git/t/README

328 строки
11 KiB
Plaintext
Исходник Обычный вид История

Core GIT Tests
==============
This directory holds many test scripts for core GIT tools. The
first part of this short document describes how to run the tests
and read their output.
When fixing the tools or adding enhancements, you are strongly
encouraged to add tests in this directory to cover what you are
trying to fix or enhance. The later part of this short document
describes how your test scripts should be organized.
Running Tests
-------------
The easiest way to run tests is to say "make". This runs all
the tests.
*** t0000-basic.sh ***
test-lib: Adjust output to be valid TAP format TAP, the Test Anything Protocol, is a simple text-based interface between testing modules in a test harness. test-lib.sh's output was already very close to being valid TAP. This change brings it all the way there. Before: $ ./t0005-signals.sh * ok 1: sigchain works * passed all 1 test(s) And after: $ ./t0005-signals.sh ok 1 - sigchain works # passed all 1 test(s) 1..1 The advantage of using TAP is that any program that reads the format (a "test harness") can run the tests. The most popular of these is the prove(1) utility that comes with Perl. It can run tests in parallel, display colored output, format the output to console, file, HTML etc., and much more. An example: $ prove ./t0005-signals.sh ./t0005-signals.sh .. ok All tests successful. Files=1, Tests=1, 0 wallclock secs ( 0.03 usr 0.00 sys + 0.01 cusr 0.02 csys = 0.06 CPU) Result: PASS prove(1) gives you human readable output without being too verbose. Running the test suite in parallel with `make test -j15` produces a flood of text. Running them with `prove -j 15 ./t[0-9]*.sh` makes it easy to follow what's going on. All this patch does is re-arrange the output a bit so that it conforms with the TAP spec, everything that the test suite did before continues to work. That includes aggregating results in t/test-results/, the --verbose, --debug and other options for tests, and the test color output. TAP harnesses ignore everything that they don't know about, so running the tests with --verbose works: $ prove ./t0005-signals.sh :: --verbose --debug ./t0005-signals.sh .. Terminated ./t0005-signals.sh .. ok All tests successful. Files=1, Tests=1, 0 wallclock secs ( 0.02 usr 0.01 sys + 0.01 cusr 0.01 csys = 0.05 CPU) Result: PASS Just supply the -v option to prove itself to get all the verbose output that it suppresses: $ prove -v ./t0005-signals.sh :: --verbose --debug ./t0005-signals.sh .. Initialized empty Git repository in /home/avar/g/git/t/trash directory.t0005-signals/.git/ expecting success: test-sigchain >actual case "$?" in 143) true ;; # POSIX w/ SIGTERM=15 3) true ;; # Windows *) false ;; esac && test_cmp expect actual Terminated ok 1 - sigchain works # passed all 1 test(s) 1..1 ok All tests successful. Files=1, Tests=1, 0 wallclock secs ( 0.02 usr 0.00 sys + 0.01 cusr 0.01 csys = 0.04 CPU) Result: PASS As a further example, consider this test script that uses a lot of test-lib.sh features by Jakub Narebski: #!/bin/sh test_description='this is a sample test. This test is here to see various test outputs.' . ./test-lib.sh say 'diagnostic message' test_expect_success 'true test' 'true' test_expect_success 'false test' 'false' test_expect_failure 'true test (todo)' 'true' test_expect_failure 'false test (todo)' 'false' test_debug 'echo "debug message"' test_done The output of that was previously: * diagnostic message # yellow * ok 1: true test * FAIL 2: false test # bold red false * FIXED 3: true test (todo) * still broken 4: false test (todo) # bold green * fixed 1 known breakage(s) # green * still have 1 known breakage(s) # bold red * failed 1 among remaining 3 test(s) # bold red But is now: diagnostic message # yellow ok 1 - true test not ok - 2 false test # bold red # false ok 3 - true test (todo) # TODO known breakage not ok 4 - false test (todo) # TODO known breakage # bold green # fixed 1 known breakage(s) # green # still have 1 known breakage(s) # bold red # failed 1 among remaining 3 test(s) # bold red 1..4 All the coloring is preserved when the test is run manually. Under prove(1) the test performs as expected, even with --debug and --verbose options: $ prove ./example.sh :: --debug --verbose ./example.sh .. Dubious, test returned 1 (wstat 256, 0x100) Failed 1/4 subtests (1 TODO test unexpectedly succeeded) Test Summary Report ------------------- ./example.sh (Wstat: 256 Tests: 4 Failed: 1) Failed test: 2 TODO passed: 3 Non-zero exit status: 1 Files=1, Tests=4, 0 wallclock secs ( 0.02 usr 0.00 sys + 0.00 cusr 0.01 csys = 0.03 CPU) Result: FAIL The TAP harness itself doesn't get confused by the color output, they aren't used by test-lib.sh stdout isn't open to a terminal (test -t 1). Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2010-06-25 01:52:12 +04:00
ok 1 - .git/objects should be empty after git init in an empty repo.
