зеркало из https://github.com/microsoft/git.git
Merge branch 'sb/hashmap-customize-comparison'
Update the hashmap API so that data to customize the behaviour of the comparison function can be specified at the time a hashmap is initialized. * sb/hashmap-customize-comparison: hashmap: migrate documentation from Documentation/technical into header patch-ids.c: use hashmap correctly hashmap.h: compare function has access to a data field
This commit is contained in:
Коммит
91f6922544
|
@ -1,309 +0,0 @@
|
||||||
hashmap API
|
|
||||||
===========
|
|
||||||
|
|
||||||
The hashmap API is a generic implementation of hash-based key-value mappings.
|
|
||||||
|
|
||||||
Data Structures
|
|
||||||
---------------
|
|
||||||
|
|
||||||
`struct hashmap`::
|
|
||||||
|
|
||||||
The hash table structure. Members can be used as follows, but should
|
|
||||||
not be modified directly:
|
|
||||||
+
|
|
||||||
The `size` member keeps track of the total number of entries (0 means the
|
|
||||||
hashmap is empty).
|
|
||||||
+
|
|
||||||
`tablesize` is the allocated size of the hash table. A non-0 value indicates
|
|
||||||
that the hashmap is initialized. It may also be useful for statistical purposes
|
|
||||||
(i.e. `size / tablesize` is the current load factor).
|
|
||||||
+
|
|
||||||
`cmpfn` stores the comparison function specified in `hashmap_init()`. In
|
|
||||||
advanced scenarios, it may be useful to change this, e.g. to switch between
|
|
||||||
case-sensitive and case-insensitive lookup.
|
|
||||||
+
|
|
||||||
When `disallow_rehash` is set, automatic rehashes are prevented during inserts
|
|
||||||
and deletes.
|
|
||||||
|
|
||||||
`struct hashmap_entry`::
|
|
||||||
|
|
||||||
An opaque structure representing an entry in the hash table, which must
|
|
||||||
be used as first member of user data structures. Ideally it should be
|
|
||||||
followed by an int-sized member to prevent unused memory on 64-bit
|
|
||||||
systems due to alignment.
|
|
||||||
+
|
|
||||||
The `hash` member is the entry's hash code and the `next` member points to the
|
|
||||||
next entry in case of collisions (i.e. if multiple entries map to the same
|
|
||||||
bucket).
|
|
||||||
|
|
||||||
`struct hashmap_iter`::
|
|
||||||
|
|
||||||
An iterator structure, to be used with hashmap_iter_* functions.
|
|
||||||
|
|
||||||
Types
|
|
||||||
-----
|
|
||||||
|
|
||||||
`int (*hashmap_cmp_fn)(const void *entry, const void *entry_or_key, const void *keydata)`::
|
|
||||||
|
|
||||||
User-supplied function to test two hashmap entries for equality. Shall
|
|
||||||
return 0 if the entries are equal.
|
|
||||||
+
|
|
||||||
This function is always called with non-NULL `entry` / `entry_or_key`
|
|
||||||
parameters that have the same hash code. When looking up an entry, the `key`
|
|
||||||
and `keydata` parameters to hashmap_get and hashmap_remove are always passed
|
|
||||||
as second and third argument, respectively. Otherwise, `keydata` is NULL.
|
|
||||||
|
|
||||||
Functions
|
|
||||||
---------
|
|
||||||
|
|
||||||
`unsigned int strhash(const char *buf)`::
|
|
||||||
`unsigned int strihash(const char *buf)`::
|
|
||||||
`unsigned int memhash(const void *buf, size_t len)`::
|
|
||||||
`unsigned int memihash(const void *buf, size_t len)`::
|
|
||||||
`unsigned int memihash_cont(unsigned int hash_seed, const void *buf, size_t len)`::
|
|
||||||
|
|
||||||
Ready-to-use hash functions for strings, using the FNV-1 algorithm (see
|
|
||||||
http://www.isthe.com/chongo/tech/comp/fnv).
