зеркало из
1
0
Форкнуть 0

First version of generic data processing workflow

This commit is contained in:
Geraldine Van der Auwera 2017-10-01 02:10:45 -04:00
Родитель 5e2e8c5106
Коммит fc5335da33
4 изменённых файлов: 633 добавлений и 1 удалений

Просмотреть файл

@ -1,6 +1,6 @@
BSD 3-Clause License
Copyright (c) 2017, gatk-workflows
Copyright (c) 2017, Broad Institute
All rights reserved.
Redistribution and use in source and binary forms, with or without

Просмотреть файл

@ -0,0 +1,6 @@
{
"read_from_cache":false,
"default_runtime_attributes": {
"zones": "us-central1-a us-central1-b us-central1-c us-central1-f"
}
}

Просмотреть файл

@ -0,0 +1,43 @@
{
"##_COMMENT1": "SAMPLE NAME AND UNMAPPED BAMS",
"GenericPreProcessingWorkflow.sample_name": "NA12878",
"GenericPreProcessingWorkflow.base_file_name": "NA12878_20k.hg38",
"GenericPreProcessingWorkflow.flowcell_unmapped_bams": [
"gs://genomics-public-data/test-data/dna/wgs/hiseq2500/NA12878/H06HDADXX130110.1.ATCACGAT.20k_reads.bam",
"gs://genomics-public-data/test-data/dna/wgs/hiseq2500/NA12878/H06HDADXX130110.2.ATCACGAT.20k_reads.bam",
"gs://genomics-public-data/test-data/dna/wgs/hiseq2500/NA12878/H06JUADXX130110.1.ATCACGAT.20k_reads.bam"
],
"GenericPreProcessingWorkflow.unmapped_bam_suffix": ".bam",
"##_COMMENT2": "REFERENCE FILES",
"GenericPreProcessingWorkflow.ref_dict": "gs://genomics-public-data/resources/broad/hg38/v0/Homo_sapiens_assembly38.dict",
"GenericPreProcessingWorkflow.ref_fasta": "gs://genomics-public-data/resources/broad/hg38/v0/Homo_sapiens_assembly38.fasta",
"GenericPreProcessingWorkflow.ref_fasta_index": "gs://genomics-public-data/resources/broad/hg38/v0/Homo_sapiens_assembly38.fasta.fai",
"GenericPreProcessingWorkflow.ref_alt": "gs://genomics-public-data/resources/broad/hg38/v0/Homo_sapiens_assembly38.fasta.64.alt",
"GenericPreProcessingWorkflow.ref_sa": "gs://genomics-public-data/resources/broad/hg38/v0/Homo_sapiens_assembly38.fasta.64.sa",
"GenericPreProcessingWorkflow.ref_amb": "gs://genomics-public-data/resources/broad/hg38/v0/Homo_sapiens_assembly38.fasta.64.amb",
"GenericPreProcessingWorkflow.ref_bwt": "gs://genomics-public-data/resources/broad/hg38/v0/Homo_sapiens_assembly38.fasta.64.bwt",
"GenericPreProcessingWorkflow.ref_ann": "gs://genomics-public-data/resources/broad/hg38/v0/Homo_sapiens_assembly38.fasta.64.ann",
"GenericPreProcessingWorkflow.ref_pac": "gs://genomics-public-data/resources/broad/hg38/v0/Homo_sapiens_assembly38.fasta.64.pac",
"##_COMMENT3": "KNOWN SITES RESOURCES",
"GenericPreProcessingWorkflow.dbSNP_vcf": "gs://genomics-public-data/resources/broad/hg38/v0/Homo_sapiens_assembly38.dbsnp138.vcf",
"GenericPreProcessingWorkflow.dbSNP_vcf_index": "gs://genomics-public-data/resources/broad/hg38/v0/Homo_sapiens_assembly38.dbsnp138.vcf.idx",
"GenericPreProcessingWorkflow.known_indels_sites_VCFs": [
"gs://genomics-public-data/resources/broad/hg38/v0/Mills_and_1000G_gold_standard.indels.hg38.vcf.gz",
"gs://genomics-public-data/resources/broad/hg38/v0/Homo_sapiens_assembly38.known_indels.vcf.gz"
],
"GenericPreProcessingWorkflow.known_indels_sites_indices": [
"gs://genomics-public-data/resources/broad/hg38/v0/Mills_and_1000G_gold_standard.indels.hg38.vcf.gz.tbi",
"gs://genomics-public-data/resources/broad/hg38/v0/Homo_sapiens_assembly38.known_indels.vcf.gz.tbi"
],
"##_COMMENT4": "DISK SIZES + PREEMPTIBLES",
"GenericPreProcessingWorkflow.agg_small_disk": 200,
"GenericPreProcessingWorkflow.agg_medium_disk": 300,
"GenericPreProcessingWorkflow.agg_large_disk": 400,
"GenericPreProcessingWorkflow.agg_preemptible_tries": 3,
"GenericPreProcessingWorkflow.flowcell_small_disk": 100,
"GenericPreProcessingWorkflow.flowcell_medium_disk": 200,
"GenericPreProcessingWorkflow.preemptible_tries": 3
}

Просмотреть файл