ok 2 - .git/objects should have 3 subdirectories.
ok 3 - success is reported like this
...
test-lib: Adjust output to be valid TAP format TAP, the Test Anything Protocol, is a simple text-based interface between testing modules in a test harness. test-lib.sh's output was already very close to being valid TAP. This change brings it all the way there. Before: $ ./t0005-signals.sh * ok 1: sigchain works * passed all 1 test(s) And after: $ ./t0005-signals.sh ok 1 - sigchain works # passed all 1 test(s) 1..1 The advantage of using TAP is that any program that reads the format (a "test harness") can run the tests. The most popular of these is the prove(1) utility that comes with Perl. It can run tests in parallel, display colored output, format the output to console, file, HTML etc., and much more. An example: $ prove ./t0005-signals.sh ./t0005-signals.sh .. ok All tests successful. Files=1, Tests=1, 0 wallclock secs ( 0.03 usr 0.00 sys + 0.01 cusr 0.02 csys = 0.06 CPU) Result: PASS prove(1) gives you human readable output without being too verbose. Running the test suite in parallel with `make test -j15` produces a flood of text. Running them with `prove -j 15 ./t[0-9]*.sh` makes it easy to follow what's going on. All this patch does is re-arrange the output a bit so that it conforms with the TAP spec, everything that the test suite did before continues to work. That includes aggregating results in t/test-results/, the --verbose, --debug and other options for tests, and the test color output. TAP harnesses ignore everything that they don't know about, so running the tests with --verbose works: $ prove ./t0005-signals.sh :: --verbose --debug ./t0005-signals.sh .. Terminated ./t0005-signals.sh .. ok All tests successful. Files=1, Tests=1, 0 wallclock secs ( 0.02 usr 0.01 sys + 0.01 cusr 0.01 csys = 0.05 CPU) Result: PASS Just supply the -v option to prove itself to get all the verbose output that it suppresses: $ prove -v ./t0005-signals.sh :: --verbose --debug ./t0005-signals.sh .. Initialized empty Git repository in /home/avar/g/git/t/trash directory.t0005-signals/.git/ expecting success: test-sigchain >actual case "$?" in 143) true ;; # POSIX w/ SIGTERM=15 3) true ;; # Windows *) false ;; esac && test_cmp expect actual Terminated ok 1 - sigchain works # passed all 1 test(s) 1..1 ok All tests successful. Files=1, Tests=1, 0 wallclock secs ( 0.02 usr 0.00 sys + 0.01 cusr 0.01 csys = 0.04 CPU) Result: PASS As a further example, consider this test script that uses a lot of test-lib.sh features by Jakub Narebski: #!/bin/sh test_description='this is a sample test. This test is here to see various test outputs.' . ./test-lib.sh say 'diagnostic message' test_expect_success 'true test' 'true' test_expect_success 'false test' 'false' test_expect_failure 'true test (todo)' 'true' test_expect_failure 'false test (todo)' 'false' test_debug 'echo "debug message"' test_done The output of that was previously: * diagnostic message # yellow * ok 1: true test * FAIL 2: false test # bold red false * FIXED 3: true test (todo) * still broken 4: false test (todo) # bold green * fixed 1 known breakage(s) # green * still have 1 known breakage(s) # bold red * failed 1 among remaining 3 test(s) # bold red But is now: diagnostic message # yellow ok 1 - true test not ok - 2 false test # bold red # false ok 3 - true test (todo) # TODO known breakage not ok 4 - false test (todo) # TODO known breakage # bold green # fixed 1 known breakage(s) # green # still have 1 known breakage(s) # bold red # failed 1 among remaining 3 test(s) # bold