2005-05-14 11:25:06 +04:00
|
|
|
Core GIT Tests
|
|
|
|
==============
|
|
|
|
|
|
|
|
This directory holds many test scripts for core GIT tools. The
|
|
|
|
first part of this short document describes how to run the tests
|
|
|
|
and read their output.
|
|
|
|
|
|
|
|
When fixing the tools or adding enhancements, you are strongly
|
|
|
|
encouraged to add tests in this directory to cover what you are
|
|
|
|
trying to fix or enhance. The later part of this short document
|
|
|
|
describes how your test scripts should be organized.
|
|
|
|
|
|
|
|
|
|
|
|
Running Tests
|
|
|
|
-------------
|
|
|
|
|
|
|
|
The easiest way to run tests is to say "make". This runs all
|
|
|
|
the tests.
|
|
|
|
|
|
|
|
*** t0000-basic.sh ***
|
test-lib: Adjust output to be valid TAP format
TAP, the Test Anything Protocol, is a simple text-based interface
between testing modules in a test harness. test-lib.sh's output was
already very close to being valid TAP. This change brings it all the
way there. Before:
$ ./t0005-signals.sh
* ok 1: sigchain works
* passed all 1 test(s)
And after:
$ ./t0005-signals.sh
ok 1 - sigchain works
# passed all 1 test(s)
1..1
The advantage of using TAP is that any program that reads the format
(a "test harness") can run the tests. The most popular of these is the
prove(1) utility that comes with Perl. It can run tests in parallel,
display colored output, format the output to console, file, HTML etc.,
and much more. An example:
$ prove ./t0005-signals.sh
./t0005-signals.sh .. ok
All tests successful.
Files=1, Tests=1, 0 wallclock secs ( 0.03 usr 0.00 sys + 0.01 cusr 0.02 csys = 0.06 CPU)
Result: PASS
prove(1) gives you human readable output without being too
verbose. Running the test suite in parallel with `make test -j15`
produces a flood of text. Running them with `prove -j 15 ./t[0-9]*.sh`
makes it easy to follow what's going on.
All this patch does is re-arrange the output a bit so that it conforms
with the TAP spec, everything that the test suite did before continues
to work. That includes aggregating results in t/test-results/, the
--verbose, --debug and other options for tests, and the test color
output.
TAP harnesses ignore everything that they don't know about, so running
the tests with --verbose works:
$ prove ./t0005-signals.sh :: --verbose --debug
./t0005-signals.sh .. Terminated
./t0005-signals.sh .. ok
All tests successful.
Files=1, Tests=1, 0 wallclock secs ( 0.02 usr 0.01 sys + 0.01 cusr 0.01 csys = 0.05 CPU)
Result: PASS
Just supply the -v option to prove itself to get all the verbose
output that it suppresses:
$ prove -v ./t0005-signals.sh :: --verbose --debug
./t0005-signals.sh ..
Initialized empty Git repository in /home/avar/g/git/t/trash directory.t0005-signals/.git/
expecting success:
test-sigchain >actual
case "$?" in
143) true ;; # POSIX w/ SIGTERM=15
3) true ;; # Windows
*) false ;;
esac &&
test_cmp expect actual
Terminated
ok 1 - sigchain works
# passed all 1 test(s)
1..1
ok
All tests successful.
Files=1, Tests=1, 0 wallclock secs ( 0.02 usr 0.00 sys + 0.01 cusr 0.01 csys = 0.04 CPU)
Result: PASS
As a further example, consider this test script that uses a lot of
test-lib.sh features by Jakub Narebski:
#!/bin/sh
test_description='this is a sample test.
This test is here to see various test outputs.'
. ./test-lib.sh
say 'diagnostic message'
test_expect_success 'true test' 'true'
test_expect_success 'false test' 'false'
test_expect_failure 'true test (todo)' 'true'
test_expect_failure 'false test (todo)' 'false'
test_debug 'echo "debug message"'
test_done
The output of that was previously:
* diagnostic message # yellow
* ok 1: true test
* FAIL 2: false test # bold red
false
* FIXED 3: true test (todo)
* still broken 4: false test (todo) # bold green
* fixed 1 known breakage(s) # green
* still have 1 known breakage(s) # bold red
* failed 1 among remaining 3 test(s) # bold red
But is now:
diagnostic message # yellow
ok 1 - true test
not ok - 2 false test # bold red
# false
ok 3 - true test (todo) # TODO known breakage
not ok 4 - false test (todo) # TODO known breakage # bold green
# fixed 1 known breakage(s) # green
# still have 1 known breakage(s) # bold red
# failed 1 among remaining 3 test(s) # bold red
1..4
All the coloring is preserved when the test is run manually. Under
prove(1) the test performs as expected, even with --debug and
--verbose options:
$ prove ./example.sh :: --debug --verbose
./example.sh .. Dubious, test returned 1 (wstat 256, 0x100)
Failed 1/4 subtests
(1 TODO test unexpectedly succeeded)
Test Summary Report
-------------------
./example.sh (Wstat: 256 Tests: 4 Failed: 1)
Failed test: 2
TODO passed: 3
Non-zero exit status: 1
Files=1, Tests=4, 0 wallclock secs ( 0.02 usr 0.00 sys + 0.00 cusr 0.01 csys = 0.03 CPU)
Result: FAIL
The TAP harness itself doesn't get confused by the color output, they
aren't used by test-lib.sh stdout isn't open to a terminal (test -t 1).
Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2010-06-25 01:52:12 +04:00
|
|
|
ok 1 - .git/objects should be empty after git init in an empty repo.
|
|
|
|
ok 2 - .git/objects should have 3 subdirectories.
|
|
|
|
ok 3 - success is reported like this
|
2005-05-14 11:25:06 +04:00
|
|
|
...
|
test-lib: Adjust output to be valid TAP format
TAP, the Test Anything Protocol, is a simple text-based interface
between testing modules in a test harness. test-lib.sh's output was
already very close to being valid TAP. This change brings it all the
way there. Before:
$ ./t0005-signals.sh
* ok 1: sigchain works
* passed all 1 test(s)
And after:
$ ./t0005-signals.sh
ok 1 - sigchain works
# passed all 1 test(s)
1..1
The advantage of using TAP is that any program that reads the format
(a "test harness") can run the tests. The most popular of these is the
prove(1) utility that comes with Perl. It can run tests in parallel,
display colored output, format the output to console, file, HTML etc.,
and much more. An example:
$ prove ./t0005-signals.sh
./t0005-signals.sh .. ok
All tests successful.
Files=1, Tests=1, 0 wallclock secs ( 0.03 usr 0.00 sys + 0.01 cusr 0.02 csys = 0.06 CPU)
Result: PASS
prove(1) gives you human readable output without being too
verbose. Running the test suite in parallel with `make test -j15`
produces a flood of text. Running them with `prove -j 15 ./t[0-9]*.sh`
makes it easy to follow what's going on.
All this patch does is re-arrange the output a bit so that it conforms
with the TAP spec, everything that the test suite did before continues
to work. That includes aggregating results in t/test-results/, the
--verbose, --debug and other options for tests, and the test color
output.
TAP harnesses ignore everything that they don't know about, so running
the tests with --verbose works:
$ prove ./t0005-signals.sh :: --verbose --debug
./t0005-signals.sh .. Terminated
./t0005-signals.sh .. ok
All tests successful.
Files=1, Tests=1, 0 wallclock secs ( 0.02 usr 0.01 sys + 0.01 cusr 0.01 csys = 0.05 CPU)
Result: PASS
Just supply the -v option to prove itself to get all the verbose
output that it suppresses:
$ prove -v ./t0005-signals.sh :: --verbose --debug
./t0005-signals.sh ..
Initialized empty Git repository in /home/avar/g/git/t/trash directory.t0005-signals/.git/
expecting success:
test-sigchain >actual
case "$?" in
143) true ;; # POSIX w/ SIGTERM=15
3) true ;; # Windows
*) false ;;
esac &&
test_cmp expect actual
Terminated
ok 1 - sigchain works
# passed all 1 test(s)
1..1
ok
All tests successful.
Files=1, Tests=1, 0 wallclock secs ( 0.02 usr 0.00 sys + 0.01 cusr 0.01 csys = 0.04 CPU)
Result: PASS
As a further example, consider this test script that uses a lot of
test-lib.sh features by Jakub Narebski:
#!/bin/sh
test_description='this is a sample test.
This test is here to see various test outputs.'
. ./test-lib.sh
say 'diagnostic message'
test_expect_success 'true test' 'true'
test_expect_success 'false test' 'false'
test_expect_failure 'true test (todo)' 'true'
test_expect_failure 'false test (todo)' 'false'
test_debug 'echo "debug message"'
test_done
The output of that was previously:
* diagnostic message # yellow
* ok 1: true test
* FAIL 2: false test # bold red
false
* FIXED 3: true test (todo)
* still broken 4: false test (todo) # bold green
* fixed 1 known breakage(s) # green
* still have 1 known breakage(s) # bold red
* failed 1 among remaining 3 test(s) # bold red
But is now:
diagnostic message # yellow
ok 1 - true test
not ok - 2 false test # bold red
# false
ok 3 - true test (todo) # TODO known breakage
not ok 4 - false test (todo) # TODO known breakage # bold green
# fixed 1 known breakage(s) # green
# still have 1 known breakage(s) # bold red
# failed 1 among remaining 3 test(s) # bold red
1..4
All the coloring is preserved when the test is run manually. Under
prove(1) the test performs as expected, even with --debug and
--verbose options:
$ prove ./example.sh :: --debug --verbose
./example.sh .. Dubious, test returned 1 (wstat 256, 0x100)
Failed 1/4 subtests
(1 TODO test unexpectedly succeeded)
Test Summary Report
-------------------
./example.sh (Wstat: 256 Tests: 4 Failed: 1)
Failed test: 2
TODO passed: 3
Non-zero exit status: 1
Files=1, Tests=4, 0 wallclock secs ( 0.02 usr 0.00 sys + 0.00 cusr 0.01 csys = 0.03 CPU)
Result: FAIL
The TAP harness itself doesn't get confused by the color output, they
aren't used by test-lib.sh stdout isn't open to a terminal (test -t 1).
Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2010-06-25 01:52:12 +04:00
|
|
|
ok 43 - very long name in the index handled sanely
|
|
|
|
# fixed 1 known breakage(s)
|
|
|
|
# still have 1 known breakage(s)
|
|
|
|
# passed all remaining 42 test(s)
|
|
|
|
1..43
|
|
|
|
*** t0001-init.sh ***
|
|
|
|
ok 1 - plain
|
|
|
|
ok 2 - plain with GIT_WORK_TREE
|
|
|
|
ok 3 - plain bare
|
|
|
|
|
|
|
|
Since the tests all output TAP (see http://testanything.org) they can
|
|
|
|
be run with any TAP harness. Here's an example of paralell testing
|
|
|
|
powered by a recent version of prove(1):
|
|
|
|
|
|
|
|
$ prove --timer --jobs 15 ./t[0-9]*.sh
|
|
|
|
[19:17:33] ./t0005-signals.sh ................................... ok 36 ms
|
|
|
|
[19:17:33] ./t0022-crlf-rename.sh ............................... ok 69 ms
|
|
|
|
[19:17:33] ./t0024-crlf-archive.sh .............................. ok 154 ms
|
|
|
|
[19:17:33] ./t0004-unwritable.sh ................................ ok 289 ms
|
|
|
|
[19:17:33] ./t0002-gitfile.sh ................................... ok 480 ms
|
|
|
|
===( 102;0 25/? 6/? 5/? 16/? 1/? 4/? 2/? 1/? 3/? 1... )===
|
|
|
|
|
|
|
|
prove and other harnesses come with a lot of useful options. The
|
|
|
|
--state option in particular is very useful:
|
|
|
|
|
|
|
|
# Repeat until no more failures
|
|
|
|
$ prove -j 15 --state=failed,save ./t[0-9]*.sh
|
2005-05-14 11:25:06 +04:00
|
|
|
|
test-lib: Adjust output to be valid TAP format
TAP, the Test Anything Protocol, is a simple text-based interface
between testing modules in a test harness. test-lib.sh's output was
already very close to being valid TAP. This change brings it all the
way there. Before:
$ ./t0005-signals.sh
* ok 1: sigchain works
* passed all 1 test(s)
And after:
$ ./t0005-signals.sh
ok 1 - sigchain works
# passed all 1 test(s)
1..1
The advantage of using TAP is that any program that reads the format
(a "test harness") can run the tests. The most popular of these is the
prove(1) utility that comes with Perl. It can run tests in parallel,
display colored output, format the output to console, file, HTML etc.,
and much more. An example:
$ prove ./t0005-signals.sh
./t0005-signals.sh .. ok
All tests successful.
Files=1, Tests=1, 0 wallclock secs ( 0.03 usr 0.00 sys + 0.01 cusr 0.02 csys = 0.06 CPU)
Result: PASS
prove(1) gives you human readable output without being too
verbose. Running the test suite in parallel with `make test -j15`
produces a flood of text. Running them with `prove -j 15 ./t[0-9]*.sh`
makes it easy to follow what's going on.
All this patch does is re-arrange the output a bit so that it conforms
with the TAP spec, everything that the test suite did before continues
to work. That includes aggregating results in t/test-results/, the
--verbose, --debug and other options for tests, and the test color
output.
TAP harnesses ignore everything that they don't know about, so running
the tests with --verbose works:
$ prove ./t0005-signals.sh :: --verbose --debug
./t0005-signals.sh .. Terminated
./t0005-signals.sh .. ok
All tests successful.
Files=1, Tests=1, 0 wallclock secs ( 0.02 usr 0.01 sys + 0.01 cusr 0.01 csys = 0.05 CPU)
Result: PASS
Just supply the -v option to prove itself to get all the verbose
output that it suppresses:
$ prove -v ./t0005-signals.sh :: --verbose --debug
./t0005-signals.sh ..
Initialized empty Git repository in /home/avar/g/git/t/trash directory.t0005-signals/.git/
expecting success:
test-sigchain >actual
case "$?" in
143) true ;; # POSIX w/ SIGTERM=15
3) true ;; # Windows
*) false ;;
esac &&
test_cmp expect actual
Terminated
ok 1 - sigchain works
# passed all 1 test(s)
1..1
ok
All tests successful.
Files=1, Tests=1, 0 wallclock secs ( 0.02 usr 0.00 sys + 0.01 cusr 0.01 csys = 0.04 CPU)
Result: PASS
As a further example, consider this test script that uses a lot of
test-lib.sh features by Jakub Narebski:
#!/bin/sh
test_description='this is a sample test.
This test is here to see various test outputs.'
