 8.8927</td> <td> 2.132</td> <td> 4.171</td> <td> 0.000</td> <td> 4.709</td> <td> 13.076</td>\n",
|
" <th>Intercept</th> <td> 8.3670</td> <td> 1.987</td> <td> 4.211</td> <td> 0.000</td> <td> 4.468</td> <td> 12.266</td>\n",
|
||||||
"</tr>\n",
|
"</tr>\n",
|
||||||
"<tr>\n",
|
"<tr>\n",
|
||||||
" <th>education</th> <td> 4.2154</td> <td> 0.353</td> <td> 11.935</td> <td> 0.000</td> <td> 3.522</td> <td> 4.908</td>\n",
|
" <th>education</th> <td> 4.2607</td> <td> 0.336</td> <td> 12.674</td> <td> 0.000</td> <td> 3.601</td> <td> 4.920</td>\n",
|
||||||
"</tr>\n",
|
"</tr>\n",
|
||||||
"</table>\n",
|
"</table>\n",
|
||||||
"<table class=\"simpletable\">\n",
|
"<table class=\"simpletable\">\n",
|
||||||
"<tr>\n",
|
"<tr>\n",
|
||||||
" <th>Omnibus:</th> <td> 0.127</td> <th> Durbin-Watson: </th> <td> 1.972</td>\n",
|
" <th>Omnibus:</th> <td> 0.871</td> <th> Durbin-Watson: </th> <td> 2.058</td>\n",
|
||||||
"</tr>\n",
|
"</tr>\n",
|
||||||
"<tr>\n",
|
"<tr>\n",
|
||||||
" <th>Prob(Omnibus):</th> <td> 0.938</td> <th> Jarque-Bera (JB): </th> <td> 0.200</td>\n",
|
" <th>Prob(Omnibus):</th> <td> 0.647</td> <th> Jarque-Bera (JB): </th> <td> 0.953</td>\n",
|
||||||
"</tr>\n",
|
"</tr>\n",
|
||||||
"<tr>\n",
|
"<tr>\n",
|
||||||
" <th>Skew:</th> <td> 0.009</td> <th> Prob(JB): </th> <td> 0.905</td>\n",
|
" <th>Skew:</th> <td> 0.059</td> <th> Prob(JB): </th> <td> 0.621</td>\n",
|
||||||
"</tr>\n",
|
"</tr>\n",
|
||||||
"<tr>\n",
|
"<tr>\n",
|
||||||
" <th>Kurtosis:</th> <td> 2.933</td> <th> Cond. No. </th> <td> 14.6</td>\n",
|
" <th>Kurtosis:</th> <td> 2.904</td> <th> Cond. No. </th> <td> 14.3</td>\n",
|
||||||
"</tr>\n",
|
"</tr>\n",
|
||||||
"</table>"
|
"</table>"
|
||||||
],
|
],
|
||||||
|
@ -117,25 +117,25 @@
|
||||||
"\"\"\"\n",
|
"\"\"\"\n",
|
||||||
" IV2SLS Regression Results \n",
|
" IV2SLS Regression Results \n",
|
||||||
"==============================================================================\n",
|
"==============================================================================\n",
|
||||||
"Dep. Variable: income R-squared: 0.891\n",
|
"Dep. Variable: income R-squared: 0.899\n",
|
||||||
"Model: IV2SLS Adj. R-squared: 0.891\n",
|
"Model: IV2SLS Adj. R-squared: 0.899\n",
|
||||||
"Method: Two Stage F-statistic: 142.4\n",
|
"Method: Two Stage F-statistic: 160.6\n",
|
||||||
" Least Squares Prob (F-statistic): 8.70e-31\n",
|
" Least Squares Prob (F-statistic): 3.05e-34\n",
|
||||||
"Date: Fri, 08 Nov 2019 \n",
|
"Date: Tue, 07 Jan 2020 \n",
|
||||||
"Time: 22:37:01 \n",
|
"Time: 14:32:06 \n",
|
||||||
"No. Observations: 1000 \n",
|
"No. Observations: 1000 \n",
|
||||||
"Df Residuals: 998 \n",
|
"Df Residuals: 998 \n",
|
||||||
"Df Model: 1 \n",
|
"Df Model: 1 \n",
|
||||||
"==============================================================================\n",
|
"==============================================================================\n",
|
||||||
" coef std err t P>|t| [0.025 0.975]\n",
|
" coef std err t P>|t| [0.025 0.975]\n",
|
||||||
"------------------------------------------------------------------------------\n",
|
"------------------------------------------------------------------------------\n",
|
||||||
"Intercept 8.8927 2.132 4.171 0.000 4.709 13.076\n",
|
"Intercept 8.3670 1.987 4.211 0.000 4.468 12.266\n",
|
||||||
"education 4.2154 0.353 11.935 0.000 3.522 4.908\n",
|
"education 4.2607 0.336 12.674 0.000 3.601 4.920\n",
|
||||||
"==============================================================================\n",
|
"==============================================================================\n",
|
||||||
"Omnibus: 0.127 Durbin-Watson: 1.972\n",
|
"Omnibus: 0.871 Durbin-Watson: 2.058\n",
|
||||||
"Prob(Omnibus): 0.938 Jarque-Bera (JB): 0.200\n",
|
"Prob(Omnibus): 0.647 Jarque-Bera (JB): 0.953\n",
|
||||||
"Skew: 0.009 Prob(JB): 0.905\n",
|
"Skew: 0.059 Prob(JB): 0.621\n",
|
||||||
"Kurtosis: 2.933 Cond. No. 14.6\n",
|
"Kurtosis: 2.904 Cond. No. 14.3\n",
|
||||||
"==============================================================================\n",
|
"==============================================================================\n",
|
||||||
"\"\"\""
|
"\"\"\""
|
||||||
]
|
]
|
||||||
|
@ -163,16 +163,17 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"WARNING:dowhy.causal_model:Causal Graph not provided. DoWhy will construct a graph based on data inputs.\n",
|
"WARNING:dowhy.causal_model:Causal Graph not provided. DoWhy will construct a graph based on data inputs.\n",
|
||||||
|
"INFO:dowhy.causal_graph:If this is observed data (not from a randomized experiment), there might always be missing confounders. Adding a node named \"Unobserved Confounders\" to reflect this.\n",
|
||||||
"INFO:dowhy.causal_model:Model to find the causal effect of treatment ['education'] on outcome ['income']\n",
|
"INFO:dowhy.causal_model:Model to find the causal effect of treatment ['education'] on outcome ['income']\n",
|
||||||
"INFO:dowhy.causal_identifier:Common causes of treatment and outcome:['U', 'ability']\n",
|
"INFO:dowhy.causal_identifier:Common causes of treatment and outcome:['U', 'ability']\n",
|
||||||
"WARNING:dowhy.causal_identifier:There are unobserved common causes. Causal effect cannot be identified.\n"
|
"WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"WARN: Do you want to continue by ignoring these unobserved confounders? [y/n] y\n"
|
"WARN: Do you want to continue by ignoring any unobserved confounders? (use proceed_when_unidentifiable=True to disable this prompt) [y/n] y\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -182,17 +183,17 @@
|
||||||
"INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:['voucher']\n",
|
"INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:['voucher']\n",
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Instrumental Variable Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Instrumental Variable Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:Realized estimand: Wald Estimator\n",
|
"INFO:dowhy.causal_estimator:Realized estimand: Wald Estimator\n",
|
||||||
"Realized estimand type: ate\n",
|
"Realized estimand type: nonparametric-ate\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
" \n",
|
" \n",
|
||||||
"Expectation(Derivative(income, voucher))⋅Expectation(Derivative(education, vou\n",
|
"Expectation(Derivative(income, voucher))⋅Expectation(Derivative(education, vou\n",
|
||||||
"\n",
|
"\n",
|
||||||
" -1\n",
|
" -1\n",
|
||||||
"cher)) \n",
|
"cher)) \n",
|
||||||
"Estimand assumption 1, treatment_effect_homogeneity: Each unit's treatment education isaffected in the same way by common causes of education and income\n",
|
"Estimand assumption 1, As-if-random: If U→→income then ¬(U →→{voucher})\n",
|
||||||
"Estimand assumption 2, As-if-random: If U→→income then ¬(U →→voucher)\n",
|
"Estimand assumption 2, Exclusion: If we remove {voucher}→{education}, then ¬({voucher}→income)\n",
|
||||||
"Estimand assumption 3, Exclusion: If we remove {voucher}→education, then ¬(voucher→income)\n",
|
"Estimand assumption 3, treatment_effect_homogeneity: Each unit's treatment ['education'] is affected in the same way by common causes of ['education'] and income\n",
|
||||||
"Estimand assumption 4, outcome_effect_homogeneity: Each unit's outcome income isaffected in the same way by common causes of education and income\n",
|
"Estimand assumption 4, outcome_effect_homogeneity: Each unit's outcome income is affected in the same way by common causes of ['education'] and income\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -203,43 +204,41 @@
|
||||||
"*** Causal Estimate ***\n",
|
"*** Causal Estimate ***\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Target estimand\n",
|
"## Target estimand\n",
|
||||||
"Estimand type: ate\n",
|
"Estimand type: nonparametric-ate\n",
|
||||||
"### Estimand : 1\n",
|
"### Estimand : 1\n",
|
||||||
"Estimand name: iv\n",
|
|
||||||
"Estimand expression:\n",
|
|
||||||
"Expectation(Derivative(income, voucher)/Derivative(education, voucher))\n",
|
|
||||||
"Estimand assumption 1, As-if-random: If U→→income then ¬(U →→voucher)\n",
|
|
||||||
"Estimand assumption 2, Exclusion: If we remove {voucher}→education, then ¬(voucher→income)\n",
|
|
||||||
"### Estimand : 2\n",
|
|
||||||
"Estimand name: backdoor\n",
|
"Estimand name: backdoor\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
" d \n",
|
" d \n",
|
||||||
"──────────(Expectation(income|ability))\n",
|
"────────────(Expectation(income|ability))\n",
|
||||||
"deducation \n",
|
"d[education] \n",
|
||||||
"Estimand assumption 1, Unconfoundedness: If U→education and U→income then P(income|education,ability,U) = P(income|education,ability)\n",
|
"Estimand assumption 1, Unconfoundedness: If U→{education} and U→income then P(income|education,ability,U) = P(income|education,ability)\n",
|
||||||
|
"### Estimand : 2\n",
|
||||||
|
"Estimand name: iv\n",
|
||||||
|
"Estimand expression:\n",
|
||||||
|
"Expectation(Derivative(income, [voucher])*Derivative([education], [voucher])**\n",
|
||||||
|
"(-1))\n",
|
||||||
|
"Estimand assumption 1, As-if-random: If U→→income then ¬(U →→{voucher})\n",
|
||||||
|
"Estimand assumption 2, Exclusion: If we remove {voucher}→{education}, then ¬({voucher}→income)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Realized estimand\n",
|
"## Realized estimand\n",
|
||||||
"Realized estimand: Wald Estimator\n",
|
"Realized estimand: Wald Estimator\n",
|
||||||
"Realized estimand type: ate\n",
|
"Realized estimand type: nonparametric-ate\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
" \n",
|
" \n",
|
||||||
"Expectation(Derivative(income, voucher))⋅Expectation(Derivative(education, vou\n",
|
"Expectation(Derivative(income, voucher))⋅Expectation(Derivative(education, vou\n",
|
||||||
"\n",
|
"\n",
|
||||||
" -1\n",
|
" -1\n",
|
||||||
"cher)) \n",