@ -0,0 +1,583 @@
## Copyright Broad Institute, 2017
##
## This WDL pipeline implements data pre-processing according to the GATK Best Practices
## (June 2016) for SNP and Indel discovery. Example JSONs are provided for the WGS
## use case but the workflow can be applied to Exomes and Targeted Panels.
##
## Requirements/expectations :
## - Pair-end sequencing data in unmapped BAM (uBAM) format
## - One or more read groups, one per uBAM file, all belonging to a single sample (SM)
## - Input uBAM files must additionally comply with the following requirements:
## - - filenames all have the same suffix (we use ".unmapped.bam")
## - - files must pass validation by ValidateSamFile
## - - reads are provided in query-sorted order
## - - all reads must have an RG tag
##
## Output :
## - A clean BAM file and its index, suitable for variant discovery analyses.
##
## Cromwell version support
## - Successfully tested on v25
## - Does not work on versions < v23 due to output syntax
##
## Runtime parameters are optimized for Broad's Google Cloud Platform implementation.
## For program versions, see docker containers.
##
## LICENSING :
## This script is released under the WDL source code license (BSD-3) (see LICENSE in
## https://github.com/broadinstitute/wdl). Note however that the programs it calls may
## be subject to different licenses. Users are responsible for checking that they are
## authorized to run all programs before running this script. Please see the docker
## page at https://hub.docker.com/r/broadinstitute/genomes-in-the-cloud/ for detailed
## licensing information pertaining to the included programs.
# TASK DEFINITIONS
# Get version of BWA
task GetBwaVersion {
command {
# Not setting "set -o pipefail" here because /bwa has a rc=1 and we don't want to allow rc=1 to succeed
# because the sed may also fail with that error and that is something we actually want to fail on.
/usr/gitc/bwa 2>&1 | \
grep -e '^Version' | \
sed 's/Version: //'
}
runtime {
docker: "broadinstitute/genomes-in-the-cloud:2.2.5-1486412288"
memory: "1 GB"
}
output {
String version = read_string(stdout())