. ./test-lib.sh
say 'diagnostic message'
test_expect_success 'true test' 'true'
test_expect_success 'false test' 'false'
test_expect_failure 'true test (todo)' 'true'
test_expect_failure 'false test (todo)' 'false'
test_debug 'echo "debug message"'
test_done
The output of that was previously:
* diagnostic message # yellow
* ok 1: true test
* FAIL 2: false test # bold red
false
* FIXED 3: true test (todo)
* still broken 4: false test (todo) # bold green
* fixed 1 known breakage(s) # green
* still have 1 known breakage(s) # bold red
* failed 1 among remaining 3 test(s) # bold red
But is now:
diagnostic message # yellow
ok 1 - true test
not ok - 2 false test # bold red
# false
ok 3 - true test (todo) # TODO known breakage
not ok 4 - false test (todo) # TODO known breakage # bold green
# fixed 1 known breakage(s) # green
# still have 1 known breakage(s) # bold red
# failed 1 among remaining 3 test(s) # bold red
1..4
All the coloring is preserved when the test is run manually. Under
prove(1) the test performs as expected, even with --debug and
--verbose options:
$ prove ./example.sh :: --debug --verbose
./example.sh .. Dubious, test returned 1 (wstat 256, 0x100)
Failed 1/4 subtests
(1 TODO test unexpectedly succeeded)
Test Summary Report
-------------------
./example.sh (Wstat: 256 Tests: 4 Failed: 1)
Failed test: 2
TODO passed: 3
Non-zero exit status: 1
Files=1, Tests=4, 0 wallclock secs ( 0.02 usr 0.00 sys + 0.00 cusr 0.01 csys = 0.03 CPU)
Result: FAIL
The TAP harness itself doesn't get confused by the color output, they
aren't used by test-lib.sh stdout isn't open to a terminal (test -t 1).
Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2010-06-25 01:52:12 +04:00
|
|
|
You can also run each test individually from command line, like this:
|
2005-05-14 11:25:06 +04:00
|
|
|
|
test-lib: Adjust output to be valid TAP format
TAP, the Test Anything Protocol, is a simple text-based interface
between testing modules in a test harness. test-lib.sh's output was
already very close to being valid TAP. This change brings it all the
way there. Before:
$ ./t0005-signals.sh
* ok 1: sigchain works
* passed all 1 test(s)
And after:
$ ./t0005-signals.sh
ok 1 - sigchain works
# passed all 1 test(s)
1..1
The advantage of using TAP is that any program that reads the format
(a "test harness") can run the tests. The most popular of these is the
prove(1) utility that comes with Perl. It can run tests in parallel,
display colored output, format the output to console, file, HTML etc.,
and much more. An example:
$ prove ./t0005-signals.sh
./t0005-signals.sh .. ok
All tests successful.
Files=1, Tests=1, 0 wallclock secs ( 0.03 usr 0.00 sys + 0.01 cusr 0.02 csys = 0.06 CPU)
Result: PASS
prove(1) gives you human readable output without being too
verbose. Running the test suite in parallel with `make test -j15`
produces a flood of text. Running them with `prove -j 15 ./t[0-9]*.sh`
makes it easy to follow what's going on.
All this patch does is re-arrange the output a bit so that it conforms
with the TAP spec, everything that the test suite did before continues
to work. That includes aggregating results in t/test-results/, the
--verbose, --debug and other options for tests, and the test color
output.
TAP harnesses ignore everything that they don't know about, so running
the tests with --verbose works:
$ prove ./t0005-signals.sh :: --verbose --debug
./t0005-signals.sh .. Terminated
./t0005-signals.sh .. ok
All tests successful.
Files=1, Tests=1, 0 wallclock secs ( 0.02 usr 0.01 sys + 0.01 cusr 0.01 csys = 0.05 CPU)
Result: PASS
Just supply the -v option to prove itself to get all the verbose
output that it suppresses:
$ prove -v ./t0005-signals.sh :: --verbose --debug
./t0005-signals.sh ..
Initialized empty Git repository in /home/avar/g/git/t/trash directory.t0005-signals/.git/
expecting success:
test-sigchain >actual
case "$?" in
143) true ;; # POSIX w/ SIGTERM=15
3) true ;; # Windows
*) false ;;
esac &&
test_cmp expect actual
Terminated
ok 1 - sigchain works
# passed all 1 test(s)
1..1
ok
All tests successful.
Files=1, Tests=1, 0 wallclock secs ( 0.02 usr 0.00 sys + 0.01 cusr 0.01 csys = 0.04 CPU)
Result: PASS
As a further example, consider this test script that uses a lot of
test-lib.sh features by Jakub Narebski:
#!/bin/sh
test_description='this is a sample test.
This test is here to see various test outputs.'
