git/config.mak.uname

596 строки
17 KiB
Plaintext
Исходник Обычный вид История

# Platform specific Makefile tweaks based on uname detection
uname_S := $(shell sh -c 'uname -s 2>/dev/null || echo not')
uname_M := $(shell sh -c 'uname -m 2>/dev/null || echo not')
uname_O := $(shell sh -c 'uname -o 2>/dev/null || echo not')
uname_R := $(shell sh -c 'uname -r 2>/dev/null || echo not')
uname_P := $(shell sh -c 'uname -p 2>/dev/null || echo not')
uname_V := $(shell sh -c 'uname -v 2>/dev/null || echo not')
ifdef MSVC
# avoid the MingW and Cygwin configuration sections
uname_S := Windows
uname_O := Windows
endif
# We choose to avoid "if .. else if .. else .. endif endif"
# because maintaining the nesting to match is a pain. If
# we had "elif" things would have been much nicer...
ifeq ($(uname_S),OSF1)
# Need this for u_short definitions et al
BASIC_CFLAGS += -D_OSF_SOURCE
SOCKLEN_T = int
NO_STRTOULL = YesPlease
NO_NSEC = YesPlease
endif
ifeq ($(uname_S),Linux)
Portable alloca for Git In the next patch we'll have to use alloca() for performance reasons, but since alloca is non-standardized and is not portable, let's have a trick with compatibility wrappers: 1. at configure time, determine, do we have working alloca() through alloca.h, and define #define HAVE_ALLOCA_H if yes. 2. in code #ifdef HAVE_ALLOCA_H # include <alloca.h> # define xalloca(size) (alloca(size)) # define xalloca_free(p) do {} while(0) #else # define xalloca(size) (xmalloc(size)) # define xalloca_free(p) (free(p)) #endif and use it like func() { p = xalloca(size); ... xalloca_free(p); } This way, for systems, where alloca is available, we'll have optimal on-stack allocations with fast executions. On the other hand, on systems, where alloca is not available, this gracefully fallbacks to xmalloc/free. Both autoconf and config.mak.uname configurations were updated. For autoconf, we are not bothering considering cases, when no alloca.h is available, but alloca() works some other way - its simply alloca.h is available and works or not, everything else is deep legacy. For config.mak.uname, I've tried to make my almost-sure guess for where alloca() is available, but since I only have access to Linux it is the only change I can be sure about myself, with relevant to other changed systems people Cc'ed. NOTE SunOS and Windows had explicit -DHAVE_ALLOCA_H in their configurations. I've changed that to now-common HAVE_ALLOCA_H=YesPlease which should be correct. Cc: Brandon Casey <drafnel@gmail.com> Cc: Marius Storm-Olsen <mstormo@gmail.com> Cc: Johannes Sixt <j6t@kdbg.org> Cc: Johannes Schindelin <Johannes.Schindelin@gmx.de> Cc: Ramsay Jones <ramsay@ramsay1.demon.co.uk> Cc: Gerrit Pape <pape@smarden.org> Cc: Petr Salinger <Petr.Salinger@seznam.cz> Cc: Jonathan Nieder <jrnieder@gmail.com> Acked-by: Thomas Schwinge <thomas@codesourcery.com> (GNU Hurd changes) Signed-off-by: Kirill Smelkov <kirr@mns.spb.ru> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-03-27 18:22:50 +04:00
HAVE_ALLOCA_H = YesPlease
NO_STRLCPY = YesPlease
HAVE_PATHS_H = YesPlease
LIBC_CONTAINS_LIBINTL = YesPlease
HAVE_DEV_TTY = YesPlease
trace: add high resolution timer function to debug performance issues Add a getnanotime() function that returns nanoseconds since 01/01/1970 as unsigned 64-bit integer (i.e. overflows in july 2554). This is easier to work with than e.g. struct timeval or struct timespec. Basing the timer on the epoch allows using the results with other time-related APIs. To simplify adaption to different platforms, split the implementation into a common getnanotime() and a platform-specific highres_nanos() function. The common getnanotime() function handles errors, falling back to gettimeofday() if highres_nanos() isn't implemented or doesn't work. getnanotime() is also responsible for normalizing to the epoch. The offset to the system clock is calculated only once on initialization, i.e. manually setting the system clock has no impact on the timer (except if the fallback gettimeofday() is in use). Git processes are typically short lived, so we don't need to handle clock drift. The highres_nanos() function returns monotonically increasing nanoseconds relative to some arbitrary point in time (e.g. system boot), or 0 on failure. Providing platform-specific implementations should be relatively easy, e.g. adapting to clock_gettime() as defined by the POSIX realtime extensions is seven lines of code. This version includes highres_nanos() implementations for: * Linux: using clock_gettime(CLOCK_MONOTONIC) * Windows: using QueryPerformanceCounter() Todo: * enable clock_gettime() on more platforms * add Mac OSX version, e.g. using mach_absolute_time + mach_timebase_info Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-07-12 04:05:42 +04:00
HAVE_CLOCK_GETTIME = YesPlease
HAVE_CLOCK_MONOTONIC = YesPlease
# -lrt is needed for clock_gettime on glibc <= 2.16
NEEDS_LIBRT = YesPlease
HAVE_GETDELIM = YesPlease
SANE_TEXT_GREP=-a
FREAD_READS_DIRECTORIES = UnfortunatelyYes
BASIC_CFLAGS += -DHAVE_SYSINFO
PROCFS_EXECUTABLE_PATH = /proc/self/exe
endif
ifeq ($(uname_S),GNU/kFreeBSD)
Portable alloca for Git In the next patch we'll have to use alloca() for performance reasons, but since alloca is non-standardized and is not portable, let's have a trick with compatibility wrappers: 1. at configure time, determine, do we have working alloca() through alloca.h, and define #define HAVE_ALLOCA_H if yes. 2. in code #ifdef HAVE_ALLOCA_H # include <alloca.h> # define xalloca(size) (alloca(size)) # define xalloca_free(p) do {} while(0) #else # define xalloca(size) (xmalloc(size)) # define xalloca_free(p) (free(p)) #endif and use it like func() { p = xalloca(size); ... xalloca_free(p); } This way, for systems, where alloca is available, we'll have optimal on-stack allocations with fast executions. On the other hand, on systems, where alloca is not available, this gracefully fallbacks to xmalloc/free. Both autoconf and config.mak.uname configurations were updated. For autoconf, we are not bothering considering cases, when no alloca.h is available, but alloca() works some other way - its simply alloca.h is available and works or not, everything else is deep legacy. For config.mak.uname, I've tried to make my almost-sure guess for where alloca() is available, but since I only have access to Linux it is the only change I can be sure about myself, with relevant to other changed systems people Cc'ed. NOTE SunOS and Windows had explicit -DHAVE_ALLOCA_H in their configurations. I've changed that to now-common HAVE_ALLOCA_H=YesPlease which should be correct. Cc: Brandon Casey <drafnel@gmail.com> Cc: Marius Storm-Olsen <mstormo@gmail.com> Cc: Johannes Sixt <j6t@kdbg.org> Cc: Johannes Schindelin <Johannes.Schindelin@gmx.de> Cc: Ramsay Jones <ramsay@ramsay1.demon.co.uk> Cc: Gerrit Pape <pape@smarden.org> Cc: Petr Salinger <Petr.Salinger@seznam.cz> Cc: Jonathan Nieder <jrnieder@gmail.com> Acked-by: Thomas Schwinge <thomas@codesourcery.com> (GNU Hurd changes) Signed-off-by: Kirill Smelkov <kirr@mns.spb.ru> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-03-27 18:22:50 +04:00
HAVE_ALLOCA_H = YesPlease
NO_STRLCPY = YesPlease
HAVE_PATHS_H = YesPlease
DIR_HAS_BSD_GROUP_SEMANTICS = YesPlease
LIBC_CONTAINS_LIBINTL = YesPlease
FREAD_READS_DIRECTORIES = UnfortunatelyYes
endif
ifeq ($(uname_S),UnixWare)
CC = cc
NEEDS_SOCKET = YesPlease
NEEDS_NSL = YesPlease
NEEDS_SSL_WITH_CRYPTO = YesPlease
NEEDS_LIBICONV = YesPlease
SHELL_PATH = /usr/local/bin/bash
NO_IPV6 = YesPlease
NO_HSTRERROR = YesPlease
BASIC_CFLAGS += -Kthread
BASIC_CFLAGS += -I/usr/local/include
BASIC_LDFLAGS += -L/usr/local/lib
INSTALL = ginstall
TAR = gtar
NO_STRCASESTR = YesPlease
NO_MEMMEM = YesPlease
endif
ifeq ($(uname_S),SCO_SV)
ifeq ($(uname_R),3.2)
CFLAGS = -O2
endif
ifeq ($(uname_R),5)
CC = cc
BASIC_CFLAGS += -Kthread
endif
NEEDS_SOCKET = YesPlease
NEEDS_NSL = YesPlease
NEEDS_SSL_WITH_CRYPTO = YesPlease
NEEDS_LIBICONV = YesPlease
SHELL_PATH = /usr/bin/bash
NO_IPV6 = YesPlease
NO_HSTRERROR = YesPlease
BASIC_CFLAGS += -I/usr/local/include
BASIC_LDFLAGS += -L/usr/local/lib
NO_STRCASESTR = YesPlease
NO_MEMMEM = YesPlease
INSTALL = ginstall
TAR = gtar
endif
ifeq ($(uname_S),Darwin)
