Time Series Forecasting Best Practices & Examples
Перейти к файлу
vapaunic a11d74efc8 Vapaunic/lib (#37)
* initial core for forecasting library

* syncing with new structure

* __init__ files in modules

* renamed lib directory

* Added legal headers and some formatting of py files

* restructured benchmarking directory in lib

* fixed imports, warnings, legal headers

* more import fixes and legal headers

* updated instructions with package installation

* barebones library README

* moved energy benchmark to contrib

* formatting changes plus more legal headers

* Added license to the setup

* moved .swp file to contrib, not sure we need to keep it at all

* added missing headers and a brief snipet to README file

* minor wording change in readme


Former-commit-id: a5e3b26ca8
2020-01-15 20:55:54 +00:00
.github Update to CONTRIBUTING instructions (#34) 2020-01-09 16:15:59 +00:00
benchmarks Vapaunic/lib (#37) 2020-01-15 20:55:54 +00:00
contrib Vapaunic/lib (#37) 2020-01-15 20:55:54 +00:00
docs Vapaunic/lib (#37) 2020-01-15 20:55:54 +00:00
examples renamed notebooks/ to examples/ 2020-01-09 15:24:50 +00:00
forecasting_lib Vapaunic/lib (#37) 2020-01-15 20:55:54 +00:00
tests updated tests folder 2020-01-08 17:19:13 +00:00
tools conda environment file (#36) 2020-01-10 11:24:04 +00:00
.flake8 Vapaunic/lib (#37) 2020-01-15 20:55:54 +00:00
.gitignore Vapaunic/lib (#37) 2020-01-15 20:55:54 +00:00
.pre-commit-config.yaml Update to CONTRIBUTING instructions (#34) 2020-01-09 16:15:59 +00:00
AUTHORS.md minor update 2019-03-26 12:26:20 +08:00
CONTRIBUTING.md Vapaunic/lib (#37) 2020-01-15 20:55:54 +00:00
LICENSE add standard contributing guide 2019-03-20 16:50:48 +08:00
README.md Vapaunic/lib (#37) 2020-01-15 20:55:54 +00:00
chglog.txt add standard contributing guide 2019-03-20 16:50:48 +08:00
codeofconduct.md add standard contributing guide 2019-03-20 16:50:48 +08:00
pyproject.toml Update to CONTRIBUTING instructions (#34) 2020-01-09 16:15:59 +00:00

README.md

Forecasting Best Practices

This repository contains examples and best practices for building Forecasting solutions and systems, provided as Jupyter notebooks and a library of utility functions. The focus of the repository is on state-of-the-art methods and common scenarios that are popular among researchers and practitioners working on forecasting problems.