|
"cher)) \n",
|
||||||
"Estimand assumption 1, treatment_effect_homogeneity: Each unit's treatment education isaffected in the same way by common causes of education and income\n",
|
"Estimand assumption 1, As-if-random: If U→→income then ¬(U →→{voucher})\n",
|
||||||
"Estimand assumption 2, As-if-random: If U→→income then ¬(U →→voucher)\n",
|
"Estimand assumption 2, Exclusion: If we remove {voucher}→{education}, then ¬({voucher}→income)\n",
|
||||||
"Estimand assumption 3, Exclusion: If we remove {voucher}→education, then ¬(voucher→income)\n",
|
"Estimand assumption 3, treatment_effect_homogeneity: Each unit's treatment ['education'] is affected in the same way by common causes of ['education'] and income\n",
|
||||||
"Estimand assumption 4, outcome_effect_homogeneity: Each unit's outcome income isaffected in the same way by common causes of education and income\n",
|
"Estimand assumption 4, outcome_effect_homogeneity: Each unit's outcome income is affected in the same way by common causes of ['education'] and income\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Estimate\n",
|
"## Estimate\n",
|
||||||
"Value: 4.215372803795959\n",
|
"Value: 4.2606685045720365\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Statistical Significance\n",
|
"## Statistical Significance\n",
|
||||||
"p-value: <0.001\n",
|
"p-value: <0.001\n",
|
||||||
"\n",
|
|
||||||
"## Effect Strength\n",
|
|
||||||
"Change in outcome attributable to treatment: nan\n",
|
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
@ -278,7 +277,7 @@
|
||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.5.2"
|
"version": "3.6.9"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
|
|
@ -104,12 +104,12 @@
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANMAAAASCAYAAADBs+vIAAAABHNCSVQICAgIfAhkiAAABmFJREFUaIHtmmtsFUUUx38gICoIPlBiRBECWi2KRAVU4BZjP2BI8JHoByIaS0LEBypExSDVRK1KCIgagSgGJH7QBI1RQQSVh6KiEIICovRWYqVaoYhKS4X64Zzlbrcze3dm7/1i7j/ZzL3z+p89O49zzgyUUEIJRcEtwAJgPfAn0Aa8kbLP64AVwD6gBagHVgHjQnXOAKq03o/AYeAgsAG4C+hcAI4APu94LvCa9tsCZIF5wGmW+j4czwJrgL3I++8HtgCzEf1E4aOzrMpievblkc9Fx52AycCXwF/A38BmYIpFLhMmhmSrKhBHIcZ3PrmOY6tWOgTs8CQL4zntYy+wCHgaWAx8q2UBpmi9emA58AwyeJs0/21EeWk4Ari+40CgQeu9A9QAa/X/TswD3UePR4BNyHvXIB/9a237C9AvUt9HZ1ktrzY802Nkc9Xxcq3foPXmA99r3tIYngD9VM5D2AetD0fa8Z1EruOoAAYhHyHjQRbGZG3/OtDNUN419HssMJ6OK0pf4Gft5+aUHAFc33GV1rk3kj9X818pAAdAd0v+U9r+5Ui+j86y+rjAVcc3av09wJmh/G7Ae1p2UwxfJ+Bj4CfgecyD1pcjzfhOIpcVrmRhnAj8BtRh/gAumKlyLCgCR4b4dxyo5bV0HLQ9yZkXp6TgyIfLtP1qhzY2nWVxm0w+Ol6q3FMNZUO1bG1M+/uBY8BoZMc0Ddq0HOD+XfLK1SVhR664HuiD+BXHgBuAcqAZ+Ar4wqGvVk3/LSKHDRWafqQcYRwCNgKVwAjE3ykGxmu6zaGNTWcgE2QicB6yEGwD1gFHDXV9dNxX0z2GsiBvFDI5j0TKyxATd77KNNbQR1oOHySSq1iT6UpNmxEnujxSvg5xBn/P008X4Hb9vbJIHHG4UNMfLOW7kck0mMJNpulAD6AXcAVwLTLgaxK2j9MZyEBcFsmrBe4EPovk++i4UdMLDNwDQjIOQHzOsNzLEBN1pqFtGL4cPkgsV9LIiivO0nQGsh2OQsyiS5FVfjTwVoJ+apAP+AHiuxSDIw69ND1oKQ/ye6fkCWM6EsGbhkyklciETbooxOlsCRKV64uYpkOAhUB/4EPEpAzDR8fva/ogcHoovyvwROh/NBL6OHA5cAcSmYyDL4cPXOSyIoO/rb9Q2zYjHyqMk5GoUBswMqaP+7TODtorrJAcGeLfcRHxjmYQHHg0BYcNZyOO9i4kYjcsQZt8OrNhjrZbEcn30fEJyAIQhNsXIubRd0i4v07LhofaDEdM0mhksBqz/n04osiQ/7s4yVWsnalJ0y10dHj/IbdiXmVpfw+5UGcFoqBCcyRBsPP0spQH+U2W8jRoQAZ3JRJ+zxdSTqIzG4KI5OhIvo+OjyJ+3iPIbjpJn93A1YivCRLYADGjliKm9KyE8rpy+MBZrmJNpl2a2gbZAU1PMpRNQ6JQ25FBYTtMTMORFAHHYEv5IE1tPlUhUIdMkEtoHwYOI6nObAhMyGhU0lfHrcgh9BAk5N8bmIBMyEGIz1OrdXsg+i1DdsDwQfJsrbNY/8/z5PCBs1zFCkCsUZKLkQkbjYQFjmz0ZR9GbP6tSCSpETt8OVzwiaaVBo6ewDXICr0pBUcSnKOpKeLmojMbRmgajY4VWse3IRG2N0N5LcCrlvrDEH9lAzKxk0RoTRw+KKhcGZLdDrgI8+Hou9r+gUh+JfJRDtDefJql9TeT3N535YgiQ3EObV05Blvk7EzOL9toKHfRWRnm87D+iHnUhjla5aPjUw39DEV2wP3kFod8qMbus6blyOAfEzDKFd2ZJugDuVj+SOT0G2TVC187WQOcj4Qos5G+piKzdy5yPrFF601AVtgqcj7JJOBJzV+PONJRZENy+HD4vuPdwOfAC0gkbAfimFYg5t1jBlldOcYh14E2IKv8H0gAYgwS3t2H3EQIw1VntwIPIeHsOsSvGIjorTsS/Ztj6MNHx6uRyNd25SnTtocRX6fewOMKHw7X75IK1dgvQrbRccJkNb+/pb8+iC1fhxyeNSJOdTQokI+3Dfg0JYfvO4LcyVoC/KocdcRfdHXlKAdeREy1RiSCdBC5m1eNedfJxxHV2RjE9NmJ+ECtyCq+GjmXst19BHcdzwC+UZ4WxHx8Cbkw7IJq7DuTD0fQn8u3d5WrhBJKKKGEEkoooYT/F/4Dcf7XhZdc+j0AAAAASUVORK5CYII=\n",
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANMAAAASCAYAAADBs+vIAAAABHNCSVQICAgIfAhkiAAABjtJREFUaIHtmnmIV1UUxz/mqNNi2qINkWUNLVOZVuRSaD8VhxYMs5XIbBkjsrJNssWYgkBMRLOokawowT/6Q0yyzMxyacNQ2jQt/Y2Kik2maepk0/THOY/f8/3ue+/etxDB7wuP++Oe713OOe/ed+65P6igggpywY3ALGAF8AfQDsxN2edwYD6wE2gFtgOLgWt8nJOABuX9DBwE9gIrgXuAo0L6LuocTc9OA//OCL73tKXge0hixyRtOgDjgK+A/cCfwGrgPsptltTGAKcBbyC+a0XsPgM4IYRfxM0vrrpAMnslmVcQt/vaNPgFVQHiM0BfVWYbcJ7lAGGYCkzUvt4DWoAewKVAAVikvJuAV4EdwDJgC3AKMBp4HbhaOe2GMfYijg1iv6FuLfBcyFwHA8OAD1LwPSSxY5I2c4HbgF3APOAAMAKx5eXAHT5uUhvXAp8DPYEFwHqgPzABuAq4AvjNMDcXv7jqAsnfVdd5+dELeFm5x8WRhwJnI7tEgXRfpnHa/i2gs0Heyfd7GDCS8h2oBnF6O3CDoY+iPlngCx3nugz4Sezo2uZ65WwCTvbVdwYWqmy0rz6pjRer7MFA/XStf83QpoibX1x1gWQ2dp2XHx2Aj4FfgBcxfJmiUCD5YuqC7DDNmBeSC57SecwyyIpks5j66BjbgI4Z8wu429GmzdvKGW+Q9VPZJ5bjhdm4Vus3U74Iu1IKx44NyIq4+SWtLgXyX0wTgH+AIUAjFmFeVhiBhHMzdALXAhcCh4CvkV3dFoe1/DtE3gWJY09HHPstsBzzWSYM92o5x7KdKz8P1Gi5ySDz6gYjm9lfMX2F2Xiolh8hfvRjH7AKqAcGAksDche/ZKlLHJK8L3XAFGCmcoeZSHktpsu0PASsQRaSH8uRA+SvMf1UUYqVPwzh1ADvBOo2A3cBn1nM9WjEuG3I2SFrfl5o0fJMg+wsLav09/qIfqJsfK6WG0LabkQW0zmULyYXv2Sliw1c35cq5W9BvuChiMrgpEFPLScin8PBSFhwEbLLDQHetehnCrIQFyGxexBvItnCGiTU6AM0Ab2RxEBfizFuBrojL9LWHPh54X0tHwVO9NV34sikSVjGzUOUjbtpuTekrVffPVDv6pesdIlDkvflWeBiJLN7MOnABZKfmZq07SFkon4cg7yE7cCgiD4eUs46jjSwDaZp2/kW3FXKHWnZtyu/QD5npo7IgvbSuk1IGPIDsBs5r7YDAyL6iLPxbKIP2i+o/MmIMfwI80taXQqkS5aFzWsAEvpODdQ3YrBLXl+mPVquofzAd4DSDtg/pP0DiDF/ROL23Y7jexmmITG8C5C06zZKafos+XmiDVnQk5Bweaw+G5E57lPerpD2Njb2vjzdDDJ//Z4QeRBhfkmrS1qY5lWFJEY2AJPTDlAg+Wq/W9ua7mCglFqcZJA9rLLvKIWLruhG6csYhZnKa7Ts15UP+X2ZolCNXK6GnUltbdygvKYQuZc2H245L1u/+BGnC6S3l2le3Ym/sPeeGZBfAmKpDnI+8vULZoK8hMTmQP0TSAy/FskItpAMA7U0ZYc8VANjkF1xjkWfrvz/Ercima95BpmLjZdpWU+5H7siF7YHgC8t52XjlyCidMkKpnm1Eu7nS5Bz1ErgJyyy0wXiV3stcvPcySBboO0fCdTXI075nSPDh8nKX43dGamO8vsNkDPaRu0rKvsyRjkLLcZKwvdQIL8v0/GGun7ILr4bODUgc7UxuF/aJvWLqy5+FIi3V9r3xY9GLO6ZRukDpdz/IORfDCC72OM+/lLgDCSlWQz0NR5ZvdORe6Y1yhuF7O4NlGLyscDzWr8CORgHUfTNA+AW4DEkzd6MxNW1OlY1cqaZZujHg3dXNDuCk5TvasekbZYgGabvEf3rEP0PImeQ7T5uEhsD3I/8neglJJxbhxzMhyLniacD/KR+cdEF3O2V9n1xRiPRsWExwC9qfe+Q/nogt+rNyGVbC5IxCSYe4sZtBz4NtLkS+fSvRw7Ah5FdbAlyb9IhQs867XMrdv94cOU3xuhSzKjNROAbRP9WJEx5Bfljqmv/Jht76IWklXcgfmwm/I+uSf3ioouNPsWM5hU1tvXfiSqooIIKKqigggoq+N/iX2Wlomzc4KF+AAAAAElFTkSuQmCC\n",
|
||||||
"text/latex": [
|
"text/latex": [
|
||||||
"$\\displaystyle 1.626101325694914$"
|
"$\\displaystyle 1.625771192059154$"
|
||||||
],
|
],
|
||||||
"text/plain": [
|
"text/plain": [
|
||||||
"1.626101325694914"
|
"1.625771192059154"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 4,
|
"execution_count": 4,
|
||||||
|
@ -267,12 +267,12 @@
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAMYAAAASCAYAAAAANKFkAAAABHNCSVQICAgIfAhkiAAABuVJREFUaIHt2musXVURB/Bf8VYrWPEBcqMSpVeRqxAqKI8IegvSRBBS8RGjIEZbRVHR8PIR442JkfpogKoIATQq0UQsIBCEWjE8FCPaxlYUi7SWpjZaq4JSqbfih1mbs+/ufp57+u38k5Ods2bWmjWzZ601M2szxBBDtMILcQ224HFsxCV4dsdxZmEJfoF/4d+4D2djrwLvu/FEw29XiYy3YDnuwiOJ7zst5nYKbsdm7MBD+D6ObdH3jNycFg9QRlddnpvkX48Hk4x/4m681+BsnOHEJGur8IstuA0n1/TJ0NZmbX2vq+4ZlmIVHk59tmM1PpPGfBKzCh3H8DM8Dzfi9zgKC/AAXoO/1SiWx7V4B/6CH+IxnIRxfBvvyvHOx6KKcY7HCbgFbyzQ1uBwsfA245Ak94yaeS3FhUmPG7ANL8FpGEnzqnLIA7EWT8EzxMK/akAyuupyNi7Hn3EHNuEAnI598QO8VTgj/dsYvoAL0rxuTfrsjyPx46RrFdrarIvvddU9w078GvcLv9wHx+BVYjEeIxbNbrgtDfbhQvuy1P71GgPk8abE/xD2y7U/FTcl2uktx/p54j+thLYALxULfELzLjsqdsWt4gUUx8rmXIZZwgn+iC+q3v36ldFVlxNwqt13x1HhKE/gzTX986iz8ZJE+6Z4f0XMrhm3rc3o5nv96j6nQvbnUp+vlRHHEnFDicC5euHQPhWD5/GtNNY5JbT5ifaTFuMclng3ix2nDhOanenoxHNjBf0RPFpBOxf/w2sxqfolz0RGhgntw8IyfDL1X96Ct87GTxM765+UL4omtLXZIH2vi+4ZDk99VmYN+UksSM/bhTJ5PIp7sLc4bpowmp5lO2PWdrxmY78vPa9WH/+2xXpxnB5l+klGvLy5YocrYhwX41LcuYdkDBL/Tc+pFrx1Nj5JhEwrhE+cgouEwzflY11sNkjf66J7hlPT8zdZw0iO+LL0/ENF5/VYiINFAlOHbel5UAltXk72PBFLluHpIr7epTwm7QfbxYtdJuLMG0TcOibCiJV4f6HPiMiJNondaE/IGCSyHAZ+1MDbZONXp+d/RJJ6aIF+pyga/LVkDl1sNijfa6v7+SLf2VfkF8eJRXFxGfOV6mPALA77RI3ADO9MvA/iObn22SLEyCoUdbvOWYnn5hby6BZ+LBIOnK/IrBfFgiI+KxwnP9dJzRWWLjKKmNB/KPWl1PeWFrxNNr480aeE4xwnHOowvZzgpyX9utpsUL7XVvetpr+XW0Xy/iSqylozxfeE4cbErnmFOFLXiBBqU+IrHpt5ZEf8FQOe24W4TiSTYyJuPVKEeNeKCkyGo8WO92WRoO4JGYPER3CeOIXPbMHfZOPMP6bEaXe3iPfXigLLZrzO9AXQr81mii66j4rCwKgoAs0TJ+IRZcxZ1eC8isG+kugfaDnR2SKkWCuO4n+IsOIQrEtjlYVa8IpEf1hz0p1hQvMum/GsKKHtLV70LmGoEVEmvF8koXlMqt7hushommeXE+NDqc9v9XK8OrSx8dLEU+XgVyX6uel/vzabqe911b2IF4l7k3VlxMVp8KrdIzs6T+xDcB5z0iSKcWkelyZZkx3GndDsTNlRWywJZlihV+p7luYLsex3SZ8yZqJLHh9N/GvtXiKuQhsbv0cv1ChD5tAfT//7tdlMfK8f3cuwOo2zH9OT7zvSc6E4QvNhzlxxwfIY7p2BcHi7qEZ9t4I+RxyFu0SlZJDIdrH9K+hZ+06xeKvkH4FXitDiAdN31C4yBoGLRNK4RlSRttWzo72NVwlnebndfYJeMr4hPfu1Wb++14/uVXh+epZWP7te8I2J0KjskueZJW3zxUmxPTeRIs5Msm6qoFdhQvMu+7bEsxUvKNDeIF7IDoXPA0owqTosGISMCe1OjE8nvvtML3I0oYuNs2LJxwrtC4UufxfVnSZMGtwFH911P7hinnvpJff3ZI0jBaYPimv5y8Sx9TuRTC0QpbRPFfhXifjsIPFdSx4rhQOsE7XocVEH3yHqxlsqFMgSwisr6Hks0vvMIYstjxVJL7GDnJ/jv07cIbxe6JZ9+zMuPoWYJcKCtp+9lKFfGV11OUuv+nOXSD6L2Jjrn0cXG58jdvpl4v2tFu97UZK9WHynNFN08b1+dD8Znxcn1gZh/wNE8WCeeEdL6iZ4IL4hvkPZKW49qz4i3ChW2otLaBfgVyLpflxUZL4qPhSrwrhuSfek+jh2Y0mf2SIuvVfcQk+J292bxS7YBpncqt2vHxlddWniryqldrUxEf4tF76wUyzS68UlZltk860rcbf1vWysLrofKpL4NWn+U2JB/zKN1+XEHWKIIYYYYoghhhiiGv8HTa2/2I1UkJ4AAAAASUVORK5CYII=\n",