NEEDS_CRYPTO_WITH_SSL = YesPlease
NEEDS_SSL_WITH_CRYPTO = YesPlease
NEEDS_LIBICONV = YesPlease
# Note: $(uname_R) gives us the underlying Darwin version.
# - MacOS 10.0.* and MacOS 10.1.0 = Darwin 1.*
# - MacOS 10.x.* = Darwin (x+4).* for (1 <= x)
# i.e. "begins with [15678] and a dot" means "10.4.* or older".
ifeq ($(shell expr "$(uname_R)" : '[15678]\.'),2)
OLD_ICONV = UnfortunatelyYes
NO_APPLE_COMMON_CRYPTO = YesPlease
endif
ifeq ($(shell expr "$(uname_R)" : '[15]\.'),2)
NO_STRLCPY = YesPlease
endif
ifeq ($(shell test "`expr "$(uname_R)" : '\([0-9][0-9]*\)\.'`" -ge 11 && echo 1),1)
HAVE_GETDELIM = YesPlease
endif
NO_MEMMEM = YesPlease
USE_ST_TIMESPEC = YesPlease
HAVE_DEV_TTY = YesPlease
COMPAT_OBJS += compat/precompose_utf8.o
BASIC_CFLAGS += -DPRECOMPOSE_UNICODE
BASIC_CFLAGS += -DPROTECT_HFS_DEFAULT=1
HAVE_BSD_SYSCTL = YesPlease
FREAD_READS_DIRECTORIES = UnfortunatelyYes
HAVE_NS_GET_EXECUTABLE_PATH = YesPlease
endif
ifeq ($(uname_S),SunOS)
NEEDS_SOCKET = YesPlease
NEEDS_NSL = YesPlease
SHELL_PATH = /bin/bash
SANE_TOOL_PATH = /usr/xpg6/bin:/usr/xpg4/bin
Portable alloca for Git In the next patch we'll have to use alloca() for performance reasons, but since alloca is non-standardized and is not portable, let's have a trick with compatibility wrappers: 1. at configure time, determine, do we have working alloca() through alloca.h, and define #define HAVE_ALLOCA_H if yes. 2. in code #ifdef HAVE_ALLOCA_H # include <alloca.h> # define xalloca(size) (alloca(size)) # define xalloca_free(p) do {} while(0) #else # define xalloca(size) (xmalloc(size)) # define xalloca_free(p) (free(p)) #endif and use it like func() { p = xalloca(size); ... xalloca_free(p); } This way, for systems, where alloca is available, we'll have optimal on-stack allocations with fast executions. On the other hand, on systems, where alloca is not available, this gracefully fallbacks to xmalloc/free. Both autoconf and config.mak.uname configurations were updated. For autoconf, we are not bothering considering cases, when no alloca.h is available, but alloca() works some other way - its simply alloca.h is available and works or not, everything else is deep legacy. For config.mak.uname, I've tried to make my almost-sure guess for where alloca() is available, but since I only have access to Linux it is the only change I can be sure about myself, with relevant to other changed systems people Cc'ed. NOTE SunOS and Windows had explicit -DHAVE_ALLOCA_H in their configurations. I've changed that to now-common HAVE_ALLOCA_H=YesPlease which should be correct. Cc: Brandon Casey <drafnel@gmail.com> Cc: Marius Storm-Olsen <mstormo@gmail.com> Cc: Johannes Sixt <j6t@kdbg.org> Cc: Johannes Schindelin <Johannes.Schindelin@gmx.de> Cc: Ramsay Jones <ramsay@ramsay1.demon.co.uk> Cc: Gerrit Pape <pape@smarden.org> Cc: Petr Salinger <Petr.Salinger@seznam.cz> Cc: Jonathan Nieder <jrnieder@gmail.com> Acked-by: Thomas Schwinge <thomas@codesourcery.com> (GNU Hurd changes) Signed-off-by: Kirill Smelkov <kirr@mns.spb.ru> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-03-27 18:22:50 +04:00
HAVE_ALLOCA_H = YesPlease
NO_STRCASESTR = YesPlease
NO_MEMMEM = YesPlease
NO_MKDTEMP = YesPlease
NO_REGEX = YesPlease
NO_MSGFMT_EXTENDED_OPTIONS = YesPlease
HAVE_DEV_TTY = YesPlease
ifeq ($(uname_R),5.6)
SOCKLEN_T = int
NO_HSTRERROR = YesPlease
NO_IPV6 = YesPlease
NO_SOCKADDR_STORAGE = YesPlease
NO_UNSETENV = YesPlease
NO_SETENV = YesPlease
NO_STRLCPY = YesPlease
NO_STRTOUMAX = YesPlease
GIT_TEST_CMP = cmp
endif
ifeq ($(uname_R),5.7)
NEEDS_RESOLV = YesPlease
NO_IPV6 = YesPlease
NO_SOCKADDR_STORAGE = YesPlease
NO_UNSETENV = YesPlease
NO_SETENV = YesPlease
NO_STRLCPY = YesPlease
NO_STRTOUMAX = YesPlease
GIT_TEST_CMP = cmp
endif
ifeq ($(uname_R),5.8)
NO_UNSETENV = YesPlease
NO_SETENV = YesPlease
NO_STRTOUMAX = YesPlease
GIT_TEST_CMP = cmp
endif
ifeq ($(uname_R),5.9)
NO_UNSETENV = YesPlease
NO_SETENV = YesPlease
NO_STRTOUMAX = YesPlease
GIT_TEST_CMP = cmp
endif
INSTALL = /usr/ucb/install
TAR = gtar
Portable alloca for Git In the next patch we'll have to use alloca() for performance reasons, but since alloca is non-standardized and is not portable, let's have a trick with compatibility wrappers: 1. at configure time, determine, do we have working alloca() through alloca.h, and define #define HAVE_ALLOCA_H if yes. 2. in code #ifdef HAVE_ALLOCA_H # include <alloca.h> # define xalloca(size) (alloca(size)) # define xalloca_free(p) do {} while(0) #else # define xalloca(size) (xmalloc(size)) # define xalloca_free(p) (free(p)) #endif and use it like func() { p = xalloca(size); ... xalloca_free(p); } This way, for systems, where alloca is available, we'll have optimal on-stack allocations with fast executions. On the other hand, on systems, where alloca is not available, this gracefully fallbacks to xmalloc/free. Both autoconf and config.mak.uname configurations were updated. For autoconf, we are not bothering considering cases, when no alloca.h is available, but alloca() works some other way - its simply alloca.h is available and works or not, everything else is deep legacy. For config.mak.uname, I've tried to make my almost-sure guess for where alloca() is available, but since I only have access to Linux it is the only change I can be sure about myself, with relevant to other changed systems people Cc'ed. NOTE SunOS and Windows had explicit -DHAVE_ALLOCA_H in their configurations. I've changed that to now-common HAVE_ALLOCA_H=YesPlease which should be correct. Cc: Brandon Casey <drafnel@gmail.com> Cc: Marius Storm-Olsen <mstormo@gmail.com> Cc: Johannes Sixt <j6t@kdbg.org> Cc: Johannes Schindelin <Johannes.Schindelin@gmx.de> Cc: Ramsay Jones <ramsay@ramsay1.demon.co.uk> Cc: Gerrit Pape <pape@smarden.org> Cc: Petr Salinger <Petr.Salinger@seznam.cz> Cc: Jonathan Nieder <jrnieder@gmail.com> Acked-by: Thomas Schwinge <thomas@codesourcery.com> (GNU Hurd changes) Signed-off-by: Kirill Smelkov <kirr@mns.spb.ru> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-03-27 18:22:50 +04:00
BASIC_CFLAGS += -D__EXTENSIONS__ -D__sun__
endif
ifeq ($(uname_O),Cygwin)
ifeq ($(shell expr "$(uname_R)" : '1\.[1-6]\.'),4)
