* move ray to linux setup script

* remove duplicated azureml-sdk to avoid errors

* add ray to ci yaml files

* update azureml-sdk

* update manual setup instructions

* minor change

Former-commit-id: 88f099759b
This commit is contained in:
Chenhui Hu 2020-03-31 13:42:56 -04:00 коммит произвёл GitHub
Родитель 74237a7688
Коммит 373d7d797c
6 изменённых файлов: 13 добавлений и 4 удалений

Просмотреть файл

@ -83,6 +83,11 @@ pip install -e fclib
The library is installed in developer mode with the `-e` flag. This means that all changes made to the library locally, are immediately available.
If you work with Linux or MacOS, you could also install Ray for parallel model training:
```
pip install ray>=0.8.2
```
#### Jupyter kernel
In order to run the example notebooks, make sure to run the notebooks in the conda environment we previously set up, `forecasting_env`. To register the conda environment in Jupyter, please run:

Просмотреть файл

@ -6,5 +6,5 @@ requests>=2.23.0
tqdm>=4.43.0
matplotlib>=3.1.2
tensorflow==2.0
azureml-sdk[explain,automl]==1.0.85
gitpython>=3.0.8
gitpython>=3.0.8
azureml-sdk==1.0.85

Просмотреть файл

@ -41,6 +41,7 @@ jobs:
yes | conda env create -n forecast_cpu -f tools/environment.yml
eval "$(conda shell.bash hook)" && conda activate forecast_cpu
pip install -e fclib
pip install ray>=0.8.2
echo "Conda env installed."
displayName: 'Creating conda environment with dependencies'

Просмотреть файл

@ -41,6 +41,7 @@ jobs:
yes | conda env create -n forecast_cpu -f tools/environment.yml
eval "$(conda shell.bash hook)" && conda activate forecast_cpu
pip install -e fclib
pip install ray>=0.8.2
echo "Conda env installed."
displayName: 'Creating Conda Environment with dependencies'

Просмотреть файл

@ -38,7 +38,6 @@ dependencies:
- tensorflow==2.0
- tensorboard==2.1.0
- nteract-scrapbook==0.3.1
- azureml-sdk[explain,automl]==1.0.85
- statsmodels>=0.11.1
- pmdarima>=1.1.1
- ray>=0.8.2
- azureml-sdk[explain,automl]==1.0.85

Просмотреть файл

@ -14,5 +14,8 @@ eval "$(conda shell.bash hook)" && conda activate forecasting_env
# Install forecasting utility library
pip install -e fclib
# Install ray (available only on Linux and MacOS)
pip install ray>=0.8.2
# Register conda environment in Jupyter
python -m ipykernel install --user --name forecasting_env