}
}
# Read unmapped BAM, convert on-the-fly to FASTQ and stream to BWA MEM for alignment
task SamToFastqAndBwaMem {
File input_bam
String bwa_commandline
String output_bam_basename
File ref_fasta
File ref_fasta_index
File ref_dict
# This is the .alt file from bwa-kit (https://github.com/lh3/bwa/tree/master/bwakit),
# listing the reference contigs that are "alternative". Leave blank in JSON for legacy
# references such as b37 and hg19.
File? ref_alt
File ref_amb
File ref_ann
File ref_bwt
File ref_pac
File ref_sa
Int disk_size
command <<<
set -o pipefail
set -e
# set the bash variable needed for the command-line
bash_ref_fasta=${ref_fasta}
java -Xmx3000m -jar /usr/gitc/picard.jar \
SamToFastq \
INPUT=${input_bam} \
FASTQ=/dev/stdout \
INTERLEAVE=true \
NON_PF=true | \
/usr/gitc/${bwa_commandline} /dev/stdin - 2> >(tee ${output_bam_basename}.bwa.stderr.log >&2) | \
samtools view -1 - > ${output_bam_basename}.bam
>>>
runtime {
docker: "broadinstitute/genomes-in-the-cloud:2.2.5-1486412288"
memory: "14 GB"
cpu: "16"
disks: "local-disk " + disk_size + " HDD"
}
output {
File output_bam = "${output_bam_basename}.bam"
File bwa_stderr_log = "${output_bam_basename}.bwa.stderr.log"
}
}
# Merge original input uBAM file with BWA-aligned BAM file
task MergeBamAlignment {
File unmapped_bam
String bwa_commandline
String bwa_version
File aligned_bam
String output_bam_basename
File ref_fasta
File ref_fasta_index
File ref_dict
Int disk_size
command {
# set the bash variable needed for the command-line
bash_ref_fasta=${ref_fasta}
java -Xmx2500m -jar /usr/gitc/picard.jar \
MergeBamAlignment \
VALIDATION_STRINGENCY=SILENT \
EXPECTED_ORIENTATIONS=FR \
ATTRIBUTES_TO_RETAIN=X0 \
ALIGNED_BAM=${aligned_bam} \
UNMAPPED_BAM=${unmapped_bam} \
OUTPUT=${output_bam_basename}.bam \
REFERENCE_SEQUENCE=${ref_fasta} \
PAIRED_RUN=true \
SORT_ORDER="unsorted" \
IS_BISULFITE_SEQUENCE=false \
ALIGNED_READS_ONLY=false \
CLIP_ADAPTERS=false \
MAX_RECORDS_IN_RAM=2000000 \
ADD_MATE_CIGAR=true \
MAX_INSERTIONS_OR_DELETIONS=-1 \
PRIMARY_ALIGNMENT_STRATEGY=MostDistant \
PROGRAM_RECORD_ID="bwamem" \
PROGRAM_GROUP_VERSION="${bwa_version}" \
PROGRAM_GROUP_COMMAND_LINE="${bwa_commandline}" \
PROGRAM_GROUP_NAME="bwamem" \
UNMAPPED_READ_STRATEGY=COPY_TO_TAG \
ALIGNER_PROPER_PAIR_FLAGS=true \
UNMAP_CONTAMINANT_READS=true
}
runtime {
docker: "broadinstitute/genomes-in-the-cloud:2.2.5-1486412288"
memory: "3500 MB"
cpu: "1"
disks: "local-disk " + disk_size + " HDD"
}
output {
File output_bam = "${output_bam_basename}.bam"
}
}
# Sort BAM file by coordinate order and fix tag values for NM and UQ
task SortAndFixTags {
File input_bam
String output_bam_basename
File ref_dict
File ref_fasta
File ref_fasta_index
Int disk_size
command {
set -o pipefail
java -Xmx4000m -jar /usr/gitc/picard.jar \
SortSam \
INPUT=${input_bam} \
OUTPUT=/dev/stdout \
SORT_ORDER="coordinate" \
CREATE_INDEX=false \
CREATE_MD5_FILE=false | \
java -Xmx500m -jar /usr/gitc/picard.jar \
SetNmAndUqTags \
INPUT=/dev/stdin \
OUTPUT=${output_bam_basename}.bam \
CREATE_INDEX=true \
CREATE_MD5_FILE=true \
REFERENCE_SEQUENCE=${ref_fasta}
}
runtime {
docker: "broadinstitute/genomes-in-the-cloud:2.2.5-1486412288"
disks: "local-disk " + disk_size + " HDD"
cpu: "1"
memory: "5000 MB"
}
output {
File output_bam = "${output_bam_basename}.bam"
File output_bam_index = "${output_bam_basename}.bai"
File output_bam_md5 = "${output_bam_basename}.bam.md5"
}
}
# Mark duplicate reads to avoid counting non-independent observations
task MarkDuplicates {
Array[File] input_bams
String output_bam_basename
String metrics_filename
Int disk_size
# Task is assuming query-sorted input so that the Secondary and Supplementary reads get marked correctly.
# This works because the output of BWA is query-grouped and therefore, so is the output of MergeBamAlignment.
# While query-grouped isn't actually query-sorted, it's good enough for MarkDuplicates with ASSUME_SORT_ORDER="queryname"
command {
java -Xmx4000m -jar /usr/gitc/picard.jar \
MarkDuplicates \
INPUT=${sep=' INPUT=' input_bams} \
OUTPUT=${output_bam_basename}.bam \
METRICS_FILE=${metrics_filename} \
VALIDATION_STRINGENCY=SILENT \
OPTICAL_DUPLICATE_PIXEL_DISTANCE=2500 \
ASSUME_SORT_ORDER="queryname"
CREATE_MD5_FILE=true
}
runtime {
docker: "broadinstitute/genomes-in-the-cloud:2.2.5-1486412288"
memory: "7 GB"
disks: "local-disk " + disk_size + " HDD"
}
output {
File output_bam = "${output_bam_basename}.bam"
File duplicate_metrics = "${metrics_filename}"