NO_D_TYPE_IN_DIRENT = YesPlease
NO_STRCASESTR = YesPlease
NO_MEMMEM = YesPlease
NO_SYMLINK_HEAD = YesPlease
NO_IPV6 = YesPlease
OLD_ICONV = UnfortunatelyYes
# There are conflicting reports about this.
# On some boxes NO_MMAP is needed, and not so elsewhere.
# Try commenting this out if you suspect MMAP is more efficient
NO_MMAP = YesPlease
else
NO_REGEX = UnfortunatelyYes
endif
Portable alloca for Git In the next patch we'll have to use alloca() for performance reasons, but since alloca is non-standardized and is not portable, let's have a trick with compatibility wrappers: 1. at configure time, determine, do we have working alloca() through alloca.h, and define #define HAVE_ALLOCA_H if yes. 2. in code #ifdef HAVE_ALLOCA_H # include <alloca.h> # define xalloca(size) (alloca(size)) # define xalloca_free(p) do {} while(0) #else # define xalloca(size) (xmalloc(size)) # define xalloca_free(p) (free(p)) #endif and use it like func() { p = xalloca(size); ... xalloca_free(p); } This way, for systems, where alloca is available, we'll have optimal on-stack allocations with fast executions. On the other hand, on systems, where alloca is not available, this gracefully fallbacks to xmalloc/free. Both autoconf and config.mak.uname configurations were updated. For autoconf, we are not bothering considering cases, when no alloca.h is available, but alloca() works some other way - its simply alloca.h is available and works or not, everything else is deep legacy. For config.mak.uname, I've tried to make my almost-sure guess for where alloca() is available, but since I only have access to Linux it is the only change I can be sure about myself, with relevant to other changed systems people Cc'ed. NOTE SunOS and Windows had explicit -DHAVE_ALLOCA_H in their configurations. I've changed that to now-common HAVE_ALLOCA_H=YesPlease which should be correct. Cc: Brandon Casey <drafnel@gmail.com> Cc: Marius Storm-Olsen <mstormo@gmail.com> Cc: Johannes Sixt <j6t@kdbg.org> Cc: Johannes Schindelin <Johannes.Schindelin@gmx.de> Cc: Ramsay Jones <ramsay@ramsay1.demon.co.uk> Cc: Gerrit Pape <pape@smarden.org> Cc: Petr Salinger <Petr.Salinger@seznam.cz> Cc: Jonathan Nieder <jrnieder@gmail.com> Acked-by: Thomas Schwinge <thomas@codesourcery.com> (GNU Hurd changes) Signed-off-by: Kirill Smelkov <kirr@mns.spb.ru> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-03-27 18:22:50 +04:00
HAVE_ALLOCA_H = YesPlease
NEEDS_LIBICONV = YesPlease
NO_FAST_WORKING_DIRECTORY = UnfortunatelyYes
NO_ST_BLOCKS_IN_STRUCT_STAT = YesPlease
X = .exe
UNRELIABLE_FSTAT = UnfortunatelyYes
OBJECT_CREATION_USES_RENAMES = UnfortunatelyNeedsTo
MMAP_PREVENTS_DELETE = UnfortunatelyYes
COMPAT_OBJS += compat/cygwin.o
FREAD_READS_DIRECTORIES = UnfortunatelyYes
endif
ifeq ($(uname_S),FreeBSD)
NEEDS_LIBICONV = YesPlease
OLD_ICONV = YesPlease
NO_MEMMEM = YesPlease
BASIC_CFLAGS += -I/usr/local/include
BASIC_LDFLAGS += -L/usr/local/lib
DIR_HAS_BSD_GROUP_SEMANTICS = YesPlease
USE_ST_TIMESPEC = YesPlease
ifeq ($(shell expr "$(uname_R)" : '4\.'),2)
PTHREAD_LIBS = -pthread
NO_UINTMAX_T = YesPlease
NO_STRTOUMAX = YesPlease
endif
PYTHON_PATH = /usr/local/bin/python
PERL_PATH = /usr/local/bin/perl
HAVE_PATHS_H = YesPlease
GMTIME_UNRELIABLE_ERRORS = UnfortunatelyYes
HAVE_BSD_SYSCTL = YesPlease
HAVE_BSD_KERN_PROC_SYSCTL = YesPlease
PAGER_ENV = LESS=FRX LV=-c MORE=FRX
FREAD_READS_DIRECTORIES = UnfortunatelyYes
endif
ifeq ($(uname_S),OpenBSD)
NO_STRCASESTR = YesPlease
NO_MEMMEM = YesPlease
USE_ST_TIMESPEC = YesPlease
NEEDS_LIBICONV = YesPlease
BASIC_CFLAGS += -I/usr/local/include
BASIC_LDFLAGS += -L/usr/local/lib
HAVE_PATHS_H = YesPlease
HAVE_BSD_SYSCTL = YesPlease
HAVE_BSD_KERN_PROC_SYSCTL = YesPlease
PROCFS_EXECUTABLE_PATH = /proc/curproc/file
endif
ifeq ($(uname_S),MirBSD)
NO_STRCASESTR = YesPlease
NO_MEMMEM = YesPlease
USE_ST_TIMESPEC = YesPlease
NEEDS_LIBICONV = YesPlease
HAVE_PATHS_H = YesPlease
HAVE_BSD_SYSCTL = YesPlease
endif
ifeq ($(uname_S),NetBSD)
ifeq ($(shell expr "$(uname_R)" : '[01]\.'),2)
NEEDS_LIBICONV = YesPlease
endif
BASIC_CFLAGS += -I/usr/pkg/include
BASIC_LDFLAGS += -L/usr/pkg/lib $(CC_LD_DYNPATH)/usr/pkg/lib
USE_ST_TIMESPEC = YesPlease
HAVE_PATHS_H = YesPlease
HAVE_BSD_SYSCTL = YesPlease
HAVE_BSD_KERN_PROC_SYSCTL = YesPlease
PROCFS_EXECUTABLE_PATH = /proc/curproc/exe
endif
ifeq ($(uname_S),AIX)
DEFAULT_PAGER = more
NO_STRCASESTR = YesPlease
NO_MEMMEM = YesPlease
NO_MKDTEMP = YesPlease
NO_STRLCPY = YesPlease
NO_NSEC = YesPlease
NO_REGEX = NeedsStartEnd
FREAD_READS_DIRECTORIES = UnfortunatelyYes
INTERNAL_QSORT = UnfortunatelyYes
NEEDS_LIBICONV = YesPlease
BASIC_CFLAGS += -D_LARGE_FILES
ifeq ($(shell expr "$(uname_V)" : '[1234]'),1)
NO_PTHREADS = YesPlease
else
PTHREAD_LIBS = -lpthread
endif
ifeq ($(shell expr "$(uname_V).$(uname_R)" : '5\.1'),3)
INLINE = ''
endif
GIT_TEST_CMP = cmp
endif
ifeq ($(uname_S),GNU)