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAOAAAAASCAYAAABCd9LzAAAABHNCSVQICAgIfAhkiAAAB6NJREFUaIHt2m2wVlUVB/AfCokoWRnBVE4SQt7EAalAJ82LJTNJOGSvU5k1ZdmrNakUTcOdZprEHKayssxeJnP6UPmSmimZhZJWVkyhQlhckiGmCF8wEARvH9Y+8xzOc869zznPvU0fnv/MM/vetffaZ+393y9rr73poYce/m/wRlyBu/A4hvD9Lup7Ib6NbdiLQXwRz64ovxi3Yyv24G/4IU4Z5htNdPJ4h2jnEN5bkr8Sd+DhVP9O/BErcHRFnU10BnN2FH/bK3TG4Xz8Bk/gP7gPF+CQCp26nDSxq+k46pTLdw1jU/Y7UFJ/XV6OFmPiejyUdB7D3XiP6j6GVye97aKft+E2nJUvNK6gtA5zBJlbcTyuFYO0Lmbg13gebsQGzMdCbMQr8e9c+ZW4JMluwA4ch7MxHu/UTmITnTyOwZ9xKI4Ug/nqQpl9+AMewD9xBE7Gy0WnniwI7VZnEM8Sk6GIJ3B5ifxavC194yfYjTPRh2tE+/Ooy0lTu5qMozpczsXSinpOwxm4Ba8r5NXl5QJciX/gTvwdU3EOjsKP8SYx4fO4DBentt+a2jIFL8PPUztLsRAzxcTs190OeFvS/0hBvirJv56TTRMr1nYxOIo2DYnVUJc6eYwTnfFXfEH1DjixQv9zSedro6QzmH6d4vVabXxuTv4M3JTyzino1OGkqV3UH0fdcpnHPan82SV5dXk5A0u073TTxGQcwhsKeecn+XcFF0VMqLChDf2aT8AZSXezduMna7lLRyTZglT+xor6HseugqyJTh4X4mm8CgOqJ2AV5iSd1aOkM6jeQP9equtDJXlzU94vcrK6nDS1q4h+I4+jbrnMcGKqZ6vwajpFEy6XJ50rcrLDxM66Rfnka8NwPmw3WJjS28Ugz2MX1mKS2PJhk3AP5jt4NScmyGSxW+XRRCdDHy7Fl7Bm+KZUYklK/zSKOocJN225WCAWqh5I01JatjNkstO0BkJdTpra1QTdcJnH+1L6LeVnwCo04fKplO7Pyc4UruZ1oo8XY5nos9KYxPgaH6yDl6T0LxX5m7AIs8SheKcwdJXwz28QZ4EZwpVYjfcX6miiQ7T5GuFCLK/RpovEOfEocWY4VRB26SjqTEu25bEZ78avCvIdKZ1eUs+LUzo+/b1BfU6a2tUETbnM43CxSBzQfo4vogmXeWRnUvhZTv6KlD4pgjuzC3prRIDqX518pF9zF/Qqw7t0mc/9qYJ8qSAjH83aJAINVair81lBUn5FGhjBXuJ8kv/GreJAPhzq6KwQZ46pYieaLc5kT4vgypxC+benOh/Cc3LyCcKVy76ZtbMpJ3XtKqJf5+OoCf8Zzkvlb+6gbBMu87g86d1SkF+Z5PvFhD5VTPQTtc7fv+z0I/3+txPwEmH4KrFqT8I8LcMvK6mnrs6CVL4oHxjB3jymigDIRhE5mzdGOhkysq8vyA8Vq292HfAN4VLfLwbxlpS3IJVvOgHr2lVEv87GURP+81ibyi0ZoVweTXj5aPrOgw5e+AgOhsQOeGwhb5KIsOYXxWHRr/kEzKKKn6jI/0rK/0DhW9eVlJ0kDtUHtFyrJjrjRUc/IM40eQyoH4R5kbjfWT/GOscJ24rXA8Rut0xcpTyJR4X7dnz6xpCWi1qXk27syqPfyOMoK1OH/zxOSPoPa3Y27ZSXD6fv3K91Bs9jZcq/p0L/6pR/YSYYqyDMxpTOqsifmdLsPJLd19xZUnY3fitsPSknr6tzZLKnTwzWvAuyIpX5Zvq/7M6riC1iMp+gPXAwmjrZeaEYnSQCASuFizNR3NctFVHLmeKcuDmVrctJN3bVRRP+82gafMnQCS8fExHP9SIIVfYIIevjRyvqeCSlh2eCsQrCZB25SHRcPuo2WVz47sa9SZbtSFMq6svk+3Kyujp7BUFlmCfIvVt0YtUKVsTzU1qH9Lo6WVSy03sweKuIfv4gJ6vLyVjYVYUm/GeYiHNFf1bx2wmG42WZCNCsE5HOHSVliODVEF6qvY9pBWU26wD9RnYdZgh3p+xysc6l75u1zjIvKJR/rWjIHgc/F2qiU4UB5S7oLBEpK+IQrTPT2lHQ6VO+kxwrghBDyiO2zyyRzRW7006tQZWh7kV8U7vy6DfyOOqGy3OT7k0j2NGEF/hMyrtP+5mvDFkA7OMF+SLRjkfydhR3wKVaT3wyH/cUcatPzPyLcuXvEP7zdO2XtR8Uz56+LN7FPSgCAguFm/PpXNkfiXue16Ry2Ru6PuGejMMnHXzeaKJTF2fh82Jn3JzqmorTxXlku3j50K3OW8TZbI1wh3aJxW2xWOF/qvzJ12oxMNcnnb6ks0cEI7YVytfhpBu76o6jbrjM3M+rSvLyaMLLeVpR87tEAKaIwVy7iIcRJ4lFbbG4jpgu+uOAWOQfqzJyQPuj1vxvsOTjQ9ojPhmOwXfEW7p9gsSqh78ThJ99r3j5sF+8KrhZrB5laKJThgHlO+BsEZxYJwbNftF5v0s6ZStiE53Thbu4QZwfnhK72Gpx31R8s5vhYvw+6ewV7uBXxYPrKtThpKldA+qNI5px2afz4EsTXkZqR9W1whRxXtwi+niHWFTmj2BjDz300EMPPfTQQw89jDX+C3WMMnzb7dZiAAAAAElFTkSuQmCC\n",
|
||||||
"text/latex": [
|
"text/latex": [
|
||||||
"$\\displaystyle 0.97184812764023$"
|
"$\\displaystyle 1.0884335905187326$"
|
||||||
],
|
],
|
||||||
"text/plain": [
|
"text/plain": [
|
||||||
"0.97184812764023"
|
"1.0884335905187326"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 9,
|
"execution_count": 9,
|
||||||
|
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
Различия файлов скрыты, потому что одна или несколько строк слишком длинны
|
@ -86,62 +86,62 @@
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>0</th>\n",
|
" <th>0</th>\n",
|
||||||
" <td>1.0</td>\n",
|
" <td>1.0</td>\n",
|
||||||
" <td>0.983071</td>\n",
|
" <td>0.701982</td>\n",
|
||||||
" <td>0.029604</td>\n",
|
" <td>0.024579</td>\n",
|
||||||
" <td>-1.906000</td>\n",
|
" <td>0.192484</td>\n",
|
||||||
" <td>0.475283</td>\n",
|
" <td>1.453203</td>\n",
|
||||||
" <td>0.421236</td>\n",
|
" <td>1.225925</td>\n",
|
||||||
" <td>-0.122511</td>\n",
|
" <td>-0.475766</td>\n",
|
||||||
" <td>True</td>\n",
|
" <td>True</td>\n",
|
||||||
" <td>8.221879</td>\n",
|
" <td>13.572196</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>1</th>\n",
|
" <th>1</th>\n",
|
||||||
" <td>1.0</td>\n",
|
" <td>0.0</td>\n",
|
||||||
" <td>0.944483</td>\n",
|
" <td>0.242941</td>\n",
|
||||||
" <td>-1.167641</td>\n",
|
" <td>1.225778</td>\n",
|
||||||
" <td>-1.361756</td>\n",
|
" <td>-1.566807</td>\n",
|
||||||
" <td>0.998510</td>\n",
|
" <td>1.107805</td>\n",
|
||||||
" <td>2.293422</td>\n",
|
" <td>1.132326</td>\n",
|
||||||
" <td>-0.370670</td>\n",
|
" <td>0.688376</td>\n",
|
||||||
" <td>True</td>\n",
|
" <td>True</td>\n",
|
||||||
" <td>10.892375</td>\n",
|
" <td>13.946462</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>2</th>\n",
|
" <th>2</th>\n",
|
||||||
" <td>1.0</td>\n",
|
" <td>1.0</td>\n",
|
||||||
" <td>0.003035</td>\n",
|
" <td>0.883972</td>\n",
|
||||||
" <td>-1.887080</td>\n",
|
" <td>-1.777568</td>\n",
|
||||||
" <td>-0.957847</td>\n",
|
" <td>-1.565806</td>\n",
|
||||||
" <td>-0.082439</td>\n",
|
" <td>0.001832</td>\n",
|
||||||
" <td>0.708058</td>\n",
|
" <td>1.759653</td>\n",
|
||||||
" <td>2.471659</td>\n",
|
" <td>0.634530</td>\n",
|
||||||
" <td>True</td>\n",
|
" <td>True</td>\n",
|
||||||
" <td>11.262836</td>\n",
|
" <td>11.779975</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>3</th>\n",
|
" <th>3</th>\n",
|
||||||
" <td>1.0</td>\n",
|
" <td>1.0</td>\n",
|
||||||
" <td>0.567655</td>\n",
|
" <td>0.918023</td>\n",
|
||||||
" <td>-0.891603</td>\n",
|
" <td>-0.648299</td>\n",
|
||||||
" <td>-0.462353</td>\n",
|
" <td>-0.682472</td>\n",
|
||||||
" <td>1.038120</td>\n",
|
" <td>1.255655</td>\n",
|
||||||
" <td>3.717308</td>\n",
|
" <td>2.117590</td>\n",
|
||||||
" <td>-0.810405</td>\n",
|
" <td>-0.085458</td>\n",
|
||||||
" <td>True</td>\n",
|
" <td>True</td>\n",
|
||||||
" <td>16.739542</td>\n",
|
" <td>14.588348</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>4</th>\n",
|
" <th>4</th>\n",
|
||||||
" <td>1.0</td>\n",
|
" <td>1.0</td>\n",
|
||||||
" <td>0.053651</td>\n",
|
" <td>0.942274</td>\n",
|
||||||
" <td>1.149667</td>\n",
|
" <td>0.193453</td>\n",
|
||||||
" <td>1.372050</td>\n",
|
" <td>-1.284952</td>\n",
|
||||||
" <td>2.584487</td>\n",
|
" <td>-0.778548</td>\n",
|
||||||
" <td>1.784072</td>\n",
|
" <td>0.330621</td>\n",
|
||||||
" <td>-3.115305</td>\n",
|
" <td>0.350299</td>\n",
|
||||||
" <td>True</td>\n",
|
" <td>True</td>\n",
|
||||||
" <td>16.291701</td>\n",
|
" <td>8.194333</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>...</th>\n",
|
" <th>...</th>\n",
|
||||||
|
@ -158,62 +158,62 @@
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>9995</th>\n",
|
" <th>9995</th>\n",
|
||||||
" <td>1.0</td>\n",
|
" <td>1.0</td>\n",
|
||||||
" <td>0.987532</td>\n",
|
" <td>0.448219</td>\n",
|
||||||
" <td>0.284643</td>\n",
|
" <td>-0.717358</td>\n",
|
||||||
" <td>0.719454</td>\n",
|
" <td>0.742045</td>\n",
|
||||||
" <td>1.153850</td>\n",
|
" <td>1.596378</td>\n",
|
||||||
" <td>0.322207</td>\n",
|
" <td>1.889145</td>\n",
|
||||||
" <td>1.861305</td>\n",
|
" <td>-0.160641</td>\n",
|
||||||
" <td>True</td>\n",
|
" <td>True</td>\n",
|
||||||
" <td>20.637618</td>\n",
|
" <td>18.115923</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>9996</th>\n",
|
" <th>9996</th>\n",
|
||||||
" <td>1.0</td>\n",
|
" <td>1.0</td>\n",
|
||||||
" <td>0.009339</td>\n",
|
" <td>0.691309</td>\n",
|
||||||
" <td>-0.629750</td>\n",
|
" <td>0.266874</td>\n",
|
||||||
" <td>-0.525098</td>\n",
|
" <td>-1.134911</td>\n",
|
||||||
" <td>0.691312</td>\n",
|
" <td>1.726687</td>\n",
|
||||||
" <td>1.193163</td>\n",
|
" <td>1.382415</td>\n",
|
||||||
" <td>0.292283</td>\n",
|
" <td>-0.406323</td>\n",
|
||||||
" <td>True</td>\n",
|
" <td>True</td>\n",
|
||||||
" <td>12.443858</td>\n",
|
" <td>10.776816</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>9997</th>\n",
|
" <th>9997</th>\n",
|
||||||
" <td>1.0</td>\n",
|
" <td>0.0</td>\n",
|
||||||
" <td>0.906533</td>\n",
|
" <td>0.940634</td>\n",
|
||||||
" <td>-0.370604</td>\n",
|
" <td>-1.437683</td>\n",
|
||||||
" <td>0.865469</td>\n",
|
" <td>-1.950858</td>\n",
|
||||||
" <td>0.147147</td>\n",
|
" <td>1.701739</td>\n",
|
||||||
" <td>1.052848</td>\n",
|
" <td>1.891118</td>\n",
|
||||||
" <td>-0.167638</td>\n",
|
" <td>1.325125</td>\n",
|
||||||
" <td>True</td>\n",
|
" <td>True</td>\n",
|
||||||
" <td>13.308040</td>\n",
|
" <td>15.831704</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>9998</th>\n",
|
" <th>9998</th>\n",
|
||||||
" <td>1.0</td>\n",
|
" <td>1.0</td>\n",
|
||||||
" <td>0.795088</td>\n",
|
" <td>0.849666</td>\n",
|
||||||
" <td>2.511765</td>\n",
|
" <td>-0.753199</td>\n",
|
||||||
" <td>-1.309091</td>\n",
|
" <td>-0.198880</td>\n",
|
||||||
" <td>2.818345</td>\n",
|
" <td>1.509888</td>\n",
|
||||||
" <td>0.232468</td>\n",
|
" <td>0.106379</td>\n",
|
||||||
" <td>-1.717677</td>\n",
|
" <td>0.683263</td>\n",
|
||||||
" <td>True</td>\n",
|
" <td>True</td>\n",
|
||||||
" <td>15.856803</td>\n",
|
" <td>13.269083</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>9999</th>\n",
|
" <th>9999</th>\n",
|
||||||
" <td>0.0</td>\n",
|
" <td>1.0</td>\n",
|
||||||
" <td>0.208091</td>\n",
|
" <td>0.372705</td>\n",
|
||||||
" <td>-0.689741</td>\n",
|
" <td>-0.018488</td>\n",
|
||||||
" <td>-1.461882</td>\n",
|
" <td>-0.358214</td>\n",
|
||||||
" <td>0.348681</td>\n",
|
" <td>-0.040396</td>\n",
|
||||||
" <td>2.577953</td>\n",
|
" <td>2.855035</td>\n",
|
||||||
" <td>0.609399</td>\n",
|
" <td>0.726370</td>\n",
|
||||||
" <td>True</td>\n",
|
" <td>True</td>\n",
|
||||||
" <td>15.391016</td>\n",
|
" <td>21.026073</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" </tbody>\n",
|
" </tbody>\n",
|
||||||
"</table>\n",
|
"</table>\n",
|
||||||
|
@ -222,30 +222,30 @@
|
||||||
],
|
],
|
||||||
"text/plain": [
|
"text/plain": [
|
||||||
" Z0 Z1 W0 W1 W2 W3 W4 v0 \\\n",
|
" Z0 Z1 W0 W1 W2 W3 W4 v0 \\\n",
|
||||||
"0 1.0 0.983071 0.029604 -1.906000 0.475283 0.421236 -0.122511 True \n",
|
"0 1.0 0.701982 0.024579 0.192484 1.453203 1.225925 -0.475766 True \n",
|
||||||
"1 1.0 0.944483 -1.167641 -1.361756 0.998510 2.293422 -0.370670 True \n",
|
"1 0.0 0.242941 1.225778 -1.566807 1.107805 1.132326 0.688376 True \n",
|
||||||
"2 1.0 0.003035 -1.887080 -0.957847 -0.082439 0.708058 2.471659 True \n",
|
"2 1.0 0.883972 -1.777568 -1.565806 0.001832 1.759653 0.634530 True \n",
|
||||||
"3 1.0 0.567655 -0.891603 -0.462353 1.038120 3.717308 -0.810405 True \n",
|
"3 1.0 0.918023 -0.648299 -0.682472 1.255655 2.117590 -0.085458 True \n",
|
||||||
"4 1.0 0.053651 1.149667 1.372050 2.584487 1.784072 -3.115305 True \n",
|
"4 1.0 0.942274 0.193453 -1.284952 -0.778548 0.330621 0.350299 True \n",
|
||||||
"... ... ... ... ... ... ... ... ... \n",
|
"... ... ... ... ... ... ... ... ... \n",
|
||||||