. ./test-lib.sh
say 'diagnostic message'
test_expect_success 'true test' 'true'
test_expect_success 'false test' 'false'
test_expect_failure 'true test (todo)' 'true'
test_expect_failure 'false test (todo)' 'false'
test_debug 'echo "debug message"'
test_done
The output of that was previously:
* diagnostic message # yellow
* ok 1: true test
* FAIL 2: false test # bold red
false
* FIXED 3: true test (todo)
* still broken 4: false test (todo) # bold green
* fixed 1 known breakage(s) # green
* still have 1 known breakage(s) # bold red
* failed 1 among remaining 3 test(s) # bold red
But is now:
diagnostic message # yellow
ok 1 - true test
not ok - 2 false test # bold red
# false
ok 3 - true test (todo) # TODO known breakage
not ok 4 - false test (todo) # TODO known breakage # bold green
# fixed 1 known breakage(s) # green
# still have 1 known breakage(s) # bold red
# failed 1 among remaining 3 test(s) # bold red
1..4
All the coloring is preserved when the test is run manually. Under
prove(1) the test performs as expected, even with --debug and
--verbose options:
$ prove ./example.sh :: --debug --verbose
./example.sh .. Dubious, test returned 1 (wstat 256, 0x100)
Failed 1/4 subtests
(1 TODO test unexpectedly succeeded)
Test Summary Report
-------------------
./example.sh (Wstat: 256 Tests: 4 Failed: 1)
Failed test: 2
TODO passed: 3
Non-zero exit status: 1
Files=1, Tests=4, 0 wallclock secs ( 0.02 usr 0.00 sys + 0.00 cusr 0.01 csys = 0.03 CPU)
Result: FAIL
The TAP harness itself doesn't get confused by the color output, they
aren't used by test-lib.sh stdout isn't open to a terminal (test -t 1).
Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2010-06-25 01:52:12 +04:00
|
|
|
$ sh ./t3010-ls-files-killed-modified.sh
|
|
|
|
ok 1 - git update-index --add to add various paths.
|
|
|
|
ok 2 - git ls-files -k to show killed files.
|
|
|
|
ok 3 - validate git ls-files -k output.
|
|
|
|
ok 4 - git ls-files -m to show modified files.
|
|
|
|
ok 5 - validate git ls-files -m output.
|
|
|
|
# passed all 5 test(s)
|
|
|
|
1..5
|
2005-05-14 11:25:06 +04:00
|
|
|
|
|
|
|
You can pass --verbose (or -v), --debug (or -d), and --immediate
|
2009-02-04 02:25:59 +03:00
|
|
|
(or -i) command line argument to the test, or by setting GIT_TEST_OPTS
|
|
|
|
appropriately before running "make".
|
2005-05-14 11:25:06 +04:00
|
|
|
|
|
|
|
--verbose::
|
|
|
|
This makes the test more verbose. Specifically, the
|
|
|
|
command being run and their output if any are also
|
|
|
|
output.
|
|
|
|
|
|
|
|
--debug::
|
|
|
|
This may help the person who is developing a new test.
|
|
|
|
It causes the command defined with test_debug to run.
|
|
|
|
|
|
|
|
--immediate::
|
|
|
|
This causes the test to immediately exit upon the first
|
|
|
|
failed test.
|
|
|
|
|
2008-06-17 05:29:02 +04:00
|
|
|
--long-tests::
|
|
|
|
This causes additional long-running tests to be run (where
|
|
|
|
available), for more exhaustive testing.
|
|
|
|
|
2009-02-04 02:25:59 +03:00
|
|
|
--valgrind::
|
|
|
|
Execute all Git binaries with valgrind and exit with status
|
|
|
|
126 on errors (just like regular tests, this will only stop
|
|
|
|
the test script when running under -i). Valgrind errors
|
|
|
|
go to stderr, so you might want to pass the -v option, too.
|
2005-05-14 11:25:06 +04:00
|
|
|
|
2009-02-04 02:26:26 +03:00
|
|
|
Since it makes no sense to run the tests with --valgrind and
|
|
|
|
not see any output, this option implies --verbose. For
|
|
|
|
convenience, it also implies --tee.
|
|
|
|
|
test-lib.sh: optionally output to test-results/$TEST.out, too
When tests are run in parallel and a few tests fail, it does not help
that the output of the terminal is totally confusing, as you rarely know
which test which line came from.
So introduce the option '--tee' which triggers that the output of the
tests will be written to t/test-results/$TEST.out in addition to the
terminal, where $TEST is the basename of the script.
Unfortunately, there seems to be no way to redirect a given file
descriptor to a specified subprocess in POSIX shell, only redirection
to a file is supported via 'exec > $FILE'.
At least with bash, one might think that 'exec >($COMMAND)' would work
as intended, but it does not.
The common way to work around the lack of proper tools support is to
work with named pipes, alas, one of our most beloved platforms does not
really support named pipes. Besides, we would need a pipe for every
script, as the whole point of this patch is to allow parallel execution.
Therefore, we handle the redirection in the following way: when '--tee'
was passed to the test script, the variable GIT_TEST_TEE_STARTED is set
(to avoid triggering that code path again) and the script is started
_again_, in a subshell, redirected to the command "tee".
