зеркало из https://github.com/microsoft/git.git
block-sha1: re-use the temporary array as we calculate the SHA1
The mozilla-SHA1 code did this 80-word array for the 80 iterations. But the SHA1 state is really just 512 bits, and you can actually keep it in a kind of "circular queue" of just 16 words instead. This requires us to do the xor updates as we go along (rather than as a pre-phase), but that's really what we want to do anyway. This gets me really close to the OpenSSL performance on my Nehalem. Look ma, all C code (ok, there's the rol/ror hack, but that one doesn't strictly even matter on my Nehalem, it's just a local optimization). Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Junio C Hamano <gitster@pobox.com>
This commit is contained in:
Родитель
139e3456ec
Коммит
7b5075fcfb
|
@ -96,9 +96,8 @@ void blk_SHA1_Final(unsigned char hashout[20], blk_SHA_CTX *ctx)
|
|||
|
||||
static void blk_SHA1Block(blk_SHA_CTX *ctx, const unsigned int *data)
|
||||
{
|
||||
int t;
|
||||
unsigned int A,B,C,D,E,TEMP;
|
||||
unsigned int W[80];
|
||||
unsigned int array[16];
|
||||
|
||||
A = ctx->H[0];
|
||||
B = ctx->H[1];
|
||||
|
@ -107,8 +106,8 @@ static void blk_SHA1Block(blk_SHA_CTX *ctx, const unsigned int *data)
|
|||
E = ctx->H[4];
|
||||
|
||||
#define T_0_15(t) \
|
||||
TEMP = htonl(data[t]); W[t] = TEMP; \
|
||||
TEMP += SHA_ROL(A,5) + (((C^D)&B)^D) + E + 0x5a827999; \
|
||||
TEMP = htonl(data[t]); array[t] = TEMP; \
|
||||
TEMP += SHA_ROL(A,5) + (((C^D)&B)^D) + E + 0x5a827999; \
|
||||
E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP; \
|
||||
|
||||
T_0_15( 0); T_0_15( 1); T_0_15( 2); T_0_15( 3); T_0_15( 4);
|
||||
|
@ -116,18 +115,21 @@ static void blk_SHA1Block(blk_SHA_CTX *ctx, const unsigned int *data)
|
|||
T_0_15(10); T_0_15(11); T_0_15(12); T_0_15(13); T_0_15(14);
|
||||
T_0_15(15);
|
||||
|
||||
/* Unroll it? */
|
||||
for (t = 16; t <= 79; t++)
|
||||
W[t] = SHA_ROL(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16], 1);
|
||||
/* This "rolls" over the 512-bit array */
|
||||
#define W(x) (array[(x)&15])
|
||||
#define SHA_XOR(t) \
|
||||
TEMP = SHA_ROL(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1); W(t) = TEMP;
|
||||
|
||||
#define T_16_19(t) \
|
||||
TEMP = SHA_ROL(A,5) + (((C^D)&B)^D) + E + W[t] + 0x5a827999; \
|
||||
E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP;
|
||||
SHA_XOR(t); \
|
||||
TEMP += SHA_ROL(A,5) + (((C^D)&B)^D) + E + 0x5a827999; \
|
||||
E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP; \
|
||||
|
||||
T_16_19(16); T_16_19(17); T_16_19(18); T_16_19(19);
|
||||
|
||||
#define T_20_39(t) \
|
||||
TEMP = SHA_ROL(A,5) + (B^C^D) + E + W[t] + 0x6ed9eba1; \
|
||||
SHA_XOR(t); \
|
||||
TEMP += SHA_ROL(A,5) + (B^C^D) + E + 0x6ed9eba1; \
|
||||
E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP;
|
||||
|
||||
T_20_39(20); T_20_39(21); T_20_39(22); T_20_39(23); T_20_39(24);
|
||||
|
@ -136,7 +138,8 @@ static void blk_SHA1Block(blk_SHA_CTX *ctx, const unsigned int *data)
|
|||
T_20_39(35); T_20_39(36); T_20_39(37); T_20_39(38); T_20_39(39);
|
||||
|
||||
#define T_40_59(t) \
|
||||
TEMP = SHA_ROL(A,5) + ((B&C)|(D&(B|C))) + E + W[t] + 0x8f1bbcdc; \
|
||||
SHA_XOR(t); \
|
||||
TEMP += SHA_ROL(A,5) + ((B&C)|(D&(B|C))) + E + 0x8f1bbcdc; \
|
||||
E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP;
|
||||
|
||||
T_40_59(40); T_40_59(41); T_40_59(42); T_40_59(43); T_40_59(44);
|
||||
|
@ -145,7 +148,8 @@ static void blk_SHA1Block(blk_SHA_CTX *ctx, const unsigned int *data)
|
|||
T_40_59(55); T_40_59(56); T_40_59(57); T_40_59(58); T_40_59(59);
|
||||
|
||||
#define T_60_79(t) \
|
||||
TEMP = SHA_ROL(A,5) + (B^C^D) + E + W[t] + 0xca62c1d6; \
|
||||
SHA_XOR(t); \
|
||||
TEMP += SHA_ROL(A,5) + (B^C^D) + E + 0xca62c1d6; \
|
||||
E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP;
|
||||
|
||||
T_60_79(60); T_60_79(61); T_60_79(62); T_60_79(63); T_60_79(64);
|
||||
|
|
Загрузка…
Ссылка в новой задаче