"9995 1.0 0.987532 0.284643 0.719454 1.153850 0.322207 1.861305 True \n",
|
"9995 1.0 0.448219 -0.717358 0.742045 1.596378 1.889145 -0.160641 True \n",
|
||||||
"9996 1.0 0.009339 -0.629750 -0.525098 0.691312 1.193163 0.292283 True \n",
|
"9996 1.0 0.691309 0.266874 -1.134911 1.726687 1.382415 -0.406323 True \n",
|
||||||
"9997 1.0 0.906533 -0.370604 0.865469 0.147147 1.052848 -0.167638 True \n",
|
"9997 0.0 0.940634 -1.437683 -1.950858 1.701739 1.891118 1.325125 True \n",
|
||||||
"9998 1.0 0.795088 2.511765 -1.309091 2.818345 0.232468 -1.717677 True \n",
|
"9998 1.0 0.849666 -0.753199 -0.198880 1.509888 0.106379 0.683263 True \n",
|
||||||
"9999 0.0 0.208091 -0.689741 -1.461882 0.348681 2.577953 0.609399 True \n",
|
"9999 1.0 0.372705 -0.018488 -0.358214 -0.040396 2.855035 0.726370 True \n",
|
||||||
"\n",
|
"\n",
|
||||||
" y \n",
|
" y \n",
|
||||||
"0 8.221879 \n",
|
"0 13.572196 \n",
|
||||||
"1 10.892375 \n",
|
"1 13.946462 \n",
|
||||||
"2 11.262836 \n",
|
"2 11.779975 \n",
|
||||||
"3 16.739542 \n",
|
"3 14.588348 \n",
|
||||||
"4 16.291701 \n",
|
"4 8.194333 \n",
|
||||||
"... ... \n",
|
"... ... \n",
|
||||||
"9995 20.637618 \n",
|
"9995 18.115923 \n",
|
||||||
"9996 12.443858 \n",
|
"9996 10.776816 \n",
|
||||||
"9997 13.308040 \n",
|
"9997 15.831704 \n",
|
||||||
"9998 15.856803 \n",
|
"9998 13.269083 \n",
|
||||||
"9999 15.391016 \n",
|
"9999 21.026073 \n",
|
||||||
"\n",
|
"\n",
|
||||||
"[10000 rows x 9 columns]"
|
"[10000 rows x 9 columns]"
|
||||||
]
|
]
|
||||||
|
@ -359,7 +359,7 @@
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_identifier:Common causes of treatment and outcome:['W3', 'W4', 'Unobserved Confounders', 'W0', 'W1', 'W2']\n",
|
"INFO:dowhy.causal_identifier:Common causes of treatment and outcome:['Unobserved Confounders', 'W4', 'W0', 'W1', 'W3', 'W2']\n",
|
||||||
"WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.\n"
|
"WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -386,9 +386,9 @@
|
||||||
"Estimand name: backdoor\n",
|
"Estimand name: backdoor\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
" d \n",
|
" d \n",
|
||||||
"─────(Expectation(y|W3,W4,W0,W1,W2))\n",
|
"─────(Expectation(y|W4,W0,W1,W3,W2))\n",
|
||||||
"d[v₀] \n",
|
"d[v₀] \n",
|
||||||
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W3,W4,W0,W1,W2,U) = P(y|v0,W3,W4,W0,W1,W2)\n",
|
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W4,W0,W1,W3,W2,U) = P(y|v0,W4,W0,W1,W3,W2)\n",
|
||||||
"### Estimand : 2\n",
|
"### Estimand : 2\n",
|
||||||
"Estimand name: iv\n",
|
"Estimand name: iv\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
|
@ -423,7 +423,7 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Linear Regression Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Linear Regression Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y~v0+W3+W4+W0+W1+W2\n"
|
"INFO:dowhy.causal_estimator:b: y~v0+W4+W0+W1+W3+W2\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -438,9 +438,9 @@
|
||||||
"Estimand name: backdoor\n",
|
"Estimand name: backdoor\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
" d \n",
|
" d \n",
|
||||||
"─────(Expectation(y|W3,W4,W0,W1,W2))\n",
|
"─────(Expectation(y|W4,W0,W1,W3,W2))\n",
|
||||||
"d[v₀] \n",
|
"d[v₀] \n",
|
||||||
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W3,W4,W0,W1,W2,U) = P(y|v0,W3,W4,W0,W1,W2)\n",
|
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W4,W0,W1,W3,W2,U) = P(y|v0,W4,W0,W1,W3,W2)\n",
|
||||||
"### Estimand : 2\n",
|
"### Estimand : 2\n",
|
||||||
"Estimand name: iv\n",
|
"Estimand name: iv\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
|
@ -449,14 +449,14 @@
|
||||||
"Estimand assumption 2, Exclusion: If we remove {Z0,Z1}→{v0}, then ¬({Z0,Z1}→y)\n",
|
"Estimand assumption 2, Exclusion: If we remove {Z0,Z1}→{v0}, then ¬({Z0,Z1}→y)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Realized estimand\n",
|
"## Realized estimand\n",
|
||||||
"b: y~v0+W3+W4+W0+W1+W2\n",
|
"b: y~v0+W4+W0+W1+W3+W2\n",
|
||||||
"## Estimate\n",
|
"## Estimate\n",
|
||||||
"Value: 9.999999999999785\n",
|
"Value: 9.99999999999974\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Statistical Significance\n",
|
"## Statistical Significance\n",
|
||||||
"p-value: <0.001\n",
|
"p-value: <0.001\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Causal Estimate is 9.999999999999785\n"
|
"Causal Estimate is 9.99999999999974\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -487,8 +487,8 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y~v0+W3+W4+W0+W1+W2\n",
|
"INFO:dowhy.causal_estimator:b: y~v0+W4+W0+W1+W3+W2\n",
|
||||||
"/home/amit/.local/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
" y = column_or_1d(y, warn=True)\n"
|
" y = column_or_1d(y, warn=True)\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -504,9 +504,9 @@
|
||||||
"Estimand name: backdoor\n",
|
"Estimand name: backdoor\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
" d \n",
|
" d \n",
|
||||||
"─────(Expectation(y|W3,W4,W0,W1,W2))\n",
|
"─────(Expectation(y|W4,W0,W1,W3,W2))\n",
|
||||||
"d[v₀] \n",
|
"d[v₀] \n",
|
||||||
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W3,W4,W0,W1,W2,U) = P(y|v0,W3,W4,W0,W1,W2)\n",
|
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W4,W0,W1,W3,W2,U) = P(y|v0,W4,W0,W1,W3,W2)\n",
|
||||||
"### Estimand : 2\n",
|
"### Estimand : 2\n",
|
||||||
"Estimand name: iv\n",
|
"Estimand name: iv\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
|
@ -515,11 +515,11 @@
|
||||||
"Estimand assumption 2, Exclusion: If we remove {Z0,Z1}→{v0}, then ¬({Z0,Z1}→y)\n",
|
"Estimand assumption 2, Exclusion: If we remove {Z0,Z1}→{v0}, then ¬({Z0,Z1}→y)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Realized estimand\n",
|
"## Realized estimand\n",
|
||||||
"b: y~v0+W3+W4+W0+W1+W2\n",
|
"b: y~v0+W4+W0+W1+W3+W2\n",
|
||||||
"## Estimate\n",
|
"## Estimate\n",
|
||||||
"Value: 10.230289803487752\n",
|
"Value: 10.064504732274713\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Causal Estimate is 10.230289803487752\n"
|
"Causal Estimate is 10.064504732274713\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -550,11 +550,13 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y~v0+W3+W4+W0+W1+W2\n",
|
"INFO:dowhy.causal_estimator:b: y~v0+W4+W0+W1+W3+W2\n",
|
||||||
"/home/amit/.local/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
" y = column_or_1d(y, warn=True)\n",
|
" y = column_or_1d(y, warn=True)\n",
|
||||||
"/mnt/c/Users/amshar/code/dowhy/dowhy/causal_estimators/propensity_score_matching_estimator.py:62: FutureWarning: `item` has been deprecated and will be removed in a future version\n",
|
"/mnt/c/Users/amshar/code/dowhy/dowhy/causal_estimators/propensity_score_matching_estimator.py:62: FutureWarning: `item` has been deprecated and will be removed in a future version\n",
|
||||||
" control_outcome = control.iloc[indices[i]][self._outcome_name].item()\n"
|
" control_outcome = control.iloc[indices[i]][self._outcome_name].item()\n",
|
||||||
|
"/mnt/c/Users/amshar/code/dowhy/dowhy/causal_estimators/propensity_score_matching_estimator.py:77: FutureWarning: `item` has been deprecated and will be removed in a future version\n",
|
||||||
|
" treated_outcome = treated.iloc[indices[i]][self._outcome_name].item()\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -569,9 +571,9 @@
|
||||||
"Estimand name: backdoor\n",
|
"Estimand name: backdoor\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
" d \n",
|
" d \n",
|
||||||
"─────(Expectation(y|W3,W4,W0,W1,W2))\n",
|
"─────(Expectation(y|W4,W0,W1,W3,W2))\n",
|
||||||
"d[v₀] \n",
|
"d[v₀] \n",
|
||||||
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W3,W4,W0,W1,W2,U) = P(y|v0,W3,W4,W0,W1,W2)\n",
|
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W4,W0,W1,W3,W2,U) = P(y|v0,W4,W0,W1,W3,W2)\n",
|
||||||
"### Estimand : 2\n",
|
"### Estimand : 2\n",
|
||||||
"Estimand name: iv\n",
|
"Estimand name: iv\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
|
@ -580,19 +582,11 @@
|
||||||
"Estimand assumption 2, Exclusion: If we remove {Z0,Z1}→{v0}, then ¬({Z0,Z1}→y)\n",
|
"Estimand assumption 2, Exclusion: If we remove {Z0,Z1}→{v0}, then ¬({Z0,Z1}→y)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Realized estimand\n",
|
"## Realized estimand\n",
|
||||||
"b: y~v0+W3+W4+W0+W1+W2\n",
|
"b: y~v0+W4+W0+W1+W3+W2\n",
|
||||||
"## Estimate\n",
|
"## Estimate\n",
|
||||||
"Value: 10.155349951692994\n",
|
"Value: 9.856834069883842\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Causal Estimate is 10.155349951692994\n"
|
"Causal Estimate is 9.856834069883842\n"
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"/mnt/c/Users/amshar/code/dowhy/dowhy/causal_estimators/propensity_score_matching_estimator.py:77: FutureWarning: `item` has been deprecated and will be removed in a future version\n",
|
|
||||||
" treated_outcome = treated.iloc[indices[i]][self._outcome_name].item()\n"
|
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -626,7 +620,7 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y~v0+W3+W4+W0+W1+W2\n"
|
"INFO:dowhy.causal_estimator:b: y~v0+W4+W0+W1+W3+W2\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -641,9 +635,9 @@
|
||||||
"Estimand name: backdoor\n",
|
"Estimand name: backdoor\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
" d \n",
|
" d \n",
|
||||||
"─────(Expectation(y|W3,W4,W0,W1,W2))\n",
|
"─────(Expectation(y|W4,W0,W1,W3,W2))\n",
|
||||||
"d[v₀] \n",
|
"d[v₀] \n",
|
||||||
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W3,W4,W0,W1,W2,U) = P(y|v0,W3,W4,W0,W1,W2)\n",
|
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W4,W0,W1,W3,W2,U) = P(y|v0,W4,W0,W1,W3,W2)\n",
|
||||||
"### Estimand : 2\n",
|
"### Estimand : 2\n",
|
||||||
"Estimand name: iv\n",
|
"Estimand name: iv\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
|
@ -652,18 +646,18 @@
|
||||||