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-02-04 02:26:12 +03:00
|
|
|
--tee::
|
|
|
|
In addition to printing the test output to the terminal,
|
|
|
|
write it to files named 't/test-results/$TEST_NAME.out'.
|
|
|
|
As the names depend on the tests' file names, it is safe to
|
|
|
|
run the tests with this option in parallel.
|
|
|
|
|
2009-12-03 08:14:06 +03:00
|
|
|
--with-dashes::
|
|
|
|
By default tests are run without dashed forms of
|
|
|
|
commands (like git-commit) in the PATH (it only uses
|
|
|
|
wrappers from ../bin-wrappers). Use this option to include
|
|
|
|
the build directory (..) in the PATH, which contains all
|
|
|
|
the dashed forms of commands. This option is currently
|
|
|
|
implied by other options like --valgrind and
|
|
|
|
GIT_TEST_INSTALLED.
|
|
|
|
|
2010-06-10 22:24:46 +04:00
|
|
|
--root=<directory>::
|
|
|
|
Create "trash" directories used to store all temporary data during
|
|
|
|
testing under <directory>, instead of the t/ directory.
|
|
|
|
Using this option with a RAM-based filesystem (such as tmpfs)
|
|
|
|
can massively speed up the test suite.
|
|
|
|
|
2009-11-30 09:19:28 +03:00
|
|
|
You can also set the GIT_TEST_INSTALLED environment variable to
|
|
|
|
the bindir of an existing git installation to test that installation.
|
|
|
|
You still need to have built this git sandbox, from which various
|
|
|
|
test-* support programs, templates, and perl libraries are used.
|
|
|
|
If your installed git is incomplete, it will silently test parts of
|
|
|
|
your built version instead.
|
|
|
|
|
|
|
|
When using GIT_TEST_INSTALLED, you can also set GIT_TEST_EXEC_PATH to
|
|
|
|
override the location of the dashed-form subcommands (what
|
|
|
|
GIT_EXEC_PATH would be used for during normal operation).
|
|
|
|
GIT_TEST_EXEC_PATH defaults to `$GIT_TEST_INSTALLED/git --exec-path`.
|
|
|
|
|
|
|
|
|
2008-06-21 01:10:50 +04:00
|
|
|
Skipping Tests
|
|
|
|
--------------
|
|
|
|
|
|
|
|
In some environments, certain tests have no way of succeeding
|
|
|
|
due to platform limitation, such as lack of 'unzip' program, or
|
|
|
|
filesystem that do not allow arbitrary sequence of non-NUL bytes
|
|
|
|
as pathnames.
|
|
|
|
|
|
|
|
You should be able to say something like
|
|
|
|
|
|
|
|
$ GIT_SKIP_TESTS=t9200.8 sh ./t9200-git-cvsexport-commit.sh
|
|
|
|
|
|
|
|
and even:
|
|
|
|
|
|
|
|
$ GIT_SKIP_TESTS='t[0-4]??? t91?? t9200.8' make
|
|
|
|
|
|
|
|
to omit such tests. The value of the environment variable is a
|
|
|
|
SP separated list of patterns that tells which tests to skip,
|
|
|
|
and either can match the "t[0-9]{4}" part to skip the whole
|
|
|
|
test, or t[0-9]{4} followed by ".$number" to say which
|
|
|
|
particular test to skip.
|
|
|
|
|
|
|
|
Note that some tests in the existing test suite rely on previous
|
|
|
|
test item, so you cannot arbitrarily disable one and expect the
|
|
|
|
remainder of test to check what the test originally was intended
|
|
|
|
to check.
|
|
|
|
|
|
|
|
|
Rename some test scripts and describe the naming convention
First digit: "family", e.g. the absolute basics and global stuff (0),
the basic db-side commands (read-tree, write-tree, commit-tree), the
basic working-tree-side commands (checkout-cache, update-cache), the
other basic commands (ls-files), the diff commands, the pull commands,
exporting commands, revision tree commands...
Second digit: the particular command we are testing
Third digit: (optionally) the particular switch or group of switches
we are testing
Freeform part: commandname-details
Described in the README.
mv t1000-checkout-cache.sh t2000-checkout-cache-clash.sh
mv t1001-checkout-cache.sh t2001-checkout-cache-clash.sh
mv t0200-update-cache.sh t2010-update-cache-badpath.sh
mv t0400-ls-files.sh t3000-ls-files-others.sh
mv t0500-ls-files.sh t3010-ls-files-killed.sh
2005-05-15 03:34:22 +04:00
|
|
|
Naming Tests
|
|
|
|
------------
|
|
|
|
|
|
|
|
The test files are named as:
|
|
|
|
|
|
|
|
tNNNN-commandname-details.sh
|
|
|
|
|
|
|
|
where N is a decimal digit.
|
|
|
|
|
|
|
|
First digit tells the family:
|
|
|
|
|
|
|
|
0 - the absolute basics and global stuff
|
|
|
|
1 - the basic commands concerning database
|
|
|
|
2 - the basic commands concerning the working tree
|
|
|
|
3 - the other basic commands (e.g. ls-files)
|
|
|
|
4 - the diff commands
|
|
|
|
5 - the pull and exporting commands
|
|
|
|
6 - the revision tree commands (even e.g. merge-base)
|
2006-06-28 22:45:52 +04:00
|
|
|
7 - the porcelainish commands concerning the working tree
|
2006-12-29 16:39:09 +03:00
|
|
|
8 - the porcelainish commands concerning forensics
|
|
|
|
9 - the git tools
|
Rename some test scripts and describe the naming convention
First digit: "family", e.g. the absolute basics and global stuff (0),
the basic db-side commands (read-tree, write-tree, commit-tree), the
basic working-tree-side commands (checkout-cache, update-cache), the
other basic commands (ls-files), the diff commands, the pull commands,
exporting commands, revision tree commands...