# GNU/Hurd
Portable alloca for Git In the next patch we'll have to use alloca() for performance reasons, but since alloca is non-standardized and is not portable, let's have a trick with compatibility wrappers: 1. at configure time, determine, do we have working alloca() through alloca.h, and define #define HAVE_ALLOCA_H if yes. 2. in code #ifdef HAVE_ALLOCA_H # include <alloca.h> # define xalloca(size) (alloca(size)) # define xalloca_free(p) do {} while(0) #else # define xalloca(size) (xmalloc(size)) # define xalloca_free(p) (free(p)) #endif and use it like func() { p = xalloca(size); ... xalloca_free(p); } This way, for systems, where alloca is available, we'll have optimal on-stack allocations with fast executions. On the other hand, on systems, where alloca is not available, this gracefully fallbacks to xmalloc/free. Both autoconf and config.mak.uname configurations were updated. For autoconf, we are not bothering considering cases, when no alloca.h is available, but alloca() works some other way - its simply alloca.h is available and works or not, everything else is deep legacy. For config.mak.uname, I've tried to make my almost-sure guess for where alloca() is available, but since I only have access to Linux it is the only change I can be sure about myself, with relevant to other changed systems people Cc'ed. NOTE SunOS and Windows had explicit -DHAVE_ALLOCA_H in their configurations. I've changed that to now-common HAVE_ALLOCA_H=YesPlease which should be correct. Cc: Brandon Casey <drafnel@gmail.com> Cc: Marius Storm-Olsen <mstormo@gmail.com> Cc: Johannes Sixt <j6t@kdbg.org> Cc: Johannes Schindelin <Johannes.Schindelin@gmx.de> Cc: Ramsay Jones <ramsay@ramsay1.demon.co.uk> Cc: Gerrit Pape <pape@smarden.org> Cc: Petr Salinger <Petr.Salinger@seznam.cz> Cc: Jonathan Nieder <jrnieder@gmail.com> Acked-by: Thomas Schwinge <thomas@codesourcery.com> (GNU Hurd changes) Signed-off-by: Kirill Smelkov <kirr@mns.spb.ru> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-03-27 18:22:50 +04:00
HAVE_ALLOCA_H = YesPlease
NO_STRLCPY = YesPlease
HAVE_PATHS_H = YesPlease
LIBC_CONTAINS_LIBINTL = YesPlease
endif
ifeq ($(uname_S),IRIX)
NO_SETENV = YesPlease
NO_UNSETENV = YesPlease
NO_STRCASESTR = YesPlease
NO_MEMMEM = YesPlease
NO_MKDTEMP = YesPlease
# When compiled with the MIPSpro 7.4.4m compiler, and without pthreads
# (i.e. NO_PTHREADS is set), and _with_ MMAP (i.e. NO_MMAP is not set),
# git dies with a segmentation fault when trying to access the first
# entry of a reflog. The conservative choice is made to always set
# NO_MMAP. If you suspect that your compiler is not affected by this
# issue, comment out the NO_MMAP statement.
NO_MMAP = YesPlease
NO_REGEX = YesPlease
SNPRINTF_RETURNS_BOGUS = YesPlease
SHELL_PATH = /usr/gnu/bin/bash
NEEDS_LIBGEN = YesPlease
endif
ifeq ($(uname_S),IRIX64)
NO_SETENV = YesPlease
NO_UNSETENV = YesPlease
NO_STRCASESTR = YesPlease
NO_MEMMEM = YesPlease
NO_MKDTEMP = YesPlease
# When compiled with the MIPSpro 7.4.4m compiler, and without pthreads
# (i.e. NO_PTHREADS is set), and _with_ MMAP (i.e. NO_MMAP is not set),
# git dies with a segmentation fault when trying to access the first
# entry of a reflog. The conservative choice is made to always set
# NO_MMAP. If you suspect that your compiler is not affected by this
# issue, comment out the NO_MMAP statement.
NO_MMAP = YesPlease
NO_REGEX = YesPlease
SNPRINTF_RETURNS_BOGUS = YesPlease
SHELL_PATH = /usr/gnu/bin/bash
NEEDS_LIBGEN = YesPlease
endif
ifeq ($(uname_S),HP-UX)
INLINE = __inline
NO_IPV6 = YesPlease
NO_SETENV = YesPlease
NO_STRCASESTR = YesPlease
NO_MEMMEM = YesPlease
NO_STRLCPY = YesPlease
NO_MKDTEMP = YesPlease
NO_UNSETENV = YesPlease
NO_HSTRERROR = YesPlease
NO_SYS_SELECT_H = YesPlease
SNPRINTF_RETURNS_BOGUS = YesPlease
NO_NSEC = YesPlease
ifeq ($(uname_R),B.11.00)
NO_INET_NTOP = YesPlease
NO_INET_PTON = YesPlease
endif
ifeq ($(uname_R),B.10.20)
# Override HP-UX 11.x setting:
INLINE =
SOCKLEN_T = size_t
NO_PREAD = YesPlease
NO_INET_NTOP = YesPlease
NO_INET_PTON = YesPlease
endif
GIT_TEST_CMP = cmp
endif
ifeq ($(uname_S),Windows)
GIT_VERSION := $(GIT_VERSION).MSVC
pathsep = ;
Portable alloca for Git In the next patch we'll have to use alloca() for performance reasons, but since alloca is non-standardized and is not portable, let's have a trick with compatibility wrappers: 1. at configure time, determine, do we have working alloca() through alloca.h, and define #define HAVE_ALLOCA_H if yes. 2. in code #ifdef HAVE_ALLOCA_H # include <alloca.h> # define xalloca(size) (alloca(size)) # define xalloca_free(p) do {} while(0) #else # define xalloca(size) (xmalloc(size)) # define xalloca_free(p) (free(p)) #endif and use it like func() { p = xalloca(size); ... xalloca_free(p); } This way, for systems, where alloca is available, we'll have optimal on-stack allocations with fast executions. On the other hand, on systems, where alloca is not available, this gracefully fallbacks to xmalloc/free. Both autoconf and config.mak.uname configurations were updated. For autoconf, we are not bothering considering cases, when no alloca.h is available, but alloca() works some other way - its simply alloca.h is available and works or not, everything else is deep legacy. For config.mak.uname, I've tried to make my almost-sure guess for where alloca() is available, but since I only have access to Linux it is the only change I can be sure about myself, with relevant to other changed systems people Cc'ed. NOTE SunOS and Windows had explicit -DHAVE_ALLOCA_H in their configurations. I've changed that to now-common HAVE_ALLOCA_H=YesPlease which should be correct. Cc: Brandon Casey <drafnel@gmail.com> Cc: Marius Storm-Olsen <mstormo@gmail.com> Cc: Johannes Sixt <j6t@kdbg.org> Cc: Johannes Schindelin <Johannes.Schindelin@gmx.de> Cc: Ramsay Jones <ramsay@ramsay1.demon.co.uk> Cc: Gerrit Pape <pape@smarden.org> Cc: Petr Salinger <Petr.Salinger@seznam.cz> Cc: Jonathan Nieder <jrnieder@gmail.com> Acked-by: Thomas Schwinge <thomas@codesourcery.com> (GNU Hurd changes) Signed-off-by: Kirill Smelkov <kirr@mns.spb.ru> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-03-27 18:22:50 +04:00