}
}
# Generate sets of intervals for scatter-gathering over chromosomes
task CreateSequenceGroupingTSV {
File ref_dict
# Use python to create the Sequencing Groupings used for BQSR and PrintReads Scatter.
# It outputs to stdout where it is parsed into a wdl Array[Array[String]]
# e.g. [["1"], ["2"], ["3", "4"], ["5"], ["6", "7", "8"]]
command <<<
python <<CODE
with open("${ref_dict}", "r") as ref_dict_file:
sequence_tuple_list = []
longest_sequence = 0
for line in ref_dict_file:
if line.startswith("@SQ"):
line_split = line.split("\t")
# (Sequence_Name, Sequence_Length)
sequence_tuple_list.append((line_split[1].split("SN:")[1], int(line_split[2].split("LN:")[1])))
longest_sequence = sorted(sequence_tuple_list, key=lambda x: x[1], reverse=True)[0][1]
# We are adding this to the intervals because hg38 has contigs named with embedded colons (:) and a bug in
# some versions of GATK strips off the last element after a colon, so we add this as a sacrificial element.
hg38_protection_tag = ":1+"
# initialize the tsv string with the first sequence
tsv_string = sequence_tuple_list[0][0] + hg38_protection_tag
temp_size = sequence_tuple_list[0][1]
for sequence_tuple in sequence_tuple_list[1:]:
if temp_size + sequence_tuple[1] <= longest_sequence:
temp_size += sequence_tuple[1]
tsv_string += "\t" + sequence_tuple[0] + hg38_protection_tag
else:
tsv_string += "\n" + sequence_tuple[0] + hg38_protection_tag
temp_size = sequence_tuple[1]
# add the unmapped sequences as a separate line to ensure that they are recalibrated as well
with open("sequence_grouping.txt","w") as tsv_file:
tsv_file.write(tsv_string)
tsv_file.close()
tsv_string += '\n' + "unmapped"
with open("sequence_grouping_with_unmapped.txt","w") as tsv_file_with_unmapped:
tsv_file_with_unmapped.write(tsv_string)
tsv_file_with_unmapped.close()
CODE
>>>
runtime {
docker: "python:2.7"
memory: "2 GB"
}
output {
Array[Array[String]] sequence_grouping = read_tsv("sequence_grouping.txt")
Array[Array[String]] sequence_grouping_with_unmapped = read_tsv("sequence_grouping_with_unmapped.txt")
}
}
# Generate Base Quality Score Recalibration (BQSR) model
task BaseRecalibrator {
File input_bam
File input_bam_index
String recalibration_report_filename
Array[String] sequence_group_interval
File dbSNP_vcf
File dbSNP_vcf_index
Array[File] known_indels_sites_VCFs
Array[File] known_indels_sites_indices
File ref_dict
File ref_fasta
File ref_fasta_index
Int disk_size
command { //
java -Xmx4000m \
-jar /usr/gitc/GATK35.jar \
-T BaseRecalibrator \
-R ${ref_fasta} \
-I ${input_bam} \
--useOriginalQualities \
-o ${recalibration_report_filename} \
-knownSites ${dbSNP_vcf} \
-knownSites ${sep=" -knownSites " known_indels_sites_VCFs} \
-L ${sep=" -L " sequence_group_interval}
}
runtime {
docker: "broadinstitute/genomes-in-the-cloud:2.2.5-1486412288"
memory: "6 GB"
disks: "local-disk " + disk_size + " HDD"
}
output {
File recalibration_report = "${recalibration_report_filename}"