Second digit: the particular command we are testing
Third digit: (optionally) the particular switch or group of switches
we are testing
Freeform part: commandname-details
Described in the README.
mv t1000-checkout-cache.sh t2000-checkout-cache-clash.sh
mv t1001-checkout-cache.sh t2001-checkout-cache-clash.sh
mv t0200-update-cache.sh t2010-update-cache-badpath.sh
mv t0400-ls-files.sh t3000-ls-files-others.sh
mv t0500-ls-files.sh t3010-ls-files-killed.sh
2005-05-15 03:34:22 +04:00
|
|
|
|
|
|
|
Second digit tells the particular command we are testing.
|
|
|
|
|
|
|
|
Third digit (optionally) tells the particular switch or group of switches
|
|
|
|
we are testing.
|
|
|
|
|
2005-07-07 22:39:10 +04:00
|
|
|
If you create files under t/ directory (i.e. here) that is not
|
|
|
|
the top-level test script, never name the file to match the above
|
|
|
|
pattern. The Makefile here considers all such files as the
|
|
|
|
top-level test script and tries to run all of them. A care is
|
|
|
|
especially needed if you are creating a common test library
|
|
|
|
file, similar to test-lib.sh, because such a library file may
|
|
|
|
not be suitable for standalone execution.
|
|
|
|
|
Rename some test scripts and describe the naming convention
First digit: "family", e.g. the absolute basics and global stuff (0),
the basic db-side commands (read-tree, write-tree, commit-tree), the
basic working-tree-side commands (checkout-cache, update-cache), the
other basic commands (ls-files), the diff commands, the pull commands,
exporting commands, revision tree commands...
Second digit: the particular command we are testing
Third digit: (optionally) the particular switch or group of switches
we are testing
Freeform part: commandname-details
Described in the README.
mv t1000-checkout-cache.sh t2000-checkout-cache-clash.sh
mv t1001-checkout-cache.sh t2001-checkout-cache-clash.sh
mv t0200-update-cache.sh t2010-update-cache-badpath.sh
mv t0400-ls-files.sh t3000-ls-files-others.sh
mv t0500-ls-files.sh t3010-ls-files-killed.sh
2005-05-15 03:34:22 +04:00
|
|
|
|
2005-05-14 11:25:06 +04:00
|
|
|
Writing Tests
|
|
|
|
-------------
|
|
|
|
|
|
|
|
The test script is written as a shell script. It should start
|
|
|
|
with the standard "#!/bin/sh" with copyright notices, and an
|
|
|
|
assignment to variable 'test_description', like this:
|
|
|
|
|
|
|
|
#!/bin/sh
|
|
|
|
#
|
|
|
|
# Copyright (c) 2005 Junio C Hamano
|
|
|
|
#
|
|
|
|
|
2005-05-16 01:21:13 +04:00
|
|
|
test_description='xxx test (option --frotz)
|
2005-05-14 11:25:06 +04:00
|
|
|
|
|
|
|
This test registers the following structure in the cache
|
|
|
|
and tries to run git-ls-files with option --frotz.'
|
|
|
|
|
Rename some test scripts and describe the naming convention
First digit: "family", e.g. the absolute basics and global stuff (0),
the basic db-side commands (read-tree, write-tree, commit-tree), the
basic working-tree-side commands (checkout-cache, update-cache), the
other basic commands (ls-files), the diff commands, the pull commands,
exporting commands, revision tree commands...
Second digit: the particular command we are testing
Third digit: (optionally) the particular switch or group of switches
we are testing
Freeform part: commandname-details
Described in the README.
mv t1000-checkout-cache.sh t2000-checkout-cache-clash.sh
mv t1001-checkout-cache.sh t2001-checkout-cache-clash.sh
mv t0200-update-cache.sh t2010-update-cache-badpath.sh
mv t0400-ls-files.sh t3000-ls-files-others.sh
mv t0500-ls-files.sh t3010-ls-files-killed.sh
2005-05-15 03:34:22 +04:00
|
|
|
|
2005-05-14 11:25:06 +04:00
|
|
|
Source 'test-lib.sh'
|
|
|
|
--------------------
|
|
|
|
|
|
|
|
After assigning test_description, the test script should source
|
|
|
|
test-lib.sh like this:
|
|
|
|
|
|
|
|
. ./test-lib.sh
|
|
|
|
|
|
|
|
This test harness library does the following things:
|
|
|
|
|
|
|
|
- If the script is invoked with command line argument --help
|
|
|
|
(or -h), it shows the test_description and exits.
|
|
|
|
|
2010-07-02 18:59:43 +04:00
|
|
|
- Creates an empty test directory with an empty .git/objects database
|
|
|
|
and chdir(2) into it. This directory is 't/trash
|
|
|
|
directory.$test_name_without_dotsh', with t/ subject to change by
|
|
|
|
the --root option documented above.