"Estimand assumption 2, Exclusion: If we remove {Z0,Z1}→{v0}, then ¬({Z0,Z1}→y)\n",
|
"Estimand assumption 2, Exclusion: If we remove {Z0,Z1}→{v0}, then ¬({Z0,Z1}→y)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Realized estimand\n",
|
"## Realized estimand\n",
|
||||||
"b: y~v0+W3+W4+W0+W1+W2\n",
|
"b: y~v0+W4+W0+W1+W3+W2\n",
|
||||||
"## Estimate\n",
|
"## Estimate\n",
|
||||||
"Value: 14.403498787196613\n",
|
"Value: 15.103825856686212\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Causal Estimate is 14.403498787196613\n"
|
"Causal Estimate is 15.103825856686212\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"/home/amit/.local/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
" y = column_or_1d(y, warn=True)\n"
|
" y = column_or_1d(y, warn=True)\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
@ -722,9 +716,9 @@
|
||||||
"Estimand name: backdoor\n",
|
"Estimand name: backdoor\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
" d \n",
|
" d \n",
|
||||||
"─────(Expectation(y|W3,W4,W0,W1,W2))\n",
|
"─────(Expectation(y|W4,W0,W1,W3,W2))\n",
|
||||||
"d[v₀] \n",
|
"d[v₀] \n",
|
||||||
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W3,W4,W0,W1,W2,U) = P(y|v0,W3,W4,W0,W1,W2)\n",
|
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W4,W0,W1,W3,W2,U) = P(y|v0,W4,W0,W1,W3,W2)\n",
|
||||||
"### Estimand : 2\n",
|
"### Estimand : 2\n",
|
||||||
"Estimand name: iv\n",
|
"Estimand name: iv\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
|
@ -744,9 +738,9 @@
|
||||||
"Estimand assumption 4, outcome_effect_homogeneity: Each unit's outcome y is affected in the same way by common causes of ['v0'] and y\n",
|
"Estimand assumption 4, outcome_effect_homogeneity: Each unit's outcome y is affected in the same way by common causes of ['v0'] and y\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Estimate\n",
|
"## Estimate\n",
|
||||||
"Value: 8.234224900721683\n",
|
"Value: 8.431207181421312\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Causal Estimate is 8.234224900721683\n"
|
"Causal Estimate is 8.431207181421312\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -776,7 +770,33 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:Using Regression Discontinuity Estimator\n",
|
"INFO:dowhy.causal_estimator:Using Regression Discontinuity Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:\n",
|
"INFO:dowhy.causal_estimator:\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
" local_rd_variable local_treatment local_outcome\n",
|
||||||
|
"6 0.597719 True 19.666240\n",
|
||||||
|
"11 0.426837 True 8.465613\n",
|
||||||
|
"19 0.539785 True 16.948250\n",
|
||||||
|
"22 0.431814 True 11.478121\n",
|
||||||
|
"25 0.411029 True 17.837136\n",
|
||||||
|
"... ... ... ...\n",
|
||||||
|
"9977 0.413834 True 32.515201\n",
|
||||||
|
"9978 0.457739 True 1.210606\n",
|
||||||
|
"9979 0.594694 True 9.426116\n",
|
||||||
|
"9986 0.583982 True 17.739097\n",
|
||||||
|
"9995 0.448219 True 18.115923\n",
|
||||||
|
"\n",
|
||||||
|
"[2026 rows x 3 columns]\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Instrumental Variable Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Instrumental Variable Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:Realized estimand: Wald Estimator\n",
|
"INFO:dowhy.causal_estimator:Realized estimand: Wald Estimator\n",
|
||||||
"Realized estimand type: nonparametric-ate\n",
|
"Realized estimand type: nonparametric-ate\n",
|
||||||
|
@ -797,20 +817,6 @@
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
" local_rd_variable local_treatment local_outcome\n",
|
|
||||||
"3 0.567655 True 16.739542\n",
|
|
||||||
"14 0.401688 True 13.060404\n",
|
|
||||||
"16 0.507445 True 7.380282\n",
|
|
||||||
"24 0.568317 True 0.878313\n",
|
|
||||||
"30 0.527500 True 15.597167\n",
|
|
||||||
"... ... ... ...\n",
|
|
||||||
"9965 0.584194 True 18.405543\n",
|
|
||||||
"9979 0.521058 True 11.131729\n",
|
|
||||||
"9984 0.556237 True 10.973448\n",
|
|
||||||
"9987 0.467405 True 22.988249\n",
|
|
||||||
"9994 0.552816 True 12.807169\n",
|
|
||||||
"\n",
|
|
||||||
"[1947 rows x 3 columns]\n",
|
|
||||||
"*** Causal Estimate ***\n",
|
"*** Causal Estimate ***\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Target estimand\n",
|
"## Target estimand\n",
|
||||||
|
@ -819,9 +825,9 @@
|
||||||
"Estimand name: backdoor\n",
|
"Estimand name: backdoor\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
" d \n",
|
" d \n",
|
||||||
"─────(Expectation(y|W3,W4,W0,W1,W2))\n",
|
"─────(Expectation(y|W4,W0,W1,W3,W2))\n",
|
||||||
"d[v₀] \n",
|
"d[v₀] \n",
|
||||||
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W3,W4,W0,W1,W2,U) = P(y|v0,W3,W4,W0,W1,W2)\n",
|
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W4,W0,W1,W3,W2,U) = P(y|v0,W4,W0,W1,W3,W2)\n",
|
||||||
"### Estimand : 2\n",
|
"### Estimand : 2\n",
|
||||||
"Estimand name: iv\n",
|
"Estimand name: iv\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
|
@ -844,9 +850,9 @@
|
||||||
"Estimand assumption 4, outcome_effect_homogeneity: Each unit's outcome local_outcome is affected in the same way by common causes of ['local_treatment'] and local_outcome\n",
|
"Estimand assumption 4, outcome_effect_homogeneity: Each unit's outcome local_outcome is affected in the same way by common causes of ['local_treatment'] and local_outcome\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Estimate\n",
|
"## Estimate\n",
|
||||||
"Value: 4.937929360561585\n",
|
"Value: 25.965733858996124\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Causal Estimate is 4.937929360561585\n"
|
"Causal Estimate is 25.965733858996124\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
|
|
@ -15,7 +15,7 @@
|
||||||
"source": [
|
"source": [
|
||||||
"# importing required libraries\n",
|
"# importing required libraries\n",
|
||||||
"import os, sys\n",
|
"import os, sys\n",
|
||||||
"sys.path.append(os.path.abspath(\"../../\"))\n",
|
"sys.path.append(os.path.abspath(\"../../../\"))\n",
|
||||||
"import dowhy\n",
|
"import dowhy\n",
|
||||||
"from dowhy import CausalModel\n",
|
"from dowhy import CausalModel\n",
|
||||||
"import pandas as pd\n",
|
"import pandas as pd\n",
|
||||||
|
@ -81,7 +81,7 @@
|
||||||
" <tbody>\n",
|
" <tbody>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>0</th>\n",
|
" <th>0</th>\n",
|
||||||
" <td>1</td>\n",
|
" <td>True</td>\n",
|
||||||
" <td>5.599916</td>\n",
|
" <td>5.599916</td>\n",
|
||||||
" <td>4.318780</td>\n",
|
" <td>4.318780</td>\n",
|
||||||
" <td>3.268256</td>\n",
|
" <td>3.268256</td>\n",
|
||||||
|
@ -105,7 +105,7 @@
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>1</th>\n",
|
" <th>1</th>\n",
|
||||||
" <td>0</td>\n",
|
" <td>False</td>\n",
|
||||||
" <td>6.875856</td>\n",
|
" <td>6.875856</td>\n",
|
||||||
" <td>7.856495</td>\n",
|
" <td>7.856495</td>\n",
|
||||||
" <td>6.636059</td>\n",
|
" <td>6.636059</td>\n",
|
||||||
|
@ -129,7 +129,7 @@
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>2</th>\n",
|
" <th>2</th>\n",
|
||||||
" <td>0</td>\n",
|
" <td>False</td>\n",
|
||||||
" <td>2.996273</td>\n",
|
" <td>2.996273</td>\n",
|
||||||
" <td>6.633952</td>\n",
|
" <td>6.633952</td>\n",
|
||||||
" <td>1.570536</td>\n",
|
" <td>1.570536</td>\n",
|
||||||
|
@ -153,7 +153,7 @@
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>3</th>\n",
|
" <th>3</th>\n",
|
||||||
" <td>0</td>\n",
|
" <td>False</td>\n",
|
||||||
" <td>1.366206</td>\n",
|
" <td>1.366206</td>\n",
|
||||||
" <td>5.697239</td>\n",
|
" <td>5.697239</td>\n",
|
||||||
" <td>1.244738</td>\n",
|
" <td>1.244738</td>\n",
|
||||||
|
@ -177,7 +177,7 @@
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>4</th>\n",
|
" <th>4</th>\n",
|
||||||
" <td>0</td>\n",
|
" <td>False</td>\n",
|
||||||
" <td>1.963538</td>\n",
|
" <td>1.963538</td>\n",
|
||||||
" <td>6.202582</td>\n",
|
" <td>6.202582</td>\n",
|
||||||
" <td>1.685048</td>\n",
|
" <td>1.685048</td>\n",
|
||||||
|
@ -206,18 +206,18 @@
|
||||||
],
|
],
|
||||||
"text/plain": [
|
"text/plain": [
|
||||||
" treatment y_factual y_cfactual mu0 mu1 x1 x2 \\\n",
|
" treatment y_factual y_cfactual mu0 mu1 x1 x2 \\\n",
|
||||||
"0 1 5.599916 4.318780 3.268256 6.854457 -0.528603 -0.343455 \n",
|
"0 True 5.599916 4.318780 3.268256 6.854457 -0.528603 -0.343455 \n",
|
||||||
"1 0 6.875856 7.856495 6.636059 7.562718 -1.736945 -1.802002 \n",
|
"1 False 6.875856 7.856495 6.636059 7.562718 -1.736945 -1.802002 \n",
|
||||||
"2 0 2.996273 6.633952 1.570536 6.121617 -0.807451 -0.202946 \n",
|
"2 False 2.996273 6.633952 1.570536 6.121617 -0.807451 -0.202946 \n",
|
||||||
"3 0 1.366206 5.697239 1.244738 5.889125 0.390083 0.596582 \n",
|
"3 False 1.366206 5.697239 1.244738 5.889125 0.390083 0.596582 \n",
|
||||||
"4 0 1.963538 6.202582 1.685048 6.191994 -1.045229 -0.602710 \n",
|
"4 False 1.963538 6.202582 1.685048 6.191994 -1.045229 -0.602710 \n",
|
||||||
"\n",
|
"\n",
|
||||||
" x3 x4 x5 ... x16 x17 x18 x19 x20 x21 x22 x23 \\\n",
|
" x3 x4 x5 ... x16 x17 x18 x19 x20 x21 x22 x23 \\\n",
|
||||||
"0 1.128554 0.161703 -0.316603 ... 1 1 1 1 0 0 0 0 \n",
|
"0 1.128554 0.161703 -0.316603 ... 1 1 1 1 0 0 0 0 \n",
|
||||||
"1 0.383828 2.244320 -0.629189 ... 1 1 1 1 0 0 0 0 \n",
|
"1 0.383828 2.244320 -0.629189 ... 1 1 1 1 0 0 0 0 \n",
|
||||||
"2 -0.360898 -0.879606 0.808706 ... 1 0 1 1 0 0 0 0 \n",
|
"2 -0.360898 -0.879606 0.808706 ... 1 0 1 1 0 0 0 0 \n",
|
||||||
"3 -1.850350 -0.879606 -0.004017 ... 1 0 1 1 0 0 0 0 \n",
|
"3 -1.850350 -0.879606 -0.004017 ... 1 0 1 1 0 0 0 0 \n",
|
||||||
"4 0.011465 0.161703 0.683672 ... 1 1 1 1 0 0 0 0 \n",
|
"4 0.011465 0.161703 0.683672 ... 1 1 1 1 0 0 0 0 \n",
|
||||||
"\n",
|
"\n",
|
||||||
" x24 x25 \n",
|
" x24 x25 \n",
|
||||||
"0 0 0 \n",
|
"0 0 0 \n",
|
||||||
|
@ -237,10 +237,10 @@
|
||||||
"source": [
|
"source": [
|
||||||
