block-sha1: re-use the temporary array as we calculate the SHA1

The mozilla-SHA1 code did this 80-word array for the 80 iterations.  But
the SHA1 state is really just 512 bits, and you can actually keep it in
a kind of "circular queue" of just 16 words instead.

This requires us to do the xor updates as we go along (rather than as a
pre-phase), but that's really what we want to do anyway.

This gets me really close to the OpenSSL performance on my Nehalem.
Look ma, all C code (ok, there's the rol/ror hack, but that one doesn't
strictly even matter on my Nehalem, it's just a local optimization).

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
This commit is contained in:
Linus Torvalds 2009-08-05 20:49:41 -07:00 коммит произвёл Junio C Hamano
Родитель 139e3456ec
Коммит 7b5075fcfb
1 изменённых файлов: 16 добавлений и 12 удалений

Просмотреть файл

@ -96,9 +96,8 @@ void blk_SHA1_Final(unsigned char hashout[20], blk_SHA_CTX *ctx)
static void blk_SHA1Block(blk_SHA_CTX *ctx, const unsigned int *data)
{
int t;
unsigned int A,B,C,D,E,TEMP;
unsigned int W[80];
unsigned int array[16];
A = ctx->H[0];
B = ctx->H[1];
@ -107,8 +106,8 @@ static void blk_SHA1Block(blk_SHA_CTX *ctx, const unsigned int *data)
E = ctx->H[4];
#define T_0_15(t) \
TEMP = htonl(data[t]); W[t] = TEMP; \
TEMP += SHA_ROL(A,5) + (((C^D)&B)^D) + E + 0x5a827999; \
TEMP = htonl(data[t]); array[t] = TEMP; \
TEMP += SHA_ROL(A,5) + (((C^D)&B)^D) + E + 0x5a827999; \
E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP; \
T_0_15( 0); T_0_15( 1); T_0_15( 2); T_0_15( 3); T_0_15( 4);
@ -116,18 +115,21 @@ static void blk_SHA1Block(blk_SHA_CTX *ctx, const unsigned int *data)
T_0_15(10); T_0_15(11); T_0_15(12); T_0_15(13); T_0_15(14);
T_0_15(15);
/* Unroll it? */
for (t = 16; t <= 79; t++)
W[t] = SHA_ROL(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16], 1);
/* This "rolls" over the 512-bit array */
#define W(x) (array[(x)&15])
#define SHA_XOR(t) \
TEMP = SHA_ROL(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1); W(t) = TEMP;
#define T_16_19(t) \
TEMP = SHA_ROL(A,5) + (((C^D)&B)^D) + E + W[t] + 0x5a827999; \
E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP;
SHA_XOR(t); \
TEMP += SHA_ROL(A,5) + (((C^D)&B)^D) + E + 0x5a827999; \
E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP; \
T_16_19(16); T_16_19(17); T_16_19(18); T_16_19(19);
#define T_20_39(t) \
TEMP = SHA_ROL(A,5) + (B^C^D) + E + W[t] + 0x6ed9eba1; \
SHA_XOR(t); \
TEMP += SHA_ROL(A,5) + (B^C^D) + E + 0x6ed9eba1; \
E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP;
T_20_39(20); T_20_39(21); T_20_39(22); T_20_39(23); T_20_39(24);
@ -136,7 +138,8 @@ static void blk_SHA1Block(blk_SHA_CTX *ctx, const unsigned int *data)
T_20_39(35); T_20_39(36); T_20_39(37); T_20_39(38); T_20_39(39);
#define T_40_59(t) \
TEMP = SHA_ROL(A,5) + ((B&C)|(D&(B|C))) + E + W[t] + 0x8f1bbcdc; \
SHA_XOR(t); \
TEMP += SHA_ROL(A,5) + ((B&C)|(D&(B|C))) + E + 0x8f1bbcdc; \
E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP;
T_40_59(40); T_40_59(41); T_40_59(42); T_40_59(43); T_40_59(44);
@ -145,7 +148,8 @@ static void blk_SHA1Block(blk_SHA_CTX *ctx, const unsigned int *data)
T_40_59(55); T_40_59(56); T_40_59(57); T_40_59(58); T_40_59(59);
#define T_60_79(t) \
TEMP = SHA_ROL(A,5) + (B^C^D) + E + W[t] + 0xca62c1d6; \
SHA_XOR(t); \
TEMP += SHA_ROL(A,5) + (B^C^D) + E + 0xca62c1d6; \
E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP;
T_60_79(60); T_60_79(61); T_60_79(62); T_60_79(63); T_60_79(64);