HAVE_ALLOCA_H = YesPlease
NO_PREAD = YesPlease
NEEDS_CRYPTO_WITH_SSL = YesPlease
NO_LIBGEN_H = YesPlease
NO_POLL = YesPlease
NO_SYMLINK_HEAD = YesPlease
NO_IPV6 = YesPlease
NO_UNIX_SOCKETS = YesPlease
NO_SETENV = YesPlease
NO_STRCASESTR = YesPlease
NO_STRLCPY = YesPlease
NO_MEMMEM = YesPlease
# NEEDS_LIBICONV = YesPlease
NO_ICONV = YesPlease
NO_STRTOUMAX = YesPlease
NO_MKDTEMP = YesPlease
SNPRINTF_RETURNS_BOGUS = YesPlease
NO_SVN_TESTS = YesPlease
RUNTIME_PREFIX = YesPlease
HAVE_WPGMPTR = YesWeDo
NO_ST_BLOCKS_IN_STRUCT_STAT = YesPlease
NO_NSEC = YesPlease
USE_WIN32_MMAP = YesPlease
MMAP_PREVENTS_DELETE = UnfortunatelyYes
# USE_NED_ALLOCATOR = YesPlease
UNRELIABLE_FSTAT = UnfortunatelyYes
OBJECT_CREATION_USES_RENAMES = UnfortunatelyNeedsTo
NO_REGEX = YesPlease
NO_GETTEXT = YesPlease
NO_PYTHON = YesPlease
BLK_SHA1 = YesPlease
ETAGS_TARGET = ETAGS
NO_INET_PTON = YesPlease
NO_INET_NTOP = YesPlease
NO_POSIX_GOODIES = UnfortunatelyYes
NATIVE_CRLF = YesPlease
DEFAULT_HELP_FORMAT = html
CC = compat/vcbuild/scripts/clink.pl
AR = compat/vcbuild/scripts/lib.pl
CFLAGS =
BASIC_CFLAGS = -nologo -I. -I../zlib -Icompat/vcbuild -Icompat/vcbuild/include -DWIN32 -D_CONSOLE -DHAVE_STRING_H -D_CRT_SECURE_NO_WARNINGS -D_CRT_NONSTDC_NO_DEPRECATE
COMPAT_OBJS = compat/msvc.o compat/winansi.o \
compat/win32/pthread.o compat/win32/syslog.o \
compat/win32/dirent.o
Portable alloca for Git In the next patch we'll have to use alloca() for performance reasons, but since alloca is non-standardized and is not portable, let's have a trick with compatibility wrappers: 1. at configure time, determine, do we have working alloca() through alloca.h, and define #define HAVE_ALLOCA_H if yes. 2. in code #ifdef HAVE_ALLOCA_H # include <alloca.h> # define xalloca(size) (alloca(size)) # define xalloca_free(p) do {} while(0) #else # define xalloca(size) (xmalloc(size)) # define xalloca_free(p) (free(p)) #endif and use it like func() { p = xalloca(size); ... xalloca_free(p); } This way, for systems, where alloca is available, we'll have optimal on-stack allocations with fast executions. On the other hand, on systems, where alloca is not available, this gracefully fallbacks to xmalloc/free. Both autoconf and config.mak.uname configurations were updated. For autoconf, we are not bothering considering cases, when no alloca.h is available, but alloca() works some other way - its simply alloca.h is available and works or not, everything else is deep legacy. For config.mak.uname, I've tried to make my almost-sure guess for where alloca() is available, but since I only have access to Linux it is the only change I can be sure about myself, with relevant to other changed systems people Cc'ed. NOTE SunOS and Windows had explicit -DHAVE_ALLOCA_H in their configurations. I've changed that to now-common HAVE_ALLOCA_H=YesPlease which should be correct. Cc: Brandon Casey <drafnel@gmail.com> Cc: Marius Storm-Olsen <mstormo@gmail.com> Cc: Johannes Sixt <j6t@kdbg.org> Cc: Johannes Schindelin <Johannes.Schindelin@gmx.de> Cc: Ramsay Jones <ramsay@ramsay1.demon.co.uk> Cc: Gerrit Pape <pape@smarden.org> Cc: Petr Salinger <Petr.Salinger@seznam.cz> Cc: Jonathan Nieder <jrnieder@gmail.com> Acked-by: Thomas Schwinge <thomas@codesourcery.com> (GNU Hurd changes) Signed-off-by: Kirill Smelkov <kirr@mns.spb.ru> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-03-27 18:22:50 +04:00
COMPAT_CFLAGS = -D__USE_MINGW_ACCESS -DNOGDI -DHAVE_STRING_H -Icompat -Icompat/regex -Icompat/win32 -DSTRIP_EXTENSION=\".exe\"
BASIC_LDFLAGS = -IGNORE:4217 -IGNORE:4049 -NOLOGO -SUBSYSTEM:CONSOLE
EXTLIBS = user32.lib advapi32.lib shell32.lib wininet.lib ws2_32.lib invalidcontinue.obj
PTHREAD_LIBS =
lib =
BASIC_CFLAGS += -DPROTECT_NTFS_DEFAULT=1
ifndef DEBUG
BASIC_CFLAGS += -GL -Os -MD
BASIC_LDFLAGS += -LTCG
AR += -LTCG
else
BASIC_CFLAGS += -Zi -MDd
endif
X = .exe
endif
ifeq ($(uname_S),Interix)
NO_INITGROUPS = YesPlease
NO_IPV6 = YesPlease
NO_MEMMEM = YesPlease
NO_MKDTEMP = YesPlease
NO_STRTOUMAX = YesPlease
NO_NSEC = YesPlease
ifeq ($(uname_R),3.5)
NO_INET_NTOP = YesPlease
NO_INET_PTON = YesPlease
NO_SOCKADDR_STORAGE = YesPlease
endif
ifeq ($(uname_R),5.2)
NO_INET_NTOP = YesPlease
NO_INET_PTON = YesPlease
NO_SOCKADDR_STORAGE = YesPlease
endif
endif
ifeq ($(uname_S),Minix)
NO_IPV6 = YesPlease
NO_ST_BLOCKS_IN_STRUCT_STAT = YesPlease
NO_NSEC = YesPlease
NEEDS_LIBGEN =
NEEDS_CRYPTO_WITH_SSL = YesPlease
NEEDS_IDN_WITH_CURL = YesPlease
NEEDS_SSL_WITH_CURL = YesPlease
NEEDS_RESOLV =
NO_HSTRERROR = YesPlease
NO_MMAP = YesPlease
NO_CURL =
NO_EXPAT =
endif
ifeq ($(uname_S),NONSTOP_KERNEL)
