зеркало из
1
0
Форкнуть 0
This commit is contained in:
Mike Tokic 2021-09-29 15:52:26 -07:00
Родитель d65b090c62
Коммит d66eaa303e
1 изменённых файлов: 95 добавлений и 0 удалений

Просмотреть файл

@ -43,6 +43,8 @@
* [Automating Excel in R](https://www.youtube.com/watch?v=EMSkZOF-ZG8)
* [Business Reporting in RMarkdown](https://www.youtube.com/watch?v=mszKt0i4yuY)
* [Exploratory Reports](https://www.youtube.com/watch?v=ssVEoj54rx4)
* [Fundamental of Data Visualization](https://clauswilke.com/dataviz/)
* [R Graphics Cookbook](https://r-graphics.org/)
### Additional Resources
@ -247,18 +249,111 @@
## Unsupervised Learning
### Python
* [Train and Evaluate Clustering Models](https://docs.microsoft.com/en-us/learn/modules/train-evaluate-cluster-models/)
* [PyCaret Clustering Tutorial](https://pycaret.readthedocs.io/en/latest/tutorials.html#clustering)
* [PyCaret Anomaly Detection Tutorial](https://pycaret.readthedocs.io/en/latest/tutorials.html#anomaly-detection)
* [PCA Tutorial](https://github.com/ishikkkkaaaa/ML-Projects/tree/main/7-Breast%20cancer)
### R
* [PCA Tutorial](https://juliasilge.com/blog/un-voting/)
* [PCA and UMAP Tutorial](https://juliasilge.com/blog/cocktail-recipes-umap/)
* [Visualizing PCA in R](https://www.youtube.com/watch?v=X4wsXba_tZI)
### How Various Models Work
* [K-Means Clustering](https://www.youtube.com/watch?v=4b5d3muPQmA)
* [PCA](https://www.youtube.com/watch?v=FgakZw6K1QQ&list=PLblh5JKOoLUIcdlgu78MnlATeyx4cEVeR&index=1)
## Natural Language Processing
### Python
* [Natural Language Processing: Kaggle](https://www.kaggle.com/learn/natural-language-processing)
* [Explore Natural Language Processing in Azure: Microsoft](https://docs.microsoft.com/en-us/learn/paths/explore-natural-language-processing/)
* [PyCaret Tutorial](https://pycaret.readthedocs.io/en/latest/tutorials.html#natural-language-processing)
### R
* [Text Mining in R](https://www.tidytextmining.com/)
* [Text Mining with Tidy Data Principles](https://juliasilge.shinyapps.io/learntidytext/)
* [Supervised Machine Learning for Text Analysis](https://smltar.com/)
### Additional Resources
* [Practical Natural Language Processing](https://learning.oreilly.com/library/view/practical-natural-language/9781492054047/) - Python
* [Natural Language Processing with Python and spaCy](https://learning.oreilly.com/library/view/natural-language-processing/9781098122652/) - Python
* [Applied Text Analysis](https://learning.oreilly.com/library/view/applied-text-analysis/9781491963036/) - Python
* [Introduction to Natural Language Processing with PyTorch: Microsoft](https://docs.microsoft.com/en-us/learn/modules/intro-natural-language-processing-pytorch/) - Python
## Deep Learning
### High Level Topics
* [Deep Learning Crash Course](https://www.youtube.com/watch?v=VyWAvY2CF9c)
* [Neural Networks](https://www.youtube.com/playlist?list=PLblh5JKOoLUIxGDQs4LFFD--41Vzf-ME1)
### Python
* [Practical Deep Learning for Coders](https://course.fast.ai/)
* [Train and Evaluate Deep Learning Models: Microsoft](https://docs.microsoft.com/en-us/learn/modules/train-evaluate-deep-learn-models/)
### R
* [Deep Learning with Tidymodels, Torch, and Tabnet](https://www.youtube.com/watch?v=GuboAGHDgas)
### Additional Resources
* [Andrew Ng: Deep Learning, Education, and Real-World AI](https://www.youtube.com/watch?v=0jspaMLxBig)
* [Nuts and Bolts of Applying Deep Learning](https://www.youtube.com/watch?v=F1ka6a13S9I)
* [History of Deep Learning](https://www.youtube.com/watch?v=mTtDfKgLm54)
* [Deep Learning for Coders with fastai and PyTorch](https://learning.oreilly.com/library/view/deep-learning-for/9781492045519/) - Python
* [Deep Learning: Coursera](https://www.coursera.org/specializations/deep-learning#courses) - Python
* [Computer Vision Tutorial: Kaggle](https://www.kaggle.com/learn/computer-vision) - Python
* [Deep Learning with R](https://learning.oreilly.com/library/view/deep-learning-with/9781617295546/) - R
## Model Interpretability
### High Level Topics
* [Interpretable Machine Learning](https://christophm.github.io/interpretable-ml-book/)
### Python
* [Machine Learning Explainability: Kaggle](https://www.kaggle.com/learn/machine-learning-explainability)
* [interpretML](https://github.com/interpretml/interpret)
### R
* [vip: Variable Importance Plots](https://koalaverse.github.io/vip/index.html)
* [Model Interpretability Tutorial](https://juliasilge.com/blog/wind-turbine/)
* [Partial Dependence Plots with Tidymodels and DALEX](https://juliasilge.com/blog/mario-kart/)
## AI Ethics and Fairness
### High Level Topics
* [Intro to AI Ethics: Kaggle](https://www.kaggle.com/learn/intro-to-ai-ethics)
* [Fairness and Machine Learning](https://fairmlbook.org/)
* [What Happens when an Algorithm Cuts Your Healthcare](https://www.theverge.com/2018/3/21/17144260/healthcare-medicaid-algorithm-arkansas-cerebral-palsy)
### Python
* [Fairlearn](https://fairlearn.org/)
* [Data Ethics in Deep Learning](https://course.fast.ai/videos/?lesson=5)
## Web Apps
### R
* [A Gentle Introduction to creating R Shiny Web Apps](https://www.youtube.com/watch?v=jxsKUxkiaLI)
* [Shiny Walkthrough](https://www.youtube.com/watch?v=eoeLn8SyDW8)
* [Building Predictive Web Applications with R Shiny](https://www.youtube.com/watch?v=oegRVT262Ig)
* [Build Interactive Data-Driven Web Apps With R Shiny](https://www.freecodecamp.org/news/build-interactive-data-driven-web-apps-with-r-shiny/)
* [Engineering Production Grade Shiny Apps](https://engineering-shiny.org/)
* [Outstanding User Interfaces with Shiny](https://unleash-shiny.rinterface.com/index.html)
## Production on Azure