red 1..4 All the coloring is preserved when the test is run manually. Under prove(1) the test performs as expected, even with --debug and --verbose options: $ prove ./example.sh :: --debug --verbose ./example.sh .. Dubious, test returned 1 (wstat 256, 0x100) Failed 1/4 subtests (1 TODO test unexpectedly succeeded) Test Summary Report ------------------- ./example.sh (Wstat: 256 Tests: 4 Failed: 1) Failed test: 2 TODO passed: 3 Non-zero exit status: 1 Files=1, Tests=4, 0 wallclock secs ( 0.02 usr 0.00 sys + 0.00 cusr 0.01 csys = 0.03 CPU) Result: FAIL The TAP harness itself doesn't get confused by the color output, they aren't used by test-lib.sh stdout isn't open to a terminal (test -t 1). Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2010-06-25 01:52:12 +04:00
ok 43 - very long name in the index handled sanely
# fixed 1 known breakage(s)
# still have 1 known breakage(s)
# passed all remaining 42 test(s)
1..43
*** t0001-init.sh ***
ok 1 - plain
ok 2 - plain with GIT_WORK_TREE
ok 3 - plain bare
Since the tests all output TAP (see http://testanything.org) they can
be run with any TAP harness. Here's an example of paralell testing
powered by a recent version of prove(1):
$ prove --timer --jobs 15 ./t[0-9]*.sh
[19:17:33] ./t0005-signals.sh ................................... ok 36 ms
[19:17:33] ./t0022-crlf-rename.sh ............................... ok 69 ms
[19:17:33] ./t0024-crlf-archive.sh .............................. ok 154 ms
[19:17:33] ./t0004-unwritable.sh ................................ ok 289 ms
[19:17:33] ./t0002-gitfile.sh ................................... ok 480 ms
===( 102;0 25/? 6/? 5/? 16/? 1/? 4/? 2/? 1/? 3/? 1... )===
prove and other harnesses come with a lot of useful options. The
--state option in particular is very useful:
# Repeat until no more failures
$ prove -j 15 --state=failed,save ./t[0-9]*.sh
test-lib: Adjust output to be valid TAP format TAP, the Test Anything Protocol, is a simple text-based interface between testing modules in a test harness. test-lib.sh's output was already very close to being valid TAP. This change brings it all the way there. Before: $ ./t0005-signals.sh * ok 1: sigchain works * passed all 1 test(s) And after: $ ./t0005-signals.sh ok 1 - sigchain works # passed all 1 test(s) 1..1 The advantage of using TAP is that any program that reads the format (a "test harness") can run the tests. The most popular of these is the prove(1) utility that comes with Perl. It can run tests in parallel, display colored output, format the output to console, file, HTML etc., and much more. An example: $ prove ./t0005-signals.sh ./t0005-signals.sh .. ok All tests successful. Files=1, Tests=1, 0 wallclock secs ( 0.03 usr 0.00 sys + 0.01 cusr 0.02 csys = 0.06 CPU) Result: PASS prove(1) gives you human readable output without being too verbose. Running the test suite in parallel with `make test -j15` produces a flood of text. Running them with `prove -j 15 ./t[0-9]*.sh` makes it easy to follow what's going on. All this patch does is re-arrange the output a bit so that it conforms with the TAP spec, everything that the test suite did before continues to work. That includes aggregating results in t/test-results/, the --verbose, --debug and other options for tests, and the test color output. TAP harnesses ignore everything that they don't know about, so running the tests with --verbose works: $ prove ./t0005-signals.sh :: --verbose --debug ./t0005-signals.sh .. Terminated ./t0005-signals.sh .. ok All tests successful. Files=1, Tests=1, 0 wallclock secs ( 0.02 usr 0.01 sys + 0.01 cusr 0.01 csys = 0.05 CPU) Result: PASS Just supply the -v option to prove itself to get all the verbose output that it suppresses: $ prove -v ./t0005-signals.sh :: --verbose --debug ./t0005-signals.sh .. Initialized empty Git repository in /home/avar/g/git/t/trash directory.t0005-signals/.git/ expecting success: test-sigchain >actual case "$?" in 143) true ;; # POSIX w/ SIGTERM=15 3) true ;; # Windows *) false ;; esac && test_cmp expect actual Terminated ok 1 - sigchain works # passed all 1 test(s) 1..1 ok All tests successful. Files=1, Tests=1, 0 wallclock secs ( 0.02 usr 0.00 sys + 0.01 cusr 0.01 csys = 0.04 CPU) Result: PASS As a further example, consider this test script that uses a lot of test-lib.sh features by Jakub Narebski: #!/bin/sh test_description='this is a sample test. This test is here to see various test outputs.' . ./test-lib.sh say 'diagnostic message' test_expect_success 'true test' 'true' test_expect_success 'false test' 'false' test_expect_failure 'true test (todo)' 'true' test_expect_failure 'false test (todo)' 'false' test_debug 'echo "debug message"' test_done The output of that was previously: * diagnostic message # yellow * ok 1: true test * FAIL 2: false test # bold red false * FIXED 3: true test (todo) * still broken 4: false test (todo) # bold green * fixed 1 known breakage(s) # green * still have 1 known breakage(s) # bold red * failed 1 among remaining 3 test(s) # bold red But is now: diagnostic message # yellow ok 1 - true test not ok - 2 false test # bold red # false ok 3 - true test (todo) # TODO known breakage not ok 4 - false test (todo) # TODO known breakage # bold green # fixed 1 known breakage(s) # green # still have 1 known breakage(s) # bold red # failed 1 among remaining 3 test(s) # bold red 1..4 All the coloring is preserved when the test is run manually. Under prove(1) the test performs as expected, even with --debug and --verbose options: $ prove ./example.sh :: --debug --verbose ./example.sh .. Dubious, test returned 1 (wstat 256, 0x100) Failed 1/4 subtests (1 TODO test unexpectedly succeeded) Test Summary Report ------------------- ./example.sh (Wstat: 256 Tests: 4 Failed: 1) Failed test: 2 TODO passed: 3 Non-zero exit status: 1 Files=1, Tests=4, 0 wallclock secs ( 0.02 usr 0.00 sys + 0.00 cusr 0.01 csys = 0.03 CPU) Result: FAIL The TAP harness itself doesn't get confused by the color output, they aren't used by test-lib.sh stdout isn't open to a terminal (test -t 1). Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2010-06-25 01:52:12 +04:00
You can also run each test individually from command line, like this:
test-lib: Adjust output to be valid TAP format TAP, the Test Anything Protocol, is a simple text-based interface between testing modules in a test harness. test-lib.sh's output was already very close to being valid TAP. This change brings it all the way there. Before: $ ./t0005-signals.sh * ok 1: sigchain works * passed all 1 test(s) And after: $ ./t0005-signals.sh ok 1 - sigchain works # passed all 1 test(s) 1..1 The advantage of using TAP is that any program that reads the format (a "test harness") can run the tests. The most popular of these is the prove(1) utility that comes with Perl. It can run tests in parallel, display colored output, format the output to console, file, HTML etc., and much more. An example: $ prove ./t0005-signals.sh ./t0005-signals.sh .. ok All tests successful. Files=1, Tests=1, 0 wallclock secs ( 0.03 usr 0.00 sys + 0.01 cusr 0.02 csys = 0.06 CPU) Result: PASS prove(1) gives you human readable output without