Chenhui/hyperdrive windows (#185)
* resolve format issues
* update log path and tensorboard path
* remove subprocess import
* fetch common utils from chenhui/dilatedcnn_windows
* update notebook
* removed explain module and added notebooks module
* get updated ci yml files
* updated kernel name
Former-commit-id: deac0cce96
This commit is contained in:
Родитель
c2c17e4748
Коммит
c52fb1c83d
|
@ -55,6 +55,13 @@
|
|||
"%autoreload 2"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
">Note: If you run into any issue with installing and enabling the AzureML widgets below, please *uncomment* the first line in the following cell to manually install `azureml-widgets`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
|
@ -81,6 +88,7 @@
|
|||
],
|
||||
"source": [
|
||||
"# Install and enable AzureML widgets\n",
|
||||
"#!pip -q install azureml-widgets==1.0.85\n",
|
||||
"!jupyter nbextension install --py --user azureml.widgets\n",
|
||||
"!jupyter nbextension enable --py --user azureml.widgets"
|
||||
]
|
||||
|
@ -106,7 +114,6 @@
|
|||
"import shutil\n",
|
||||
"import azureml\n",
|
||||
"import requests\n",
|
||||
"import subprocess\n",
|
||||
"import numpy as np\n",
|
||||
"from azureml.core import (\n",
|
||||
" Experiment,\n",
|
||||
|
@ -130,7 +137,7 @@
|
|||
")\n",
|
||||
"from azureml.core.webservice import AciWebservice\n",
|
||||
"from azureml.core.model import Model, InferenceConfig\n",
|
||||
"from fclib.common.utils import git_repo_path\n",
|
||||
"from fclib.common.utils import git_repo_path, module_path\n",
|
||||
"from fclib.azureml.azureml_utils import (\n",
|
||||
" get_or_create_workspace,\n",
|
||||
" get_or_create_amlcompute,\n",
|
||||
|
@ -280,8 +287,7 @@
|
|||
"outputs": [],
|
||||
"source": [
|
||||
"# Get Python interpreter path\n",
|
||||
"python_path = subprocess.check_output(\"which python\", shell=True)\n",
|
||||
"python_path = python_path.decode(\"utf-8\")[:-1]\n",
|
||||
"python_path = module_path(\"forecasting_env\", \"python\")\n",
|
||||
"\n",
|
||||
"# Configure local, user managed environment\n",
|
||||
"run_config_user_managed = RunConfiguration()\n",
|
||||
|
|
|
@ -7,13 +7,14 @@ import papermill as pm
|
|||
import scrapbook as sb
|
||||
|
||||
ABS_TOL = 5.0
|
||||
KERNEL = "forecasting_env"
|
||||
|
||||
|
||||
@pytest.mark.integration
|
||||
def test_lightgbm_quick_start(notebooks):
|
||||
notebook_path = notebooks["lightgbm_quick_start"]
|
||||
output_notebook_path = os.path.join(os.path.dirname(notebook_path), "output.ipynb")
|
||||
pm.execute_notebook(notebook_path, output_notebook_path, kernel_name="forecast_cpu")
|
||||
pm.execute_notebook(notebook_path, output_notebook_path, kernel_name=KERNEL)
|
||||
nb = sb.read_notebook(output_notebook_path)
|
||||
df = nb.scraps.dataframe
|
||||
assert df.shape[0] == 1
|
||||
|
@ -26,7 +27,7 @@ def test_autoarima_quick_start(notebooks):
|
|||
notebook_path = notebooks["autoarima_quick_start"]
|
||||
output_notebook_path = os.path.join(os.path.dirname(notebook_path), "output.ipynb")
|
||||
pm.execute_notebook(
|
||||
notebook_path, output_notebook_path, kernel_name="forecast_cpu", parameters=dict(STORE_SUBSET=True),
|
||||
notebook_path, output_notebook_path, kernel_name=KERNEL, parameters=dict(STORE_SUBSET=True),
|
||||
)
|
||||
nb = sb.read_notebook(output_notebook_path)
|
||||
df = nb.scraps.dataframe
|
||||
|
@ -41,7 +42,7 @@ def test_lightgbm_multi_round(notebooks):
|
|||
notebook_path = notebooks["lightgbm_multi_round"]
|
||||
output_notebook_path = os.path.join(os.path.dirname(notebook_path), "output.ipynb")
|
||||
pm.execute_notebook(
|
||||
notebook_path, output_notebook_path, kernel_name="forecast_cpu", parameters=dict(N_SPLITS=1),
|
||||
notebook_path, output_notebook_path, kernel_name=KERNEL, parameters=dict(N_SPLITS=1),
|
||||
)
|
||||
nb = sb.read_notebook(output_notebook_path)
|
||||
df = nb.scraps.dataframe
|
||||
|
@ -55,7 +56,7 @@ def test_dilatedcnn_multi_round(notebooks):
|
|||
notebook_path = notebooks["dilatedcnn_multi_round"]
|
||||
output_notebook_path = os.path.join(os.path.dirname(notebook_path), "output.ipynb")
|
||||
pm.execute_notebook(
|
||||
notebook_path, output_notebook_path, kernel_name="forecast_cpu", parameters=dict(N_SPLITS=2),
|
||||
notebook_path, output_notebook_path, kernel_name=KERNEL, parameters=dict(N_SPLITS=2),
|
||||
)
|
||||
nb = sb.read_notebook(output_notebook_path)
|
||||
df = nb.scraps.dataframe
|
||||
|
@ -69,7 +70,7 @@ def test_autoarima_multi_round(notebooks):
|
|||
notebook_path = notebooks["autoarima_multi_round"]
|
||||
output_notebook_path = os.path.join(os.path.dirname(notebook_path), "output.ipynb")
|
||||
pm.execute_notebook(
|
||||
notebook_path, output_notebook_path, kernel_name="forecast_cpu", parameters=dict(N_SPLITS=2, STORE_SUBSET=True),
|
||||
notebook_path, output_notebook_path, kernel_name=KERNEL, parameters=dict(N_SPLITS=2, STORE_SUBSET=True),
|
||||
)
|
||||
nb = sb.read_notebook(output_notebook_path)
|
||||
df = nb.scraps.dataframe
|
||||
|
|
|
@ -40,4 +40,4 @@ dependencies:
|
|||
- nteract-scrapbook==0.3.1
|
||||
- statsmodels>=0.11.1
|
||||
- pmdarima>=1.1.1
|
||||
- azureml-sdk[explain,automl]==1.0.85
|
||||
- azureml-sdk[automl,notebooks]==1.0.85
|
||||
|
|
Загрузка…
Ссылка в новой задаче