|
2005-05-14 11:25:06 +04:00
|
|
|
|
|
|
|
- Defines standard test helper functions for your scripts to
|
|
|
|
use. These functions are designed to make all scripts behave
|
|
|
|
consistently when command line arguments --verbose (or -v),
|
|
|
|
--debug (or -d), and --immediate (or -i) is given.
|
|
|
|
|
2005-05-16 01:21:13 +04:00
|
|
|
|
2005-05-14 11:25:06 +04:00
|
|
|
End with test_done
|
|
|
|
------------------
|
|
|
|
|
|
|
|
Your script will be a sequence of tests, using helper functions
|
|
|
|
from the test harness library. At the end of the script, call
|
|
|
|
'test_done'.
|
|
|
|
|
|
|
|
|
|
|
|
Test harness library
|
|
|
|
--------------------
|
|
|
|
|
|
|
|
There are a handful helper functions defined in the test harness
|
|
|
|
library for your script to use.
|
|
|
|
|
|
|
|
- test_expect_success <message> <script>
|
|
|
|
|
|
|
|
This takes two strings as parameter, and evaluates the
|
|
|
|
<script>. If it yields success, test is considered
|
|
|
|
successful. <message> should state what it is testing.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
test_expect_success \
|
|
|
|
'git-write-tree should be able to write an empty tree.' \
|
|
|
|
'tree=$(git-write-tree)'
|
|
|
|
|
|
|
|
- test_expect_failure <message> <script>
|
|
|
|
|
2008-02-01 12:50:53 +03:00
|
|
|
This is NOT the opposite of test_expect_success, but is used
|
|
|
|
to mark a test that demonstrates a known breakage. Unlike
|
|
|
|
the usual test_expect_success tests, which say "ok" on
|
|
|
|
success and "FAIL" on failure, this will say "FIXED" on
|
|
|
|
success and "still broken" on failure. Failures from these
|
|
|
|
tests won't cause -i (immediate) to stop.
|
2005-05-14 11:25:06 +04:00
|
|
|
|
|
|
|
- test_debug <script>
|
|
|
|
|
|
|
|
This takes a single argument, <script>, and evaluates it only
|
|
|
|
when the test script is started with --debug command line
|
|
|
|
argument. This is primarily meant for use during the
|
|
|
|
development of a new test script.
|
|
|
|
|
|
|
|
- test_done
|
|
|
|
|
|
|
|
Your test script must have test_done at the end. Its purpose
|
|
|
|
is to summarize successes and failures in the test script and
|
|
|
|
exit with an appropriate error code.
|
|
|
|
|
2009-01-28 01:34:48 +03:00
|
|
|
- test_tick
|
|
|
|
|
|
|
|
Make commit and tag names consistent by setting the author and
|
|
|
|
committer times to defined stated. Subsequent calls will
|
|
|
|
advance the times by a fixed amount.
|
|
|
|
|
|
|
|
- test_commit <message> [<filename> [<contents>]]
|
|
|
|
|
|
|
|
Creates a commit with the given message, committing the given
|
|
|
|
file with the given contents (default for both is to reuse the
|
|
|
|
message string), and adds a tag (again reusing the message
|
|
|
|
string as name). Calls test_tick to make the SHA-1s
|
|
|
|
reproducible.
|
|
|
|
|
|
|
|
- test_merge <message> <commit-or-tag>
|
|
|
|
|
|
|
|
Merges the given rev using the given message. Like test_commit,
|
|
|
|
creates a tag and calls test_tick before committing.
|
2005-05-14 11:25:06 +04:00
|
|
|
|
|
|
|
Tips for Writing Tests
|
|
|
|
----------------------
|
|
|
|
|
|
|
|
As with any programming projects, existing programs are the best
|
|
|
|
source of the information. However, do _not_ emulate
|
|
|
|
t0000-basic.sh when writing your tests. The test is special in
|
|
|
|
that it tries to validate the very core of GIT. For example, it
|
|
|
|
knows that there will be 256 subdirectories under .git/objects/,
|
|
|
|
and it knows that the object ID of an empty tree is a certain
|
|
|
|
40-byte string. This is deliberately done so in t0000-basic.sh
|
|
|
|
because the things the very basic core test tries to achieve is
|
|
|
|
to serve as a basis for people who are changing the GIT internal
|
|
|
|
drastically. For these people, after making certain changes,
|
|
|
|
not seeing failures from the basic test _is_ a failure. And
|
|
|
|
such drastic changes to the core GIT that even changes these
|
|
|
|
otherwise supposedly stable object IDs should be accompanied by
|
|
|
|
an update to t0000-basic.sh.
|
|
|
|
|
|
|
|
However, other tests that simply rely on basic parts of the core
|
|
|
|
GIT working properly should not have that level of intimate
|
|
|
|
knowledge of the core GIT internals. If all the test scripts
|
|
|
|
hardcoded the object IDs like t0000-basic.sh does, that defeats
|
|
|
|
the purpose of t0000-basic.sh, which is to isolate that level of
|
|
|
|
validation in one place. Your test also ends up needing
|
|
|
|
updating when such a change to the internal happens, so do _not_
|
|
|
|
do it and leave the low level of validation to t0000-basic.sh.
|