being too verbose. Running the test suite in parallel with `make test -j15` produces a flood of text. Running them with `prove -j 15 ./t[0-9]*.sh` makes it easy to follow what's going on. All this patch does is re-arrange the output a bit so that it conforms with the TAP spec, everything that the test suite did before continues to work. That includes aggregating results in t/test-results/, the --verbose, --debug and other options for tests, and the test color output. TAP harnesses ignore everything that they don't know about, so running the tests with --verbose works: $ prove ./t0005-signals.sh :: --verbose --debug ./t0005-signals.sh .. Terminated ./t0005-signals.sh .. ok All tests successful. Files=1, Tests=1, 0 wallclock secs ( 0.02 usr 0.01 sys + 0.01 cusr 0.01 csys = 0.05 CPU) Result: PASS Just supply the -v option to prove itself to get all the verbose output that it suppresses: $ prove -v ./t0005-signals.sh :: --verbose --debug ./t0005-signals.sh .. Initialized empty Git repository in /home/avar/g/git/t/trash directory.t0005-signals/.git/ expecting success: test-sigchain >actual case "$?" in 143) true ;; # POSIX w/ SIGTERM=15 3) true ;; # Windows *) false ;; esac && test_cmp expect actual Terminated ok 1 - sigchain works # passed all 1 test(s) 1..1 ok All tests successful. Files=1, Tests=1, 0 wallclock secs ( 0.02 usr 0.00 sys + 0.01 cusr 0.01 csys = 0.04 CPU) Result: PASS As a further example, consider this test script that uses a lot of test-lib.sh features by Jakub Narebski: #!/bin/sh test_description='this is a sample test. This test is here to see various test outputs.' . ./test-lib.sh say 'diagnostic message' test_expect_success 'true test' 'true' test_expect_success 'false test' 'false' test_expect_failure 'true test (todo)' 'true' test_expect_failure 'false test (todo)' 'false' test_debug 'echo "debug message"' test_done The output of that was previously: * diagnostic message # yellow * ok 1: true test * FAIL 2: false test # bold red false * FIXED 3: true test (todo) * still broken 4: false test (todo) # bold green * fixed 1 known breakage(s) # green * still have 1 known breakage(s) # bold red * failed 1 among remaining 3 test(s) # bold red But is now: diagnostic message # yellow ok 1 - true test not ok - 2 false test # bold red # false ok 3 - true test (todo) # TODO known breakage not ok 4 - false test (todo) # TODO known breakage # bold green # fixed 1 known breakage(s) # green # still have 1 known breakage(s) # bold red # failed 1 among remaining 3 test(s) # bold red 1..4 All the coloring is preserved when the test is run manually. Under prove(1) the test performs as expected, even with --debug and --verbose options: $ prove ./example.sh :: --debug --verbose ./example.sh .. Dubious, test returned 1 (wstat 256, 0x100) Failed 1/4 subtests (1 TODO test unexpectedly succeeded) Test Summary Report ------------------- ./example.sh (Wstat: 256 Tests: 4 Failed: 1) Failed test: 2 TODO passed: 3 Non-zero exit status: 1 Files=1, Tests=4, 0 wallclock secs ( 0.02 usr 0.00 sys + 0.00 cusr 0.01 csys = 0.03 CPU) Result: FAIL The TAP harness itself doesn't get confused by the color output, they aren't used by test-lib.sh stdout isn't open to a terminal (test -t 1). Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2010-06-25 01:52:12 +04:00
$ sh ./t3010-ls-files-killed-modified.sh
ok 1 - git update-index --add to add various paths.
ok 2 - git ls-files -k to show killed files.
ok 3 - validate git ls-files -k output.
ok 4 - git ls-files -m to show modified files.
ok 5 - validate git ls-files -m output.