}
}
# Combine multiple recalibration tables from scattered BaseRecalibrator runs
# Note that when run from GATK 3.x the tool is not a walker and is invoked differently.
task GatherBqsrReports {
Array[File] input_bqsr_reports
String output_report_filename
Int disk_size
command {
java -Xmx3000m \
-cp /usr/gitc/GATK35.jar org.broadinstitute.gatk.tools.GatherBqsrReports \
I= ${sep=' I= ' input_bqsr_reports} \
O= ${output_report_filename}
}
runtime {
docker: "broadinstitute/genomes-in-the-cloud:2.2.5-1486412288"
memory: "3500 MB"
disks: "local-disk " + disk_size + " HDD"
}
output {
File output_bqsr_report = "${output_report_filename}"
}
}
# Apply Base Quality Score Recalibration (BQSR) model
task ApplyBQSR {
File input_bam
File input_bam_index
String output_bam_basename
File recalibration_report
Array[String] sequence_group_interval
File ref_dict
File ref_fasta
File ref_fasta_index
Int disk_size
command {
java -Xmx3000m \
-jar /usr/gitc/GATK35.jar \
-T PrintReads \
-R ${ref_fasta} \
-I ${input_bam} \
--useOriginalQualities \
-o ${output_bam_basename}.bam \
-BQSR ${recalibration_report} \
-SQQ 10 -SQQ 20 -SQQ 30 \
-L ${sep=" -L " sequence_group_interval}
}
runtime {
docker: "broadinstitute/genomes-in-the-cloud:2.2.5-1486412288"
memory: "3500 MB"
disks: "local-disk " + disk_size + " HDD"
}
output {
File recalibrated_bam = "${output_bam_basename}.bam"
}
}
# Combine multiple recalibrated BAM files from scattered ApplyRecalibration runs
task GatherBamFiles {
Array[File] input_bams
String output_bam_basename
Int disk_size
command {
java -Xmx2000m -jar /usr/gitc/picard.jar \
GatherBamFiles \
INPUT=${sep=' INPUT=' input_bams} \
OUTPUT=${output_bam_basename}.bam \
CREATE_INDEX=true \
CREATE_MD5_FILE=true
}
runtime {
docker: "broadinstitute/genomes-in-the-cloud:2.2.5-1486412288"
memory: "3 GB"
disks: "local-disk " + disk_size + " HDD"
}
output {
File output_bam = "${output_bam_basename}.bam"
File output_bam_index = "${output_bam_basename}.bai"
File output_bam_md5 = "${output_bam_basename}.bam.md5"
}
}
# WORKFLOW DEFINITION
workflow GenericPreProcessingWorkflow {
String sample_name
String base_file_name
Array[File] flowcell_unmapped_bams
String unmapped_bam_suffix
File ref_fasta
File ref_fasta_index
File ref_dict
File ref_alt
File ref_bwt
File ref_sa
File ref_amb
File ref_ann
File ref_pac
File dbSNP_vcf
File dbSNP_vcf_index
Array[File] known_indels_sites_VCFs
Array[File] known_indels_sites_indices
Int flowcell_small_disk
Int flowcell_medium_disk
Int agg_small_disk
Int agg_medium_disk
Int agg_large_disk
String bwa_commandline="bwa mem -K 100000000 -p -v 3 -t 16 -Y $bash_ref_fasta"
String recalibrated_bam_basename = base_file_name + ".aligned.duplicates_marked.recalibrated"
# Get the version of BWA to include in the PG record in the header of the BAM produced
# by MergeBamAlignment.
call GetBwaVersion
# Align flowcell-level unmapped input bams in parallel
scatter (unmapped_bam in flowcell_unmapped_bams) {
# Because of a wdl/cromwell bug this is not currently valid so we have to sub(sub()) in each task
# String base_name = sub(sub(unmapped_bam, "gs://.*/", ""), unmapped_bam_suffix + "$", "")
String sub_strip_path = "gs://.*/"
String sub_strip_unmapped = unmapped_bam_suffix + "$"
# Map reads to reference
call SamToFastqAndBwaMem {
input:
input_bam = unmapped_bam,
bwa_commandline = bwa_commandline,
output_bam_basename = sub(sub(unmapped_bam, sub_strip_path, ""), sub_strip_unmapped, "") + ".unmerged",
ref_fasta = ref_fasta,
ref_fasta_index = ref_fasta_index,
ref_dict = ref_dict,
ref_alt = ref_alt,
ref_bwt = ref_bwt,
ref_amb = ref_amb,
ref_ann = ref_ann,
ref_pac = ref_pac,
ref_sa = ref_sa,
disk_size = flowcell_medium_disk
}
# Merge original uBAM and BWA-aligned BAM
call MergeBamAlignment {
input:
unmapped_bam = unmapped_bam,
bwa_commandline = bwa_commandline,
bwa_version = GetBwaVersion.version,
aligned_bam = SamToFastqAndBwaMem.output_bam,
output_bam_basename = sub(sub(unmapped_bam, sub_strip_path, ""), sub_strip_unmapped, "") + ".aligned.unsorted",
ref_fasta = ref_fasta,
ref_fasta_index = ref_fasta_index,
ref_dict = ref_dict,
disk_size = flowcell_medium_disk
}
# Sort and fix tags in the merged BAM
call SortAndFixTags as SortAndFixReadGroupBam {
input:
input_bam = MergeBamAlignment.output_bam,
output_bam_basename = sub(sub(unmapped_bam, sub_strip_path, ""), sub_strip_unmapped, "") + ".sorted",