# Needs some C99 features, "inline" is just one of them.
# INLINE='' would just replace one set of warnings with another and
# still not compile in c89 mode, due to non-const array initializations.
CC = cc -c99
# Disable all optimization, seems to result in bad code, with -O or -O2
# or even -O1 (default), /usr/local/libexec/git-core/git-pack-objects
# abends on "git push". Needs more investigation.
CFLAGS = -g -O0
# We'd want it to be here.
prefix = /usr/local
# Our's are in ${prefix}/bin (perl might also be in /usr/bin/perl).
PERL_PATH = ${prefix}/bin/perl
PYTHON_PATH = ${prefix}/bin/python
# As detected by './configure'.
# Missdetected, hence commented out, see below.
#NO_CURL = YesPlease
# Added manually, see above.
NEEDS_SSL_WITH_CURL = YesPlease
HAVE_LIBCHARSET_H = YesPlease
HAVE_STRINGS_H = YesPlease
NEEDS_LIBICONV = YesPlease
NEEDS_LIBINTL_BEFORE_LIBICONV = YesPlease
NO_SYS_SELECT_H = UnfortunatelyYes
NO_D_TYPE_IN_DIRENT = YesPlease
NO_HSTRERROR = YesPlease
NO_STRCASESTR = YesPlease
NO_MEMMEM = YesPlease
NO_STRLCPY = YesPlease
NO_SETENV = YesPlease
NO_UNSETENV = YesPlease
NO_MKDTEMP = YesPlease
# Currently libiconv-1.9.1.
OLD_ICONV = UnfortunatelyYes
NO_REGEX = YesPlease
NO_PTHREADS = UnfortunatelyYes
# Not detected (nor checked for) by './configure'.
# We don't have SA_RESTART on NonStop, unfortunalety.
COMPAT_CFLAGS += -DSA_RESTART=0
# Apparently needed in compat/fnmatch/fnmatch.c.
COMPAT_CFLAGS += -DHAVE_STRING_H=1
NO_ST_BLOCKS_IN_STRUCT_STAT = YesPlease
NO_NSEC = YesPlease
NO_PREAD = YesPlease
NO_MMAP = YesPlease
NO_POLL = YesPlease
NO_INTPTR_T = UnfortunatelyYes
# Bug report 10-120822-4477 submitted to HP NonStop development.
MKDIR_WO_TRAILING_SLASH = YesPlease
# RFE 10-120912-4693 submitted to HP NonStop development.
NO_SETITIMER = UnfortunatelyYes
SANE_TOOL_PATH = /usr/coreutils/bin:/usr/local/bin
SHELL_PATH = /usr/local/bin/bash
# as of H06.25/J06.14, we might better use this
#SHELL_PATH = /usr/coreutils/bin/bash
endif
ifneq (,$(findstring MINGW,$(uname_S)))
pathsep = ;
HAVE_ALLOCA_H = YesPlease
NO_PREAD = YesPlease
NEEDS_CRYPTO_WITH_SSL = YesPlease
NO_LIBGEN_H = YesPlease
NO_POLL = YesPlease
NO_SYMLINK_HEAD = YesPlease
NO_UNIX_SOCKETS = YesPlease
NO_SETENV = YesPlease
NO_STRCASESTR = YesPlease
NO_STRLCPY = YesPlease
NO_MEMMEM = YesPlease
NEEDS_LIBICONV = YesPlease
NO_STRTOUMAX = YesPlease
NO_MKDTEMP = YesPlease
NO_SVN_TESTS = YesPlease
NO_PERL_MAKEMAKER = YesPlease
RUNTIME_PREFIX = YesPlease
HAVE_WPGMPTR = YesWeDo
NO_ST_BLOCKS_IN_STRUCT_STAT = YesPlease
NO_NSEC = YesPlease
USE_WIN32_MMAP = YesPlease
MMAP_PREVENTS_DELETE = UnfortunatelyYes
USE_NED_ALLOCATOR = YesPlease
UNRELIABLE_FSTAT = UnfortunatelyYes
OBJECT_CREATION_USES_RENAMES = UnfortunatelyNeedsTo
NO_REGEX = YesPlease
NO_PYTHON = YesPlease
ETAGS_TARGET = ETAGS
NO_INET_PTON = YesPlease
NO_INET_NTOP = YesPlease
NO_POSIX_GOODIES = UnfortunatelyYes
DEFAULT_HELP_FORMAT = html
COMPAT_CFLAGS += -DNOGDI -Icompat -Icompat/win32
COMPAT_CFLAGS += -DSTRIP_EXTENSION=\".exe\"
COMPAT_OBJS += compat/mingw.o compat/winansi.o \
compat/win32/pthread.o compat/win32/syslog.o \
compat/win32/dirent.o
BASIC_CFLAGS += -DWIN32 -DPROTECT_NTFS_DEFAULT=1
EXTLIBS += -lws2_32
GITLIBS += git.res
PTHREAD_LIBS =
RC = windres -O coff
NATIVE_CRLF = YesPlease
X = .exe
SPARSE_FLAGS = -Wno-one-bit-signed-bitfield
ifneq (,$(wildcard ../THIS_IS_MSYSGIT))
htmldir = doc/git/html/
prefix =
INSTALL = /bin/install
EXTLIBS += /mingw/lib/libz.a
NO_R_TO_GCC_LINKER = YesPlease
INTERNAL_QSORT = YesPlease
HAVE_LIBCHARSET_H = YesPlease
NO_GETTEXT = YesPlease
config.mak.uname: support MSys2 For a long time, Git for Windows lagged behind Git's 2.x releases because the Git for Windows developers wanted to let that big jump coincide with a well-needed jump away from MSys to MSys2. To understand why this is such a big issue, it needs to be noted that many parts of Git are not written in portable C, but instead Git relies on a POSIX shell and Perl to be available. To support the scripts, Git for Windows has to ship a minimal POSIX emulation layer with Bash and Perl thrown in, and when the Git for Windows effort started in August 2007, this developer settled on using MSys, a stripped down version of Cygwin. Consequently, the original name of the project was "msysGit" (which, sadly, caused a *lot* of confusion because few Windows users know about MSys, and even less care). To compile the C code of Git for Windows, MSys was used, too: it sports two versions of the GNU C Compiler: one that links implicitly to the POSIX emulation layer, and another one that targets the plain Win32 API (with a few convenience functions thrown in). Git for Windows' executables are built using the latter, and therefore they are really just Win32 programs. To discern executables requiring the POSIX emulation layer from the ones that do not, the latter are called MinGW (Minimal GNU for Windows) when the former are called MSys executables. This reliance on MSys incurred challenges, too, though: some of our changes to the MSys runtime -- necessary to support Git for Windows better -- were not accepted upstream, so we had to maintain our own fork. Also, the MSys runtime was not developed further to support e.g. UTF-8 or 64-bit, and apart from lacking a package management system until much later (when mingw-get was introduced), many packages provided by the MSys/MinGW project lag behind the respective source code versions, in particular Bash and OpenSSL. For a while, the Git for Windows project tried to remedy the situation by trying to build newer versions of those packages, but the situation quickly became untenable, especially with problems like the Heartbleed bug requiring swift action that has nothing to do with developing Git for Windows further. Happily, in the meantime the MSys2 project (https://msys2.github.io/) emerged, and was chosen to be the base of the Git for Windows 2.x. Just like MSys, MSys2 is a stripped down version of Cygwin, but it is actively kept up-to-date with Cygwin's source code. Thereby, it already supports Unicode internally, and it also offers the 64-bit support that we yearned for since the beginning of the Git for Windows project. MSys2 also ported the Pacman package management system from Arch Linux and uses it heavily. This brings the same convenience to which Linux users are used to from `yum` or `apt-get`, and to which MacOSX users are used to from Homebrew or MacPorts, or BSD users from the Ports system, to MSys2: a simple `pacman -Syu` will update all installed packages to the newest versions currently available. MSys2 is also *very* active, typically providing package updates multiple times per week. It still required a two-month effort to bring everything to a state where Git's test suite passes, many more months until the first official Git for Windows 2.x was released, and a couple of patches still await their submission to the respective upstream projects. Yet without MSys2, the modernization of Git for Windows would simply not have happened. This commit lays the ground work to supporting MSys2-based Git builds. Assisted-by: Waldek Maleska <weakcamel@users.github.com> Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-01-13 16:30:53 +03:00
COMPAT_CLFAGS += -D__USE_MINGW_ACCESS
else
config.mak.uname: support MSys2 For a long time, Git for Windows lagged behind Git's 2.x releases because the Git for Windows developers wanted to let that big jump coincide with a well-needed jump away from MSys to MSys2. To understand why this is such a big issue, it needs to be noted that many parts of Git are not written in portable C, but instead Git relies on a POSIX shell and Perl to be available. To support the scripts, Git for Windows has to ship a minimal POSIX emulation layer with Bash and Perl thrown in, and when the Git for Windows effort started in August 2007, this developer settled on using MSys, a stripped down version of Cygwin. Consequently, the original name of the project was "msysGit" (which, sadly, caused a *lot* of confusion because few Windows users know about MSys, and even less care). To compile the C code of Git for Windows, MSys was used, too: it sports two versions of the GNU C Compiler: one that links implicitly to the POSIX emulation layer, and another one that targets the plain Win32 API (with a few convenience functions thrown in). Git for Windows' executables are built using the latter, and therefore they are really just Win32 programs. To discern executables requiring the POSIX emulation layer from the ones that do not, the latter are called MinGW (Minimal GNU for Windows) when the former are called MSys executables. This reliance on MSys incurred challenges, too, though: some of our changes to the MSys runtime -- necessary to support Git for Windows better -- were not accepted upstream, so we had to maintain our own fork. Also, the MSys runtime was not developed further to support e.g. UTF-8 or 64-bit, and apart from lacking a package management system until much later (when mingw-get was introduced), many packages provided by the MSys/MinGW project lag behind the respective source code versions, in particular Bash and OpenSSL. For a while, the Git for Windows project tried to remedy the situation by trying to build newer versions of those packages, but the situation quickly became untenable, especially with problems like the Heartbleed bug requiring swift action that has nothing to do with developing Git for Windows further. Happily, in the