* updated docstring

* pinged package versions

* minor improvements

* minor improvement

Former-commit-id: 43a423eacf
This commit is contained in:
Chenhui Hu 2020-03-24 17:52:47 -04:00 коммит произвёл GitHub
Родитель 2657c1c7bb
Коммит 21c44cd709
4 изменённых файлов: 14 добавлений и 14 удалений

Просмотреть файл

@ -420,7 +420,7 @@ def specify_retail_data_schema(
df (Pandas DataFrame): sales data combined with store demographic features
"""
# Read the 1st split of training data if "sales" is not specified
if sales is None:
if not sales:
print("Sales dataframe is not given! The 1st split of training data will be used.")
sales = pd.read_csv(os.path.join(data_dir, "train", "train_round_1.csv"), index_col=False)
aux = pd.read_csv(os.path.join(data_dir, "train", "aux_round_1.csv"), index_col=False)

Просмотреть файл

@ -61,7 +61,7 @@ def day_type(datetime_col, holiday_col=None, semi_holiday_offset=timedelta(days=
datetype = pd.DataFrame({"DayType": datetime_col.dt.dayofweek})
datetype.replace({"DayType": WEEK_DAY_TYPE_MAP}, inplace=True)
if holiday_col is not None:
if holiday_col:
holiday_mask = holiday_col > 0
datetype.loc[holiday_mask, "DayType"] = HOLIDAY_CODE
@ -606,7 +606,7 @@ def same_day_hour_moving_average(
week_lag_start = start_week + i
hour_lags = [(week_lag_start + w) * 24 * 7 for w in range(window_size)]
hour_lags = [h for h in hour_lags if h > max_diff]
if len(hour_lags) > 0:
if hour_lags:
tmp_df = df[["value"]].copy()
tmp_col_all = []
for h in hour_lags:
@ -678,7 +678,7 @@ def same_day_hour_moving_quantile(
week_lag_start = start_week + i
hour_lags = [(week_lag_start + w) * 24 * 7 for w in range(window_size)]
hour_lags = [h for h in hour_lags if h > max_diff]
if len(hour_lags) > 0:
if hour_lags:
tmp_df = df[["value"]].copy()
tmp_col_all = []
for h in hour_lags:
@ -749,7 +749,7 @@ def same_day_hour_moving_std(
week_lag_start = start_week + i
hour_lags = [(week_lag_start + w) * 24 * 7 for w in range(window_size)]
hour_lags = [h for h in hour_lags if h > max_diff]
if len(hour_lags) > 0:
if hour_lags:
tmp_df = df[["value"]].copy()
tmp_col_all = []
for h in hour_lags:
@ -825,7 +825,7 @@ def same_day_hour_moving_agg(
week_lag_start = start_week + i
hour_lags = [(week_lag_start + w) * 24 * 7 for w in range(window_size)]
hour_lags = [h for h in hour_lags if h > max_diff]
if len(hour_lags) > 0:
if hour_lags:
tmp_df = df[["value"]].copy()
tmp_col_all = []
for h in hour_lags:

Просмотреть файл

@ -1,5 +1,5 @@
pandas
datetime
scikit_learn
numpy
requests
pandas==0.23.4
datetime==4.3
scikit-learn==0.20.3
numpy==1.16.2
requests==2.23.0

Просмотреть файл

@ -1,11 +1,11 @@
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# Licensed under the MIT License.
# To create the conda environment:
# $ conda env create -f environment.yaml
# $ conda env create -f environment.yml
#
# To update the conda environment:
# $ conda env update -f environment.yaml
# $ conda env update -f environment.yml
#
# To register the conda environment in Jupyter:
# $ conda activate forecasting_env