ref_dict = ref_dict,
ref_fasta = ref_fasta,
ref_fasta_index = ref_fasta_index,
disk_size = flowcell_medium_disk
}
}
# Aggregate aligned+merged flowcell BAM files and mark duplicates
# We take advantage of the tool's ability to take multiple BAM inputs and write out a single output
# to avoid having to spend time just merging BAM files.
call MarkDuplicates {
input:
input_bams = MergeBamAlignment.output_bam,
output_bam_basename = base_file_name + ".aligned.unsorted.duplicates_marked",
metrics_filename = base_file_name + ".duplicate_metrics",
disk_size = agg_large_disk
}
# Sort aggregated+deduped BAM file and fix tags
call SortAndFixTags as SortAndFixSampleBam {
input:
input_bam = MarkDuplicates.output_bam,
output_bam_basename = base_file_name + ".aligned.duplicate_marked.sorted",
ref_dict = ref_dict,
ref_fasta = ref_fasta,
ref_fasta_index = ref_fasta_index,
disk_size = agg_large_disk
}
# Create list of sequences for scatter-gather parallelization
call CreateSequenceGroupingTSV {
input:
ref_dict = ref_dict
}
# Perform Base Quality Score Recalibration (BQSR) on the sorted BAM in parallel
scatter (subgroup in CreateSequenceGroupingTSV.sequence_grouping) {
# Generate the recalibration model by interval
call BaseRecalibrator {
input:
input_bam = SortAndFixSampleBam.output_bam,
input_bam_index = SortAndFixSampleBam.output_bam_index,
recalibration_report_filename = base_file_name + ".recal_data.csv",
sequence_group_interval = subgroup,
dbSNP_vcf = dbSNP_vcf,
dbSNP_vcf_index = dbSNP_vcf_index,
known_indels_sites_VCFs = known_indels_sites_VCFs,
known_indels_sites_indices = known_indels_sites_indices,
ref_dict = ref_dict,
ref_fasta = ref_fasta,
ref_fasta_index = ref_fasta_index,
disk_size = agg_small_disk
}
}
# Merge the recalibration reports resulting from by-interval recalibration
call GatherBqsrReports {
input:
input_bqsr_reports = BaseRecalibrator.recalibration_report,
output_report_filename = base_file_name + ".recal_data.csv",
disk_size = flowcell_small_disk
}
scatter (subgroup in CreateSequenceGroupingTSV.sequence_grouping_with_unmapped) {
# Apply the recalibration model by interval
call ApplyBQSR {
input:
input_bam = SortAndFixSampleBam.output_bam,
input_bam_index = SortAndFixSampleBam.output_bam_index,
output_bam_basename = recalibrated_bam_basename,
recalibration_report = GatherBqsrReports.output_bqsr_report,
sequence_group_interval = subgroup,
ref_dict = ref_dict,
ref_fasta = ref_fasta,
ref_fasta_index = ref_fasta_index,
disk_size = agg_small_disk
}
}
# Merge the recalibrated BAM files resulting from by-interval recalibration
call GatherBamFiles {
input:
input_bams = ApplyBQSR.recalibrated_bam,
output_bam_basename = base_file_name,
disk_size = agg_large_disk
}
# Outputs that will be retained when execution is complete
output {
File duplication_metrics = MarkDuplicates.duplicate_metrics
File bqsr_report = GatherBqsrReports.output_bqsr_report
File analysis_ready_bam = GatherBamFiles.output_bam
File analysis_ready_bam_index = GatherBamFiles.output_bam_index
File analysis_ready_bam_md5 = GatherBamFiles.output_bam_md5
}
}