meantime the MSys2 project (https://msys2.github.io/) emerged, and was chosen to be the base of the Git for Windows 2.x. Just like MSys, MSys2 is a stripped down version of Cygwin, but it is actively kept up-to-date with Cygwin's source code. Thereby, it already supports Unicode internally, and it also offers the 64-bit support that we yearned for since the beginning of the Git for Windows project. MSys2 also ported the Pacman package management system from Arch Linux and uses it heavily. This brings the same convenience to which Linux users are used to from `yum` or `apt-get`, and to which MacOSX users are used to from Homebrew or MacPorts, or BSD users from the Ports system, to MSys2: a simple `pacman -Syu` will update all installed packages to the newest versions currently available. MSys2 is also *very* active, typically providing package updates multiple times per week. It still required a two-month effort to bring everything to a state where Git's test suite passes, many more months until the first official Git for Windows 2.x was released, and a couple of patches still await their submission to the respective upstream projects. Yet without MSys2, the modernization of Git for Windows would simply not have happened. This commit lays the ground work to supporting MSys2-based Git builds. Assisted-by: Waldek Maleska <weakcamel@users.github.com> Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-01-13 16:30:53 +03:00
ifeq ($(shell expr "$(uname_R)" : '2\.'),2)
# MSys2
prefix = /usr/
ifeq (MINGW32,$(MSYSTEM))
prefix = /mingw32
endif
ifeq (MINGW64,$(MSYSTEM))
prefix = /mingw64
else
COMPAT_CFLAGS += -D_USE_32BIT_TIME_T
BASIC_LDFLAGS += -Wl,--large-address-aware
endif
config.mak.uname: support MSys2 For a long time, Git for Windows lagged behind Git's 2.x releases because the Git for Windows developers wanted to let that big jump coincide with a well-needed jump away from MSys to MSys2. To understand why this is such a big issue, it needs to be noted that many parts of Git are not written in portable C, but instead Git relies on a POSIX shell and Perl to be available. To support the scripts, Git for Windows has to ship a minimal POSIX emulation layer with Bash and Perl thrown in, and when the Git for Windows effort started in August 2007, this developer settled on using MSys, a stripped down version of Cygwin. Consequently, the original name of the project was "msysGit" (which, sadly, caused a *lot* of confusion because few Windows users know about MSys, and even less care). To compile the C code of Git for Windows, MSys was used, too: it sports two versions of the GNU C Compiler: one that links implicitly to the POSIX emulation layer, and another one that targets the plain Win32 API (with a few convenience functions thrown in). Git for Windows' executables are built using the latter, and therefore they are really just Win32 programs. To discern executables requiring the POSIX emulation layer from the ones that do not, the latter are called MinGW (Minimal GNU for Windows) when the former are called MSys executables. This reliance on MSys incurred challenges, too, though: some of our changes to the MSys runtime -- necessary to support Git for Windows better -- were not accepted upstream, so we had to maintain our own fork. Also, the MSys runtime was not developed further to support e.g. UTF-8 or 64-bit, and apart from lacking a package management system until much later (when mingw-get was introduced), many packages provided by the MSys/MinGW project lag behind the respective source code versions, in particular Bash and OpenSSL. For a while, the Git for Windows project tried to remedy the situation by trying to build newer versions of those packages, but the situation quickly became untenable, especially with problems like the Heartbleed bug requiring swift action that has nothing to do with developing Git for Windows further. Happily, in the meantime the MSys2 project (https://msys2.github.io/) emerged, and was chosen to be the base of the Git for Windows 2.x. Just like MSys, MSys2 is a stripped down version of Cygwin, but it is actively kept up-to-date with Cygwin's source code. Thereby, it already supports Unicode internally, and it also offers the 64-bit support that we yearned for since the beginning of the Git for Windows project. MSys2 also ported the Pacman package management system from Arch Linux and uses it heavily. This brings the same convenience to which Linux users are used to from `yum` or `apt-get`, and to which MacOSX users are used to from Homebrew or MacPorts, or BSD users from the Ports system, to MSys2: a simple `pacman -Syu` will update all installed packages to the newest versions currently available. MSys2 is also *very* active, typically providing package updates multiple times per week. It still required a two-month effort to bring everything to a state where Git's test suite passes, many more months until the first official Git for Windows 2.x was released, and a couple of patches still await their submission to the respective upstream projects. Yet without MSys2, the modernization of Git for Windows would simply not have happened. This commit lays the ground work to supporting MSys2-based Git builds. Assisted-by: Waldek Maleska <weakcamel@users.github.com> Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-01-13 16:30:53 +03:00
CC = gcc
COMPAT_CFLAGS += -D__USE_MINGW_ANSI_STDIO=0 -DDETECT_MSYS_TTY
EXTLIBS += -lntdll
config.mak.uname: support MSys2 For a long time, Git for Windows lagged behind Git's 2.x releases because the Git for Windows developers wanted to let that big jump coincide with a well-needed jump away from MSys to MSys2. To understand why this is such a big issue, it needs to be noted that many parts of Git are not written in portable C, but instead Git relies on a POSIX shell and Perl to be available. To support the scripts, Git for Windows has to ship a minimal POSIX emulation layer with Bash and Perl thrown in, and when the Git for Windows effort started in August 2007, this developer settled on using MSys, a stripped down version of Cygwin. Consequently, the original name of the project was "msysGit" (which, sadly, caused a *lot* of confusion because few Windows users know about MSys, and even less care). To compile the C code of Git for Windows, MSys was used, too: it sports two versions of the GNU C Compiler: one that links implicitly to the POSIX emulation layer, and another one that targets the plain Win32 API (with a few convenience functions thrown in). Git for Windows' executables are built using the latter, and therefore they are really just Win32 programs. To discern executables requiring the POSIX emulation layer from the ones that do not, the latter are called MinGW (Minimal GNU for Windows) when the former are called MSys executables. This reliance on MSys incurred challenges, too, though: some of our changes to the MSys runtime -- necessary to support Git for Windows better -- were not accepted upstream, so we had to maintain our own fork. Also, the MSys runtime was not developed further to support e.g. UTF-8 or 64-bit, and apart from lacking a package management system until much later (when mingw-get was introduced), many packages provided by the MSys/MinGW project lag behind the respective source code versions, in particular Bash and OpenSSL. For a while, the Git for Windows project tried to remedy the situation by trying to build newer versions of those packages, but the situation quickly became untenable, especially with problems like the Heartbleed bug requiring swift action that has nothing to do with developing Git for Windows further. Happily, in the meantime the MSys2 project (https://msys2.github.io/) emerged, and was chosen to be the base of the Git for Windows 2.x. Just like MSys, MSys2 is a stripped down version of Cygwin, but it is actively kept up-to-date with Cygwin's source code. Thereby, it already supports Unicode internally, and it also offers the 64-bit support that we yearned for since the beginning of the Git for Windows project. MSys2 also ported the Pacman package management system from Arch Linux and uses it heavily. This brings the same convenience to which Linux users are used to from `yum` or `apt-get`, and to which MacOSX users are used to from Homebrew or MacPorts, or BSD users from the Ports system, to MSys2: a simple `pacman -Syu` will update all installed packages to the newest versions currently available. MSys2 is also *very* active, typically providing package updates multiple times per week. It still required a two-month effort to bring everything to a state where Git's test suite passes, many more months until the first official Git for Windows 2.x was released, and a couple of patches still await their submission to the respective upstream projects. Yet without MSys2, the modernization of Git for Windows would simply not have happened. This commit lays the ground work to supporting MSys2-based Git builds. Assisted-by: Waldek Maleska <weakcamel@users.github.com> Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-01-13 16:30:53 +03:00
INSTALL = /bin/install
NO_R_TO_GCC_LINKER = YesPlease
INTERNAL_QSORT = YesPlease
HAVE_LIBCHARSET_H = YesPlease
NO_GETTEXT =
USE_GETTEXT_SCHEME = fallthrough
