book update
This commit is contained in:
Родитель
d2dab76212
Коммит
0c48e03252
|
@ -107,8 +107,61 @@
|
|||
|
||||
### Additional Resources
|
||||
|
||||
* [PCA Main Ideas](https://www.youtube.com/watch?v=HMOI_lkzW08)
|
||||
* [Introduction to Machine Learning: Microsoft](https://docs.microsoft.com/en-us/learn/modules/introduction-to-machine-learning/) - Python
|
||||
* [Introduction to Machine Learning : Udemy](https://www.classcentral.com/course/udemy-introduction-to-data-science-using-python-25723) - Python
|
||||
* [Machine Learning for Beginners](https://github.com/microsoft/ML-For-Beginners) - Python
|
||||
* [Best Python Machine Learning Libraries](https://github.com/ml-tooling/best-of-ml-python) - Python
|
||||
* [Analytical Skills for AI & Data Science](https://learning.oreilly.com/library/view/analytical-skills-for/9781492060932/) - Python
|
||||
* [Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow](https://learning.oreilly.com/library/view/hands-on-machine-learning/9781492032632/) - Python
|
||||
* [Microsoft Approved Data Science Learning Resources](https://medium.com/data-science-at-microsoft/data-science-learning-resources-193ccf6fafb) - Python/R
|
||||
* [Introduction to Statistical Learning](https://www.statlearning.com/) - R
|
||||
* [Companion Book to Introduction to Statistical Learning](https://emilhvitfeldt.github.io/ISLR-tidymodels-labs/index.html) - R
|
||||
* [R Cheat Sheet](https://www.business-science.io/r-cheatsheet?utm_content=buffer832d4&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer) - R
|
||||
* [Practical Data Science with R](https://learning.oreilly.com/library/view/practical-data-science/9781617295874/) - R
|
||||
|
||||
## Regression
|
||||
|
||||
### High Level Topics
|
||||
|
||||
* [Making Friends with Regression](https://www.youtube.com/watch?v=WNvOtwP_yf4)
|
||||
* [Evaluation Metrics for Regression Models](https://www.analyticsvidhya.com/blog/2021/05/know-the-best-evaluation-metrics-for-your-regression-model/#:~:text=%20Know%20The%20Best%20Evaluation%20Metrics%20for%20Your,is%20clear%20by%20the%20name%20itself%2C...%20More%20)
|
||||
|
||||
### Python
|
||||
|
||||
* [Train and Evaluate Regression Models: Microsoft](https://docs.microsoft.com/en-us/learn/modules/train-evaluate-regression-models/)
|
||||
* [Train and Understand Regression Models: Microsoft](https://docs.microsoft.com/en-us/learn/modules/understand-regression-machine-learning/)
|
||||
* [PyCaret Tutorials](https://pycaret.readthedocs.io/en/latest/tutorials.html#regression)
|
||||
* [E-Commerce Tutorial](https://github.com/ishikkkkaaaa/ML-Projects/tree/main/1-E%20COMMERCE)
|
||||
* [USA Housing Tutorial](https://github.com/ishikkkkaaaa/ML-Projects/tree/main/2-USA%20housing)
|
||||
|
||||
### R
|
||||
|
||||
* [Lasso Regression Tutorial](https://juliasilge.com/blog/lasso-the-office/)
|
||||
* [Tune and Interpret Decision Trees Tutorial](https://juliasilge.com/blog/wind-turbine/)
|
||||
* [Tune Random Forests Tutorial](https://juliasilge.com/blog/ikea-prices/)
|
||||
* [Custom Metric Evaluation Tutorial](https://juliasilge.com/blog/nyc-airbnb/)
|
||||
* [Bagging Tutorial](https://juliasilge.com/blog/astronaut-missions-bagging/)
|
||||
* [Using Text as Features Tutorial](https://juliasilge.com/blog/tate-collection/)
|
||||
|
||||
### How Various Models Work
|
||||
|
||||
* [Fitting a Line to Data: Least Squares](https://www.youtube.com/watch?v=PaFPbb66DxQ)
|
||||
* [Linear Models #1](https://www.youtube.com/watch?v=nk2CQITm_eo)
|
||||
* [Linear Models #2](https://www.youtube.com/watch?v=zITIFTsivN8)
|
||||
* [Regularization #1](https://www.youtube.com/watch?v=Q81RR3yKn30)
|
||||
* [Regularization #2](https://www.youtube.com/watch?v=NGf0voTMlcs)
|
||||
* [Regularization #3](https://www.youtube.com/watch?v=1dKRdX9bfIo)
|
||||
* [Decision Trees](https://www.youtube.com/watch?v=g9c66TUylZ4)
|
||||
* [Random Forest](https://www.youtube.com/watch?v=J4Wdy0Wc_xQ)
|
||||
* [Gradient Boost](https://www.youtube.com/watch?v=3CC4N4z3GJc)
|
||||
* [XGBoost](https://www.youtube.com/watch?v=OtD8wVaFm6E)
|
||||
|
||||
### Additional Resources
|
||||
|
||||
* [Fitting a Curve to Data](https://www.youtube.com/watch?v=Vf7oJ6z2LCc)
|
||||
* [Linear Regression and Gradient Descent: Stanford](https://www.youtube.com/watch?v=4b4MUYve_U8)
|
||||
|
||||
## Time Series
|
||||
|
||||
## Classification
|
||||
|
|
Загрузка…
Ссылка в новой задаче