genalog/example/ocr_label_propagation.ipynb

182 строки
4.0 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## `genalog.text` module: \n",
"This module is responsible for:\n",
"1. Text alignment\n",
"1. NER label propagation using text alignment results"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from genalog.text import ner_label\n",
"from genalog.text import preprocess\n",
"\n",
"gt_txt = \"New York is big\"\n",
"ocr_txt = \"New Yo rkis big\"\n",
"\n",
"# Input to the method\n",
"gt_labels = [\"B-P\", \"I-P\", \"O\", \"O\"]\n",
"gt_tokens = preprocess.tokenize(gt_txt) # tokenize into list of tokens\n",
"ocr_tokens = preprocess.tokenize(ocr_txt)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['B-P', 'I-P', 'O', 'O']\n",
"['New', 'York', 'is', 'big']\n",
"['New', 'Yo', 'rkis', 'big']\n"
]
}
],
"source": [
"# Inputs to the method\n",
"print(gt_labels)\n",
"print(gt_tokens)\n",
"print(ocr_tokens)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Method returns a tuple of 4 elements (gt_tokens, gt_labels, ocr_tokens, ocr_labels, gap_char)\n",
"ocr_labels, aligned_gt, aligned_ocr, gap_char = ner_label.propagate_label_to_ocr(gt_labels, gt_tokens, ocr_tokens)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"OCR labels: ['B-P', 'I-P', 'I-P', 'O']\n",
"Aligned ground truth: New Yo@rk is big\n",
"Alinged OCR text: New Yo rk@is big\n"
]
}
],
"source": [
"# Outputs\n",
"print(f\"OCR labels: {ocr_labels}\")\n",
"print(f\"Aligned ground truth: {aligned_gt}\")\n",
"print(f\"Alinged OCR text: {aligned_ocr}\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"B-P I-P O O \n",
"New York is big \n",
"New Yo@rk is big\n",
"||||||.||.||||||\n",
"New Yo rk@is big\n",
"New Yo rkis big \n",
"B-P I-P I-P O \n",
"\n"
]
}
],
"source": [
"# Format result for display\n",
"print(ner_label.format_label_propagation(gt_tokens, gt_labels, ocr_tokens, ocr_labels, aligned_gt, aligned_ocr))"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"B-P I-P O O \n",
"New York is big \n",
"New Yo rkis big \n",
"B-P I-P I-P O \n",
"\n"
]
}
],
"source": [
"# To turn off alignment information:\n",
"print(ner_label.format_label_propagation(gt_tokens, gt_labels, ocr_tokens, ocr_labels, aligned_gt, aligned_ocr, show_alignment=False))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"B-P I-P I-P O \n",
"New Yo rkis big \n",
"\n"
]
}
],
"source": [
"# Format tokens and labels\n",
"print(ner_label.format_labels(ocr_tokens, ocr_labels))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}