# passed all 5 test(s)
1..5
You can pass --verbose (or -v), --debug (or -d), and --immediate
Add valgrind support in test scripts This patch adds the ability to use valgrind's memcheck tool to diagnose memory problems in Git while running the test scripts. It requires valgrind 3.4.0 or newer. It works by creating symlinks to a valgrind script, which have the same name as our Git binaries, and then putting that directory in front of the test script's PATH as well as set GIT_EXEC_PATH to that directory. Git scripts are symlinked from that directory directly. That way, Git binaries called by Git scripts are valgrinded, too. Valgrind can be used by specifying "GIT_TEST_OPTS=--valgrind" in the make invocation. Any invocation of git that finds any errors under valgrind will exit with failure code 126. Any valgrind output will go to the usual stderr channel for tests (i.e., /dev/null, unless -v has been specified). If you need to pass options to valgrind -- you might want to run another tool than memcheck, for example -- you can set the environment variable GIT_VALGRIND_OPTIONS. A few default suppressions are included, since libz seems to trigger quite a few false positives. We'll assume that libz works and that we can ignore any errors which are reported there. Note: it is safe to run the valgrind tests in parallel, as the links in t/valgrind/bin/ are created using proper locking. Initial patch and all the hard work by Jeff King. Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-02-04 02:25:59 +03:00
(or -i) command line argument to the test, or by setting GIT_TEST_OPTS
appropriately before running "make".
--verbose::
This makes the test more verbose. Specifically, the
command being run and their output if any are also
output.
--debug::
This may help the person who is developing a new test.
It causes the command defined with test_debug to run.
--immediate::
This causes the test to immediately exit upon the first
failed test.
--long-tests::
This causes additional long-running tests to be run (where
available), for more exhaustive testing.
Add valgrind support in test scripts This patch adds the ability to use valgrind's memcheck tool to diagnose memory problems in Git while running the test scripts. It requires valgrind 3.4.0 or newer. It works by creating symlinks to a valgrind script, which have the same name as our Git binaries, and then putting that directory in front of the test script's PATH as well as set GIT_EXEC_PATH to that directory. Git scripts are symlinked from that directory directly. That way, Git binaries called by Git scripts are valgrinded, too. Valgrind can be used by specifying "GIT_TEST_OPTS=--valgrind" in the make invocation. Any invocation of git that finds any errors under valgrind will exit with failure code 126. Any valgrind output will go to the usual stderr channel for tests (i.e., /dev/null, unless -v has been specified). If you need to pass options to valgrind -- you might want to run another tool than memcheck, for example -- you can set the environment variable GIT_VALGRIND_OPTIONS. A few default suppressions are included, since libz seems to trigger quite a few false positives. We'll assume that libz works and that we can ignore any errors which are reported there. Note: it is safe to run the valgrind tests in parallel, as the links in t/valgrind/bin/ are created using proper locking. Initial patch and all the hard work by Jeff King. Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-02-04 02:25:59 +03:00
--valgrind::
Execute all Git binaries with valgrind and exit with status
126 on errors (just like regular tests, this will only stop
the test script when running under -i). Valgrind errors
go to stderr, so you might want to pass the -v option, too.
Since it makes no sense to run the tests with --valgrind and
not see any output, this option implies --verbose. For
convenience, it also implies --tee.
--tee::
In addition to printing the test output to the terminal,
write it to files named 't/test-results/$TEST_NAME.out'.
As the names depend on the tests' file names, it is safe to
run the tests with this option in parallel.
--with-dashes::
By default tests are run without dashed forms of
commands (like git-commit) in the PATH (it only uses
wrappers from ../bin-wrappers). Use this option to include
the build directory (..) in the PATH, which contains all
the dashed forms of commands. This option is currently
implied by other options like --valgrind and
GIT_TEST_INSTALLED.