config.mak.uname: support MSys2 For a long time, Git for Windows lagged behind Git's 2.x releases because the Git for Windows developers wanted to let that big jump coincide with a well-needed jump away from MSys to MSys2. To understand why this is such a big issue, it needs to be noted that many parts of Git are not written in portable C, but instead Git relies on a POSIX shell and Perl to be available. To support the scripts, Git for Windows has to ship a minimal POSIX emulation layer with Bash and Perl thrown in, and when the Git for Windows effort started in August 2007, this developer settled on using MSys, a stripped down version of Cygwin. Consequently, the original name of the project was "msysGit" (which, sadly, caused a *lot* of confusion because few Windows users know about MSys, and even less care). To compile the C code of Git for Windows, MSys was used, too: it sports two versions of the GNU C Compiler: one that links implicitly to the POSIX emulation layer, and another one that targets the plain Win32 API (with a few convenience functions thrown in). Git for Windows' executables are built using the latter, and therefore they are really just Win32 programs. To discern executables requiring the POSIX emulation layer from the ones that do not, the latter are called MinGW (Minimal GNU for Windows) when the former are called MSys executables. This reliance on MSys incurred challenges, too, though: some of our changes to the MSys runtime -- necessary to support Git for Windows better -- were not accepted upstream, so we had to maintain our own fork. Also, the MSys runtime was not developed further to support e.g. UTF-8 or 64-bit, and apart from lacking a package management system until much later (when mingw-get was introduced), many packages provided by the MSys/MinGW project lag behind the respective source code versions, in particular Bash and OpenSSL. For a while, the Git for Windows project tried to remedy the situation by trying to build newer versions of those packages, but the situation quickly became untenable, especially with problems like the Heartbleed bug requiring swift action that has nothing to do with developing Git for Windows further. Happily, in the meantime the MSys2 project (https://msys2.github.io/) emerged, and was chosen to be the base of the Git for Windows 2.x. Just like MSys, MSys2 is a stripped down version of Cygwin, but it is actively kept up-to-date with Cygwin's source code. Thereby, it already supports Unicode internally, and it also offers the 64-bit support that we yearned for since the beginning of the Git for Windows project. MSys2 also ported the Pacman package management system from Arch Linux and uses it heavily. This brings the same convenience to which Linux users are used to from `yum` or `apt-get`, and to which MacOSX users are used to from Homebrew or MacPorts, or BSD users from the Ports system, to MSys2: a simple `pacman -Syu` will update all installed packages to the newest versions currently available. MSys2 is also *very* active, typically providing package updates multiple times per week. It still required a two-month effort to bring everything to a state where Git's test suite passes, many more months until the first official Git for Windows 2.x was released, and a couple of patches still await their submission to the respective upstream projects. Yet without MSys2, the modernization of Git for Windows would simply not have happened. This commit lays the ground work to supporting MSys2-based Git builds. Assisted-by: Waldek Maleska <weakcamel@users.github.com> Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-01-13 16:30:53 +03:00
USE_LIBPCRE= YesPlease
grep: un-break building with PCRE >= 8.32 without --enable-jit Amend my change earlier in this series ("grep: add support for the PCRE v1 JIT API", 2017-04-11) to un-break the build on PCRE v1 versions later than 8.31 compiled without --enable-jit. As explained in that change and a later compatibility change in this series ("grep: un-break building with PCRE < 8.32", 2017-05-10) the pcre_jit_exec() function is a faster path to execute the JIT. Unfortunately there's no compatibility stub for that function compiled into the library if pcre_config(PCRE_CONFIG_JIT, &ret) would return 0, and no macro that can be used to check for it, so the only portable option to support builds without --enable-jit is via a new NO_LIBPCRE1_JIT=UnfortunatelyYes Makefile option[1]. Another option would be to make the JIT opt-in via USE_LIBPCRE1_JIT=YesPlease, after all it's not a default option of PCRE v1. I think it makes more sense to make it opt-out since even though it's not a default option, most packagers of PCRE seem to turn it on by default, with the notable exception of the MinGW package. Make the MinGW platform work by default by changing the build defaults to turn on NO_LIBPCRE1_JIT=UnfortunatelyYes. It is the only platform that turns on USE_LIBPCRE=YesPlease by default, see commit df5218b4c3 ("config.mak.uname: support MSys2", 2016-01-13) for that change. 1. "How do I support pcre1 JIT on all versions?" (https://lists.exim.org/lurker/thread/20170601.103148.10253788.en.html) 2. https://github.com/Alexpux/MINGW-packages/blob/master/mingw-w64-pcre/PKGBUILD (referenced from "Re: PCRE v2 compile error, was Re: What's cooking in git.git (May 2017, #01; Mon, 1)"; <alpine.DEB.2.20.1705021756530.3480@virtualbox>) Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2017-06-01 21:20:55 +03:00
NO_LIBPCRE1_JIT = UnfortunatelyYes
config.mak.uname: support MSys2 For a long time, Git for Windows lagged behind Git's 2.x releases because the Git for Windows developers wanted to let that big jump coincide with a well-needed jump away from MSys to MSys2. To understand why this is such a big issue, it needs to be noted that many parts of Git are not written in portable C, but instead Git relies on a POSIX shell and Perl to be available. To support the scripts, Git for Windows has to ship a minimal POSIX emulation layer with Bash and Perl thrown in, and when the Git for Windows effort started in August 2007, this developer settled on using MSys, a stripped down version of Cygwin. Consequently, the original name of the project was "msysGit" (which, sadly, caused a *lot* of confusion because few Windows users know about MSys, and even less care). To compile the C code of Git for Windows, MSys was used, too: it sports two versions of the GNU C Compiler: one that links implicitly to the POSIX emulation layer, and another one that targets the plain Win32 API (with a few convenience functions thrown in). Git for Windows' executables are built using the latter, and therefore they are really just Win32 programs. To discern executables requiring the POSIX emulation layer from the ones that do not, the latter are called MinGW (Minimal GNU for Windows) when the former are called MSys executables. This reliance on MSys incurred challenges, too, though: some of our changes to the MSys runtime -- necessary to support Git for Windows better -- were not accepted upstream, so we had to maintain our own fork. Also, the MSys runtime was not developed further to support e.g. UTF-8 or 64-bit, and apart from lacking a package management system until much later (when mingw-get was introduced), many packages provided by the MSys/MinGW project lag behind the respective source code versions, in particular Bash and OpenSSL. For a while, the Git for Windows project tried to remedy the situation by trying to build newer versions of those packages, but the situation quickly became untenable, especially with problems like the Heartbleed bug requiring swift action that has nothing to do with developing Git for Windows further. Happily, in the meantime the MSys2 project (https://msys2.github.io/) emerged, and was chosen to be the base of the Git for Windows 2.x. Just like MSys, MSys2 is a stripped down version of Cygwin, but it is actively kept up-to-date with Cygwin's source code. Thereby, it already supports Unicode internally, and it also offers the 64-bit support that we yearned for since the beginning of the Git for Windows project. MSys2 also ported the Pacman package management system from Arch Linux and uses it heavily. This brings the same convenience to which Linux users are used to from `yum` or `apt-get`, and to which MacOSX users are used to from Homebrew or MacPorts, or BSD users from the Ports system, to MSys2: a simple `pacman -Syu` will update all installed packages to the newest versions currently available. MSys2 is also *very* active, typically providing package updates multiple times per week. It still required a two-month effort to bring everything to a state where Git's test suite passes, many more months until the first official Git for Windows 2.x was released, and a couple of patches still await their submission to the respective upstream projects. Yet without MSys2, the modernization of Git for Windows would simply not have happened. This commit lays the ground work to supporting MSys2-based Git builds. Assisted-by: Waldek Maleska <weakcamel@users.github.com> Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-01-13 16:30:53 +03:00
NO_CURL =
USE_NED_ALLOCATOR = YesPlease
else
COMPAT_CFLAGS += -D__USE_MINGW_ANSI_STDIO
NO_CURL = YesPlease
endif
endif
endif
ifeq ($(uname_S),QNX)
COMPAT_CFLAGS += -DSA_RESTART=0
EXPAT_NEEDS_XMLPARSE_H = YesPlease
HAVE_STRINGS_H = YesPlease
NEEDS_SOCKET = YesPlease
NO_GETPAGESIZE = YesPlease
NO_ICONV = YesPlease
NO_MEMMEM = YesPlease
NO_MKDTEMP = YesPlease
NO_NSEC = YesPlease
NO_PTHREADS = YesPlease
NO_R_TO_GCC_LINKER = YesPlease
NO_STRCASESTR = YesPlease
NO_STRLCPY = YesPlease
endif