"data= pd.read_csv(\"https://raw.githubusercontent.com/AMLab-Amsterdam/CEVAE/master/datasets/IHDP/csv/ihdp_npci_1.csv\", header = None)\n",
|
"data= pd.read_csv(\"https://raw.githubusercontent.com/AMLab-Amsterdam/CEVAE/master/datasets/IHDP/csv/ihdp_npci_1.csv\", header = None)\n",
|
||||||
"col = [\"treatment\", \"y_factual\", \"y_cfactual\", \"mu0\", \"mu1\" ,]\n",
|
"col = [\"treatment\", \"y_factual\", \"y_cfactual\", \"mu0\", \"mu1\" ,]\n",
|
||||||
"\n",
|
|
||||||
"for i in range(1,26):\n",
|
"for i in range(1,26):\n",
|
||||||
" col.append(\"x\"+str(i))\n",
|
" col.append(\"x\"+str(i))\n",
|
||||||
"data.columns = col\n",
|
"data.columns = col\n",
|
||||||
|
"data = data.astype({\"treatment\":'bool'}, copy=False)\n",
|
||||||
"data.head()"
|
"data.head()"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -295,15 +295,15 @@
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_identifier:Common causes of treatment and outcome:['', 'x1', 'x7', 'x16', 'x6', 'x19', 'x17', 'x21', 'x14', 'x25', 'x10', 'x9', 'x12', 'x2', 'x5', 'x24', 'x15', 'x3', 'x20', 'x8', 'x23', 'x4', 'x22', 'x18', 'x11', 'x13']\n",
|
"INFO:dowhy.causal_identifier:Common causes of treatment and outcome:['', 'x8', 'x13', 'x21', 'x3', 'x14', 'x10', 'x6', 'x1', 'x24', 'x18', 'x15', 'x7', 'x12', 'x9', 'x22', 'x2', 'x17', 'x19', 'x11', 'x16', 'x4', 'x20', 'x25', 'x23', 'x5']\n",
|
||||||
"WARNING:dowhy.causal_identifier:There are unobserved common causes. Causal effect cannot be identified.\n"
|
"WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"WARN: Do you want to continue by ignoring these unobserved confounders? [y/n] y\n"
|
"WARN: Do you want to continue by ignoring any unobserved confounders? (use proceed_when_unidentifiable=True to disable this prompt) [y/n] y\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -343,7 +343,7 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Linear Regression Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Linear Regression Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y_factual~treatment+x1+x7+x16+x6+x19+x17+x21+x14+x25+x10+x9+x12+x2+x5+x24+x15+x3+x20+x8+x23+x4+x22+x18+x11+x13\n"
|
"INFO:dowhy.causal_estimator:b: y_factual~treatment+x8+x13+x21+x3+x14+x10+x6+x1+x24+x18+x15+x7+x12+x9+x22+x2+x17+x19+x11+x16+x4+x20+x25+x23+x5\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -353,31 +353,31 @@
|
||||||
"*** Causal Estimate ***\n",
|
"*** Causal Estimate ***\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Target estimand\n",
|
"## Target estimand\n",
|
||||||
"Estimand type: ate\n",
|
"Estimand type: nonparametric-ate\n",
|
||||||
"### Estimand : 1\n",
|
"### Estimand : 1\n",
|
||||||
"Estimand name: iv\n",
|
|
||||||
"No such variable found!\n",
|
|
||||||
"### Estimand : 2\n",
|
|
||||||
"Estimand name: backdoor\n",
|
"Estimand name: backdoor\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
" d \n",
|
" d \n",
|
||||||
"──────────(Expectation(y_factual|x1,x7,x16,x6,x19,x17,x21,x14,x25,x10,x9,x12,x\n",
|
"────────────(Expectation(y_factual|x8,x13,x21,x3,x14,x10,x6,x1,x24,x18,x15,x7,\n",
|
||||||
"dtreatment \n",
|
"d[treatment] \n",
|
||||||
"\n",
|
"\n",
|
||||||
" \n",
|
" \n",
|
||||||
"2,x5,x24,x15,x3,x20,x8,x23,x4,x22,x18,x11,x13))\n",
|
"x12,x9,x22,x2,x17,x19,x11,x16,x4,x20,x25,x23,x5))\n",
|
||||||
" \n",
|
" \n",
|
||||||
"Estimand assumption 1, Unconfoundedness: If U→treatment and U→y_factual then P(y_factual|treatment,x1,x7,x16,x6,x19,x17,x21,x14,x25,x10,x9,x12,x2,x5,x24,x15,x3,x20,x8,x23,x4,x22,x18,x11,x13,U) = P(y_factual|treatment,x1,x7,x16,x6,x19,x17,x21,x14,x25,x10,x9,x12,x2,x5,x24,x15,x3,x20,x8,x23,x4,x22,x18,x11,x13)\n",
|
"Estimand assumption 1, Unconfoundedness: If U→{treatment} and U→y_factual then P(y_factual|treatment,x8,x13,x21,x3,x14,x10,x6,x1,x24,x18,x15,x7,x12,x9,x22,x2,x17,x19,x11,x16,x4,x20,x25,x23,x5,U) = P(y_factual|treatment,x8,x13,x21,x3,x14,x10,x6,x1,x24,x18,x15,x7,x12,x9,x22,x2,x17,x19,x11,x16,x4,x20,x25,x23,x5)\n",
|
||||||
|
"### Estimand : 2\n",
|
||||||
|
"Estimand name: iv\n",
|
||||||
|
"No such variable found!\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Realized estimand\n",
|
"## Realized estimand\n",
|
||||||
"b: y_factual~treatment+x1+x7+x16+x6+x19+x17+x21+x14+x25+x10+x9+x12+x2+x5+x24+x15+x3+x20+x8+x23+x4+x22+x18+x11+x13\n",
|
"b: y_factual~treatment+x8+x13+x21+x3+x14+x10+x6+x1+x24+x18+x15+x7+x12+x9+x22+x2+x17+x19+x11+x16+x4+x20+x25+x23+x5\n",
|
||||||
"## Estimate\n",
|
"## Estimate\n",
|
||||||
"Value: 3.928671750872714\n",
|
"Value: 3.92867175087271\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Statistical Significance\n",
|
"## Statistical Significance\n",
|
||||||
"p-value: <0.001\n",
|
"p-value: <0.001\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Causal Estimate is 3.928671750872714\n",
|
"Causal Estimate is 3.92867175087271\n",
|
||||||
"ATE 4.021121012430829\n"
|
"ATE 4.021121012430829\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
@ -414,14 +414,20 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y_factual~treatment+x1+x7+x16+x6+x19+x17+x21+x14+x25+x10+x9+x12+x2+x5+x24+x15+x3+x20+x8+x23+x4+x22+x18+x11+x13\n"
|
"INFO:dowhy.causal_estimator:b: y_factual~treatment+x8+x13+x21+x3+x14+x10+x6+x1+x24+x18+x15+x7+x12+x9+x22+x2+x17+x19+x11+x16+x4+x20+x25+x23+x5\n",
|
||||||
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
|
" y = column_or_1d(y, warn=True)\n",
|
||||||
|
"/mnt/c/Users/amshar/code/dowhy/dowhy/causal_estimators/propensity_score_matching_estimator.py:62: FutureWarning: `item` has been deprecated and will be removed in a future version\n",
|
||||||
|
" control_outcome = control.iloc[indices[i]][self._outcome_name].item()\n",
|
||||||
|
"/mnt/c/Users/amshar/code/dowhy/dowhy/causal_estimators/propensity_score_matching_estimator.py:77: FutureWarning: `item` has been deprecated and will be removed in a future version\n",
|
||||||
|
" treated_outcome = treated.iloc[indices[i]][self._outcome_name].item()\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Causal Estimate is 3.7137071218180533\n",
|
"Causal Estimate is 3.9791388232170393\n",
|
||||||
"ATE 4.021121012430829\n"
|
"ATE 4.021121012430829\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
@ -445,7 +451,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 8,
|
"execution_count": 7,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
|
@ -453,14 +459,16 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y_factual~treatment+x1+x7+x16+x6+x19+x17+x21+x14+x25+x10+x9+x12+x2+x5+x24+x15+x3+x20+x8+x23+x4+x22+x18+x11+x13\n"
|
"INFO:dowhy.causal_estimator:b: y_factual~treatment+x8+x13+x21+x3+x14+x10+x6+x1+x24+x18+x15+x7+x12+x9+x22+x2+x17+x19+x11+x16+x4+x20+x25+x23+x5\n",
|
||||||
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
|
" y = column_or_1d(y, warn=True)\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Causal Estimate is 2.9866811987400976\n",
|
"Causal Estimate is 3.4550471588628207\n",
|
||||||
"ATE 4.021121012430829\n"
|
"ATE 4.021121012430829\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
@ -484,7 +492,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 9,
|
"execution_count": 8,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
|
@ -492,16 +500,24 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y_factual~treatment+x1+x7+x16+x6+x19+x17+x21+x14+x25+x10+x9+x12+x2+x5+x24+x15+x3+x20+x8+x23+x4+x22+x18+x11+x13\n"
|
"INFO:dowhy.causal_estimator:b: y_factual~treatment+x8+x13+x21+x3+x14+x10+x6+x1+x24+x18+x15+x7+x12+x9+x22+x2+x17+x19+x11+x16+x4+x20+x25+x23+x5\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Causal Estimate is 3.3765676293790015\n",
|
"Causal Estimate is 3.409737824406429\n",
|
||||||
"ATE 4.021121012430829\n"
|
"ATE 4.021121012430829\n"
|
||||||
]
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
|
" y = column_or_1d(y, warn=True)\n"
|
||||||
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -525,7 +541,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 10,
|
"execution_count": 9,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
|
@ -533,7 +549,9 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y_factual~treatment+x1+x7+x16+x6+x19+x17+x21+x14+x25+x10+x9+x12+x2+x5+x24+x15+x3+x20+x8+x23+x4+x22+x18+x11+x13+w_random\n"
|
"INFO:dowhy.causal_estimator:b: y_factual~treatment+x8+x13+x21+x3+x14+x10+x6+x1+x24+x18+x15+x7+x12+x9+x22+x2+x17+x19+x11+x16+x4+x20+x25+x23+x5+w_random\n",
|
||||||
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
|
" y = column_or_1d(y, warn=True)\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -541,8 +559,8 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Refute: Add a Random Common Cause\n",
|
"Refute: Add a Random Common Cause\n",
|
||||||
"Estimated effect:(3.3765676293790015,)\n",
|
"Estimated effect:(3.409737824406429,)\n",
|
||||||
"New effect:(3.406650074447194,)\n",
|
"New effect:(3.4008436132771305,)\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
@ -562,7 +580,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 11,
|
"execution_count": 10,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
|
@ -570,7 +588,9 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y_factual~placebo+x1+x7+x16+x6+x19+x17+x21+x14+x25+x10+x9+x12+x2+x5+x24+x15+x3+x20+x8+x23+x4+x22+x18+x11+x13\n"
|
"INFO:dowhy.causal_estimator:b: y_factual~placebo+x8+x13+x21+x3+x14+x10+x6+x1+x24+x18+x15+x7+x12+x9+x22+x2+x17+x19+x11+x16+x4+x20+x25+x23+x5\n",
|
||||||
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
|
" y = column_or_1d(y, warn=True)\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -578,8 +598,8 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Refute: Use a Placebo Treatment\n",
|
"Refute: Use a Placebo Treatment\n",
|
||||||
"Estimated effect:(3.3765676293790015,)\n",
|
"Estimated effect:(3.409737824406429,)\n",
|
||||||
"New effect:(-0.16630861858510526,)\n",
|
"New effect:(-0.08870810484238234,)\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