--root=<directory>::
Create "trash" directories used to store all temporary data during
testing under <directory>, instead of the t/ directory.
Using this option with a RAM-based filesystem (such as tmpfs)
can massively speed up the test suite.
You can also set the GIT_TEST_INSTALLED environment variable to
the bindir of an existing git installation to test that installation.
You still need to have built this git sandbox, from which various
test-* support programs, templates, and perl libraries are used.
If your installed git is incomplete, it will silently test parts of
your built version instead.
When using GIT_TEST_INSTALLED, you can also set GIT_TEST_EXEC_PATH to
override the location of the dashed-form subcommands (what
GIT_EXEC_PATH would be used for during normal operation).
GIT_TEST_EXEC_PATH defaults to `$GIT_TEST_INSTALLED/git --exec-path`.
Skipping Tests
--------------
In some environments, certain tests have no way of succeeding
due to platform limitation, such as lack of 'unzip' program, or
filesystem that do not allow arbitrary sequence of non-NUL bytes
as pathnames.
You should be able to say something like
$ GIT_SKIP_TESTS=t9200.8 sh ./t9200-git-cvsexport-commit.sh
and even:
$ GIT_SKIP_TESTS='t[0-4]??? t91?? t9200.8' make
to omit such tests. The value of the environment variable is a
SP separated list of patterns that tells which tests to skip,
and either can match the "t[0-9]{4}" part to skip the whole
test, or t[0-9]{4} followed by ".$number" to say which
particular test to skip.
Note that some tests in the existing test suite rely on previous
test item, so you cannot arbitrarily disable one and expect the
remainder of test to check what the test originally was intended
to check.
Naming Tests
------------
The test files are named as:
tNNNN-commandname-details.sh
where N is a decimal digit.
First digit tells the family:
0 - the absolute basics and global stuff
1 - the basic commands concerning database
2 - the basic commands concerning the working tree
3 - the other basic commands (e.g. ls-files)
4 - the diff commands
5 - the pull and exporting commands
6 - the revision tree commands (even e.g. merge-base)
7 - the porcelainish commands concerning the working tree
8 - the porcelainish commands concerning forensics
9 - the git tools
Second digit tells the particular command we are testing.
Third digit (optionally) tells the particular switch or group of switches
we are testing.
If you create files under t/ directory (i.e. here) that is not
the top-level test script, never name the file to match the above
pattern. The Makefile here considers all such files as the
top-level test script and tries to run all of them. A care is
especially needed if you are creating a common test library
file, similar to test-lib.sh, because such a library file may
not be suitable for standalone execution.
Writing Tests
-------------
The test script is written as a shell script. It should start
with the standard "#!/bin/sh" with copyright notices, and an
assignment to variable 'test_description', like this:
#!/bin/sh
#
# Copyright (c) 2005 Junio C Hamano
#
test_description='xxx test (option --frotz)
This test registers the following structure in the cache
and tries to run git-ls-files with option --frotz.'
Source 'test-lib.sh'
--------------------
After assigning test_description, the test script should source
test-lib.sh like this:
. ./test-lib.sh
This test harness library does the following things:
- If the script is invoked with command line argument --help
(or -h), it shows the test_description and exits.
- Creates an empty test directory with an empty .git/objects database
and chdir(2) into it. This directory is 't/trash
directory.$test_name_without_dotsh', with t/ subject to change by
the --root option documented above.
- Defines standard test helper functions for your scripts to
use. These functions are designed to make all scripts behave
consistently when command line arguments --verbose (or -v),
--debug (or -d), and --immediate (or -i) is given.
End with test_done
------------------
Your script will be a sequence of tests, using helper functions
from the test harness library. At the end of the script, call
'test_done'.
Test harness library
--------------------
There are a handful helper functions defined in the test harness
library for your script to use.