@ -599,7 +619,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 12,
|
"execution_count": 11,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
|
@ -607,7 +627,9 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y_factual~treatment+x1+x7+x16+x6+x19+x17+x21+x14+x25+x10+x9+x12+x2+x5+x24+x15+x3+x20+x8+x23+x4+x22+x18+x11+x13\n"
|
"INFO:dowhy.causal_estimator:b: y_factual~treatment+x8+x13+x21+x3+x14+x10+x6+x1+x24+x18+x15+x7+x12+x9+x22+x2+x17+x19+x11+x16+x4+x20+x25+x23+x5\n",
|
||||||
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
|
" y = column_or_1d(y, warn=True)\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -615,8 +637,8 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Refute: Use a subset of data\n",
|
"Refute: Use a subset of data\n",
|
||||||
"Estimated effect:(3.3765676293790015,)\n",
|
"Estimated effect:(3.409737824406429,)\n",
|
||||||
"New effect:(3.392689859662151,)\n",
|
"New effect:(3.4424088676372993,)\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
@ -644,7 +666,7 @@
|
||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.5.2"
|
"version": "3.6.9"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
|
|
@ -21,7 +21,7 @@
|
||||||
"R[write to console]: Loading required package: MASS\n",
|
"R[write to console]: Loading required package: MASS\n",
|
||||||
"\n",
|
"\n",
|
||||||
"R[write to console]: ## \n",
|
"R[write to console]: ## \n",
|
||||||
"## Matching (Version 4.9-5, Build Date: 2019-03-05)\n",
|
"## Matching (Version 4.9-6, Build Date: 2019-04-07)\n",
|
||||||
"## See http://sekhon.berkeley.edu/matching for additional documentation.\n",
|
"## See http://sekhon.berkeley.edu/matching for additional documentation.\n",
|
||||||
"## Please cite software as:\n",
|
"## Please cite software as:\n",
|
||||||
"## Jasjeet S. Sekhon. 2011. ``Multivariate and Propensity Score Matching\n",
|
"## Jasjeet S. Sekhon. 2011. ``Multivariate and Propensity Score Matching\n",
|
||||||
|
@ -36,8 +36,7 @@
|
||||||
"data": {
|
"data": {
|
||||||
"text/plain": [
|
"text/plain": [
|
||||||
"array(['Matching', 'MASS', 'tools', 'stats', 'graphics', 'grDevices',\n",
|
"array(['Matching', 'MASS', 'tools', 'stats', 'graphics', 'grDevices',\n",
|
||||||
" 'utils', 'datasets', 'methods', 'base'],\n",
|
" 'utils', 'datasets', 'methods', 'base'], dtype='<U9')"
|
||||||
" dtype='<U9')"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 1,
|
"execution_count": 1,
|
||||||
|
@ -47,7 +46,7 @@
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"import os, sys\n",
|
"import os, sys\n",
|
||||||
"sys.path.append(os.path.abspath(\"../../\"))\n",
|
"sys.path.append(os.path.abspath(\"../../../\"))\n",
|
||||||
"\n",
|
"\n",
|
||||||
"import dowhy\n",
|
"import dowhy\n",
|
||||||
"from dowhy import CausalModel\n",
|
"from dowhy import CausalModel\n",
|
||||||
|
@ -72,7 +71,8 @@
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"%R data(lalonde)\n",
|
"%R data(lalonde)\n",
|
||||||
"%R -o lalonde\n"
|
"%R -o lalonde\n",
|
||||||
|
"lalonde = lalonde.astype({'treat':'bool'}, copy=False)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -91,17 +91,18 @@
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"WARNING:dowhy.do_why:Causal Graph not provided. DoWhy will construct a graph based on data inputs.\n",
|
"WARNING:dowhy.causal_model:Causal Graph not provided. DoWhy will construct a graph based on data inputs.\n",
|
||||||
"INFO:dowhy.do_why:Model to find the causal effect of treatment ['treat'] on outcome ['re78']\n",
|
"INFO:dowhy.causal_graph:If this is observed data (not from a randomized experiment), there might always be missing confounders. Adding a node named \"Unobserved Confounders\" to reflect this.\n",
|
||||||
"INFO:dowhy.causal_identifier:Common causes of treatment and outcome:['U', 'age', 'educ', 'black', 'nodegr', 'married', 'hisp']\n",
|
"INFO:dowhy.causal_model:Model to find the causal effect of treatment ['treat'] on outcome ['re78']\n",
|
||||||
"WARNING:dowhy.causal_identifier:There are unobserved common causes. Causal effect cannot be identified.\n"
|
"INFO:dowhy.causal_identifier:Common causes of treatment and outcome:['educ', 'nodegr', 'married', 'black', 'U', 'age', 'hisp']\n",
|
||||||
|
"WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"WARN: Do you want to continue by ignoring these unobserved confounders? [y/n] y\n"
|
"WARN: Do you want to continue by ignoring any unobserved confounders? (use proceed_when_unidentifiable=True to disable this prompt) [y/n] y\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -110,19 +111,26 @@
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:[]\n",
|
"INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:[]\n",
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: re78~treat+age+educ+black+nodegr+married+hisp\n"
|
"INFO:dowhy.causal_estimator:b: re78~treat+educ+nodegr+married+black+age+hisp\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Causal Estimate is 1634.98683597\n"
|
"Causal Estimate is 1614.0090222453164\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
|
" y = column_or_1d(y, warn=True)\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"\n",
|
|
||||||
"model=CausalModel(\n",
|
"model=CausalModel(\n",
|
||||||
" data = lalonde,\n",
|
" data = lalonde,\n",
|
||||||
" treatment='treat',\n",
|
" treatment='treat',\n",
|
||||||
|
@ -151,7 +159,7 @@
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Causal Estimate is 1634.98683597\n"
|
"Causal Estimate is 1639.7820238870836\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -186,7 +194,7 @@
|
||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.5.2"
|
"version": "3.6.9"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
|
|
@ -81,18 +81,18 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
" X0 Z0 Z1 W0 W1 W2 W3 W4 \\\n",
|
" X0 Z0 Z1 W0 W1 W2 W3 W4 \\\n",
|
||||||
"0 2.118645 0.0 0.912699 -0.446284 -0.565086 -1.043903 -1.270271 -1.348304 \n",
|
"0 0.262340 0.0 0.970873 -0.931370 1.534707 0.212227 0.656675 -0.163708 \n",
|
||||||
"1 0.357787 0.0 0.315884 -1.317656 0.781785 1.368303 -0.527188 -0.479494 \n",
|
"1 1.357854 1.0 0.809297 0.418757 -0.368615 0.550052 1.382726 -0.073969 \n",
|
||||||
"2 1.040296 0.0 0.223548 -1.162306 -0.613312 0.582990 1.869045 0.000660 \n",
|
"2 0.319958 0.0 0.483138 1.101497 -0.700813 0.321933 0.356162 0.361954 \n",
|
||||||
"3 0.876964 0.0 0.094835 -1.756902 1.263752 -0.067055 -1.387165 0.156462 \n",
|
"3 0.309237 0.0 0.262257 -0.008878 0.921562 1.102873 1.271079 -2.435455 \n",
|
||||||
"4 0.310006 0.0 0.641936 -2.069108 0.212686 -1.133720 -0.404351 -1.138160 \n",
|
"4 0.404030 0.0 0.179699 2.122864 1.004447 1.222506 0.880357 -1.621326 \n",
|
||||||
"\n",
|
"\n",
|
||||||
" v0 y \n",
|
" v0 y \n",
|
||||||
"0 False -11.825939 \n",
|
"0 True 11.076007 \n",
|
||||||
"1 True 16.421835 \n",
|
"1 True 18.942833 \n",
|
||||||
"2 True 13.601425 \n",
|
"2 True 16.081703 \n",
|
||||||
"3 False 0.322891 \n",
|
"3 False 2.038722 \n",
|
||||||
"4 False -11.489370 \n",
|
"4 True 21.821949 \n",
|
||||||
"digraph { U[label=\"Unobserved Confounders\"]; U->y;v0->y; U->v0;W0-> v0; W1-> v0; W2-> v0; W3-> v0; W4-> v0;Z0-> v0; Z1-> v0;W0-> y; W1-> y; W2-> y; W3-> y; W4-> y;X0-> y;}\n",
|
"digraph { U[label=\"Unobserved Confounders\"]; U->y;v0->y; U->v0;W0-> v0; W1-> v0; W2-> v0; W3-> v0; W4-> v0;Z0-> v0; Z1-> v0;W0-> y; W1-> y; W2-> y; W3-> y; W4-> y;X0-> y;}\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
@ -221,7 +221,7 @@
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_identifier:Common causes of treatment and outcome:['Unobserved Confounders', 'W1', 'W2', 'W3', 'W0', 'W4']\n",
|
"INFO:dowhy.causal_identifier:Common causes of treatment and outcome:['W0', 'Unobserved Confounders', 'W4', 'W1', 'W3', 'W2']\n",
|
||||||
"WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.\n"
|
"WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -236,7 +236,7 @@
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:['Z0', 'Z1']\n"
|
"INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:['Z1', 'Z0']\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -248,15 +248,15 @@
|
||||||
"Estimand name: backdoor\n",
|
"Estimand name: backdoor\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
" d \n",
|
" d \n",
|
||||||
"─────(Expectation(y|W1,W2,W3,W0,W4))\n",
|
"─────(Expectation(y|W0,W4,W1,W3,W2))\n",
|
||||||
"d[v₀] \n",
|
"d[v₀] \n",
|
||||||
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W1,W2,W3,W0,W4,U) = P(y|v0,W1,W2,W3,W0,W4)\n",
|
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W0,W4,W1,W3,W2,U) = P(y|v0,W0,W4,W1,W3,W2)\n",
|
||||||
"### Estimand : 2\n",
|
"### Estimand : 2\n",
|
||||||
"Estimand name: iv\n",
|
"Estimand name: iv\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
"Expectation(Derivative(y, [Z0, Z1])*Derivative([v0], [Z0, Z1])**(-1))\n",
|
"Expectation(Derivative(y, [Z1, Z0])*Derivative([v0], [Z1, Z0])**(-1))\n",
|
||||||
"Estimand assumption 1, As-if-random: If U→→y then ¬(U →→{Z0,Z1})\n",
|
"Estimand assumption 1, As-if-random: If U→→y then ¬(U →→{Z1,Z0})\n",
|
||||||
"Estimand assumption 2, Exclusion: If we remove {Z0,Z1}→{v0}, then ¬({Z0,Z1}→y)\n",
|
"Estimand assumption 2, Exclusion: If we remove {Z1,Z0}→{v0}, then ¬({Z1,Z0}→y)\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
@ -282,10 +282,10 @@
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_identifier:Common causes of treatment and outcome:['Unobserved Confounders', 'W1', 'W2', 'W3', 'W0', 'W4']\n",
|
"INFO:dowhy.causal_identifier:Common causes of treatment and outcome:['W0', 'Unobserved Confounders', 'W4', 'W1', 'W3', 'W2']\n",
|
||||||
"WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.\n",
|
"WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.\n",
|
||||||