- test_expect_success <message> <script>
This takes two strings as parameter, and evaluates the
<script>. If it yields success, test is considered
successful. <message> should state what it is testing.
Example:
test_expect_success \
'git-write-tree should be able to write an empty tree.' \
'tree=$(git-write-tree)'
- test_expect_failure <message> <script>
Sane use of test_expect_failure Originally, test_expect_failure was designed to be the opposite of test_expect_success, but this was a bad decision. Most tests run a series of commands that leads to the single command that needs to be tested, like this: test_expect_{success,failure} 'test title' ' setup1 && setup2 && setup3 && what is to be tested ' And expecting a failure exit from the whole sequence misses the point of writing tests. Your setup$N that are supposed to succeed may have failed without even reaching what you are trying to test. The only valid use of test_expect_failure is to check a trivial single command that is expected to fail, which is a minority in tests of Porcelain-ish commands. This large-ish patch rewrites all uses of test_expect_failure to use test_expect_success and rewrites the condition of what is tested, like this: test_expect_success 'test title' ' setup1 && setup2 && setup3 && ! this command should fail ' test_expect_failure is redefined to serve as a reminder that that test *should* succeed but due to a known breakage in git it currently does not pass. So if git-foo command should create a file 'bar' but you discovered a bug that it doesn't, you can write a test like this: test_expect_failure 'git-foo should create bar' ' rm -f bar && git foo && test -f bar ' This construct acts similar to test_expect_success, but instead of reporting "ok/FAIL" like test_expect_success does, the outcome is reported as "FIXED/still broken". Signed-off-by: Junio C Hamano <gitster@pobox.com>
2008-02-01 12:50:53 +03:00
This is NOT the opposite of test_expect_success, but is used
to mark a test that demonstrates a known breakage. Unlike
the usual test_expect_success tests, which say "ok" on
success and "FAIL" on failure, this will say "FIXED" on
success and "still broken" on failure. Failures from these
tests won't cause -i (immediate) to stop.
- test_debug <script>
This takes a single argument, <script>, and evaluates it only
when the test script is started with --debug command line
argument. This is primarily meant for use during the
development of a new test script.
- test_done
Your test script must have test_done at the end. Its purpose
is to summarize successes and failures in the test script and
exit with an appropriate error code.
- test_tick
Make commit and tag names consistent by setting the author and
committer times to defined stated. Subsequent calls will
advance the times by a fixed amount.
- test_commit <message> [<filename> [<contents>]]
Creates a commit with the given message, committing the given
file with the given contents (default for both is to reuse the
message string), and adds a tag (again reusing the message
string as name). Calls test_tick to make the SHA-1s
reproducible.
- test_merge <message> <commit-or-tag>
Merges the given rev using the given message. Like test_commit,
creates a tag and calls test_tick before committing.
Tips for Writing Tests
----------------------
As with any programming projects, existing programs are the best
source of the information. However, do _not_ emulate
t0000-basic.sh when writing your tests. The test is special in
that it tries to validate the very core of GIT. For example, it
knows that there will be 256 subdirectories under .git/objects/,
and it knows that the object ID of an empty tree is a certain
40-byte string. This is deliberately done so in t0000-basic.sh
because the things the very basic core test tries to achieve is
to serve as a basis for people who are changing the GIT internal
drastically. For these people, after making certain changes,
not seeing failures from the basic test _is_ a failure. And
such drastic changes to the core GIT that even changes these
otherwise supposedly stable object IDs should be accompanied by
an update to t0000-basic.sh.
However, other tests that simply rely on basic parts of the core
GIT working properly should not have that level of intimate
knowledge of the core GIT internals. If all the test scripts
hardcoded the object IDs like t0000-basic.sh does, that defeats
the purpose of t0000-basic.sh, which is to isolate that level of
validation in one place. Your test also ends up needing
updating when such a change to the internal happens, so do _not_
do it and leave the low level of validation to t0000-basic.sh.