"INFO:dowhy.causal_identifier:Continuing by ignoring these unobserved confounders because proceed_when_unidentifiable flag is True.\n",
|
"INFO:dowhy.causal_identifier:Continuing by ignoring these unobserved confounders because proceed_when_unidentifiable flag is True.\n",
|
||||||
"INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:['Z0', 'Z1']\n"
|
"INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:['Z1', 'Z0']\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -297,15 +297,15 @@
|
||||||
"Estimand name: backdoor\n",
|
"Estimand name: backdoor\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
" d \n",
|
" d \n",
|
||||||
"─────(Expectation(y|W1,W2,W3,W0,W4))\n",
|
"─────(Expectation(y|W0,W4,W1,W3,W2))\n",
|
||||||
"d[v₀] \n",
|
"d[v₀] \n",
|
||||||
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W1,W2,W3,W0,W4,U) = P(y|v0,W1,W2,W3,W0,W4)\n",
|
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W0,W4,W1,W3,W2,U) = P(y|v0,W0,W4,W1,W3,W2)\n",
|
||||||
"### Estimand : 2\n",
|
"### Estimand : 2\n",
|
||||||
"Estimand name: iv\n",
|
"Estimand name: iv\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
"Expectation(Derivative(y, [Z0, Z1])*Derivative([v0], [Z0, Z1])**(-1))\n",
|
"Expectation(Derivative(y, [Z1, Z0])*Derivative([v0], [Z1, Z0])**(-1))\n",
|
||||||
"Estimand assumption 1, As-if-random: If U→→y then ¬(U →→{Z0,Z1})\n",
|
"Estimand assumption 1, As-if-random: If U→→y then ¬(U →→{Z1,Z0})\n",
|
||||||
"Estimand assumption 2, Exclusion: If we remove {Z0,Z1}→{v0}, then ¬({Z0,Z1}→y)\n",
|
"Estimand assumption 2, Exclusion: If we remove {Z1,Z0}→{v0}, then ¬({Z1,Z0}→y)\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
@ -332,7 +332,7 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y~v0+W1+W2+W3+W0+W4\n",
|
"INFO:dowhy.causal_estimator:b: y~v0+W0+W4+W1+W3+W2\n",
|
||||||
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
" y = column_or_1d(y, warn=True)\n"
|
" y = column_or_1d(y, warn=True)\n"
|
||||||
]
|
]
|
||||||
|
@ -349,22 +349,22 @@
|
||||||
"Estimand name: backdoor\n",
|
"Estimand name: backdoor\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
" d \n",
|
" d \n",
|
||||||
"─────(Expectation(y|W1,W2,W3,W0,W4))\n",
|
"─────(Expectation(y|W0,W4,W1,W3,W2))\n",
|
||||||
"d[v₀] \n",
|
"d[v₀] \n",
|
||||||
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W1,W2,W3,W0,W4,U) = P(y|v0,W1,W2,W3,W0,W4)\n",
|
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W0,W4,W1,W3,W2,U) = P(y|v0,W0,W4,W1,W3,W2)\n",
|
||||||
"### Estimand : 2\n",
|
"### Estimand : 2\n",
|
||||||
"Estimand name: iv\n",
|
"Estimand name: iv\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
"Expectation(Derivative(y, [Z0, Z1])*Derivative([v0], [Z0, Z1])**(-1))\n",
|
"Expectation(Derivative(y, [Z1, Z0])*Derivative([v0], [Z1, Z0])**(-1))\n",
|
||||||
"Estimand assumption 1, As-if-random: If U→→y then ¬(U →→{Z0,Z1})\n",
|
"Estimand assumption 1, As-if-random: If U→→y then ¬(U →→{Z1,Z0})\n",
|
||||||
"Estimand assumption 2, Exclusion: If we remove {Z0,Z1}→{v0}, then ¬({Z0,Z1}→y)\n",
|
"Estimand assumption 2, Exclusion: If we remove {Z1,Z0}→{v0}, then ¬({Z1,Z0}→y)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Realized estimand\n",
|
"## Realized estimand\n",
|
||||||
"b: y~v0+W1+W2+W3+W0+W4\n",
|
"b: y~v0+W0+W4+W1+W3+W2\n",
|
||||||
"## Estimate\n",
|
"## Estimate\n",
|
||||||
"Value: 13.222295952727425\n",
|
"Value: 10.646781689585207\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Causal Estimate is 13.222295952727425\n"
|
"Causal Estimate is 10.646781689585207\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -455,7 +455,7 @@
|
||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_identifier:Common causes of treatment and outcome:['U', 'W1', 'W2', 'W3', 'W0', 'W4']\n",
|
"INFO:dowhy.causal_identifier:Common causes of treatment and outcome:['U', 'W0', 'W1', 'W4', 'W3', 'W2']\n",
|
||||||
"WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.\n",
|
"WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.\n",
|
||||||
"INFO:dowhy.causal_identifier:Continuing by ignoring these unobserved confounders because proceed_when_unidentifiable flag is True.\n",
|
"INFO:dowhy.causal_identifier:Continuing by ignoring these unobserved confounders because proceed_when_unidentifiable flag is True.\n",
|
||||||
"INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:[]\n"
|
"INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:[]\n"
|
||||||
|
@ -483,7 +483,7 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y~v0+W1+W2+W3+W0+W4\n",
|
"INFO:dowhy.causal_estimator:b: y~v0+W0+W1+W4+W3+W2\n",
|
||||||
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
" y = column_or_1d(y, warn=True)\n"
|
" y = column_or_1d(y, warn=True)\n"
|
||||||
]
|
]
|
||||||
|
@ -500,19 +500,19 @@
|
||||||
"Estimand name: backdoor\n",
|
"Estimand name: backdoor\n",
|
||||||
"Estimand expression:\n",
|
"Estimand expression:\n",
|
||||||
" d \n",
|
" d \n",
|
||||||
"─────(Expectation(y|W1,W2,W3,W0,W4))\n",
|
"─────(Expectation(y|W0,W1,W4,W3,W2))\n",
|
||||||
"d[v₀] \n",
|
"d[v₀] \n",
|
||||||
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W1,W2,W3,W0,W4,U) = P(y|v0,W1,W2,W3,W0,W4)\n",
|
"Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W0,W1,W4,W3,W2,U) = P(y|v0,W0,W1,W4,W3,W2)\n",
|
||||||
"### Estimand : 2\n",
|
"### Estimand : 2\n",
|
||||||
"Estimand name: iv\n",
|
"Estimand name: iv\n",
|
||||||
"No such variable found!\n",
|
"No such variable found!\n",
|
||||||
"\n",
|
"\n",
|
||||||
"## Realized estimand\n",
|
"## Realized estimand\n",
|
||||||
"b: y~v0+W1+W2+W3+W0+W4\n",
|
"b: y~v0+W0+W1+W4+W3+W2\n",
|
||||||
"## Estimate\n",
|
"## Estimate\n",
|
||||||
"Value: 13.222295952727425\n",
|
"Value: 10.646781689585207\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Causal Estimate is 13.222295952727425\n"
|
"Causal Estimate is 10.646781689585207\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -549,7 +549,7 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y~v0+W1+W2+W3+W0+W4+w_random\n",
|
"INFO:dowhy.causal_estimator:b: y~v0+W0+W1+W4+W3+W2+w_random\n",
|
||||||
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
" y = column_or_1d(y, warn=True)\n"
|
" y = column_or_1d(y, warn=True)\n"
|
||||||
]
|
]
|
||||||
|
@ -559,8 +559,8 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Refute: Add a Random Common Cause\n",
|
"Refute: Add a Random Common Cause\n",
|
||||||
"Estimated effect:(13.222295952727425,)\n",
|
"Estimated effect:(10.646781689585207,)\n",
|
||||||
"New effect:(13.217874105607864,)\n",
|
"New effect:(10.644077917244749,)\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
@ -587,7 +587,7 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y~v0+W1+W2+W3+W0+W4\n",
|
"INFO:dowhy.causal_estimator:b: y~v0+W0+W1+W4+W3+W2\n",
|
||||||
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
" y = column_or_1d(y, warn=True)\n"
|
" y = column_or_1d(y, warn=True)\n"
|
||||||
]
|
]
|
||||||
|
@ -597,8 +597,8 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Refute: Add an Unobserved Common Cause\n",
|
"Refute: Add an Unobserved Common Cause\n",
|
||||||
"Estimated effect:(13.222295952727425,)\n",
|
"Estimated effect:(10.646781689585207,)\n",
|
||||||
"New effect:(12.485335887741792,)\n",
|
"New effect:(9.937718916281279,)\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
@ -627,7 +627,7 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y~placebo+W1+W2+W3+W0+W4\n",
|
"INFO:dowhy.causal_estimator:b: y~placebo+W0+W1+W4+W3+W2\n",
|
||||||
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
" y = column_or_1d(y, warn=True)\n"
|
" y = column_or_1d(y, warn=True)\n"
|
||||||
]
|
]
|
||||||
|
@ -637,8 +637,8 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Refute: Use a Placebo Treatment\n",
|
"Refute: Use a Placebo Treatment\n",
|
||||||
"Estimated effect:(13.222295952727425,)\n",
|
"Estimated effect:(10.646781689585207,)\n",
|
||||||
"New effect:(0.007294829645751021,)\n",
|
"New effect:(-0.01541340253555656,)\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
@ -666,7 +666,7 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y~v0+W1+W2+W3+W0+W4\n",
|
"INFO:dowhy.causal_estimator:b: y~v0+W0+W1+W4+W3+W2\n",
|
||||||
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
" y = column_or_1d(y, warn=True)\n"
|
" y = column_or_1d(y, warn=True)\n"
|
||||||
]
|
]
|
||||||
|
@ -676,8 +676,8 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Refute: Use a subset of data\n",
|
"Refute: Use a subset of data\n",
|
||||||
"Estimated effect:(13.222295952727425,)\n",
|
"Estimated effect:(10.646781689585207,)\n",
|
||||||
"New effect:(13.213529619173043,)\n",
|
"New effect:(10.644229843118644,)\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
@ -706,7 +706,7 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
"INFO:dowhy.causal_estimator:INFO: Using Propensity Score Stratification Estimator\n",
|
||||||
"INFO:dowhy.causal_estimator:b: y~v0+W1+W2+W3+W0+W4\n",
|
"INFO:dowhy.causal_estimator:b: y~v0+W0+W1+W4+W3+W2\n",
|
||||||
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
"/home/amshar/python-environments/vpy36/lib/python3.6/site-packages/sklearn/utils/validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
|
||||||
" y = column_or_1d(y, warn=True)\n"
|
" y = column_or_1d(y, warn=True)\n"
|
||||||
]
|
]
|
||||||
|
@ -716,8 +716,8 @@
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Refute: Use a subset of data\n",
|
"Refute: Use a subset of data\n",
|
||||||
"Estimated effect:(13.222295952727425,)\n",
|
"Estimated effect:(10.646781689585207,)\n",
|
||||||
"New effect:(13.167958123747333,)\n",
|
"New effect:(10.740850048405411,)\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
|
Различия файлов скрыты, потому что одна или несколько строк слишком длинны
Различия файлов скрыты, потому что одна или несколько строк слишком длинны
Загрузка…
Ссылка в новой задаче