|
|
||||||
+
|
|
||||||
`strhash` and `strihash` take 0-terminated strings, while `memhash` and
|
|
||||||
`memihash` operate on arbitrary-length memory.
|
|
||||||
+
|
|
||||||
`strihash` and `memihash` are case insensitive versions.
|
|
||||||
+
|
|
||||||
`memihash_cont` is a variant of `memihash` that allows a computation to be
|
|
||||||
continued with another chunk of data.
|
|
||||||
|
|
||||||
`unsigned int sha1hash(const unsigned char *sha1)`::
|
|
||||||
|
|
||||||
Converts a cryptographic hash (e.g. SHA-1) into an int-sized hash code
|
|
||||||
for use in hash tables. Cryptographic hashes are supposed to have
|
|
||||||
uniform distribution, so in contrast to `memhash()`, this just copies
|
|
||||||
the first `sizeof(int)` bytes without shuffling any bits. Note that
|
|
||||||
the results will be different on big-endian and little-endian
|
|
||||||
platforms, so they should not be stored or transferred over the net.
|
|
||||||
|
|
||||||
`void hashmap_init(struct hashmap *map, hashmap_cmp_fn equals_function, size_t initial_size)`::
|
|
||||||
|
|
||||||
Initializes a hashmap structure.
|
|
||||||
+
|
|
||||||
`map` is the hashmap to initialize.
|
|
||||||
+
|
|
||||||
The `equals_function` can be specified to compare two entries for equality.
|
|
||||||
If NULL, entries are considered equal if their hash codes are equal.
|
|
||||||
+
|
|
||||||
If the total number of entries is known in advance, the `initial_size`
|
|
||||||
parameter may be used to preallocate a sufficiently large table and thus
|
|
||||||
prevent expensive resizing. If 0, the table is dynamically resized.
|
|
||||||
|
|
||||||
`void hashmap_free(struct hashmap *map, int free_entries)`::
|
|
||||||
|
|
||||||
Frees a hashmap structure and allocated memory.
|
|
||||||
+
|
|
||||||
`map` is the hashmap to free.
|
|
||||||
+
|
|
||||||
If `free_entries` is true, each hashmap_entry in the map is freed as well
|
|
||||||
(using stdlib's free()).
|
|
||||||
|
|
||||||
`void hashmap_entry_init(void *entry, unsigned int hash)`::
|
|
||||||
|
|
||||||
Initializes a hashmap_entry structure.
|
|
||||||
+
|
|
||||||
`entry` points to the entry to initialize.
|
|
||||||
+
|
|
||||||
`hash` is the hash code of the entry.
|
|
||||||
+
|
|
||||||
The hashmap_entry structure does not hold references to external resources,
|
|
||||||
and it is safe to just discard it once you are done with it (i.e. if
|
|
||||||
your structure was allocated with xmalloc(), you can just free(3) it,
|
|
||||||
and if it is on stack, you can just let it go out of scope).
|
|
||||||
|
|
||||||
`void *hashmap_get(const struct hashmap *map, const void *key, const void *keydata)`::
|
|
||||||
|
|
||||||
Returns the hashmap entry for the specified key, or NULL if not found.
|
|
||||||
+
|
|
||||||
`map` is the hashmap structure.
|
|
||||||
+
|
|
||||||
`key` is a hashmap_entry structure (or user data structure that starts with
|
|
||||||
hashmap_entry) that has at least been initialized with the proper hash code
|
|
||||||
(via `hashmap_entry_init`).
|
|
||||||
+
|
|
||||||
If an entry with matching hash code is found, `key` and `keydata` are passed
|
|
||||||
to `hashmap_cmp_fn` to decide whether the entry matches the key.
|
|
||||||
|
|
||||||
`void *hashmap_get_from_hash(const struct hashmap *map, unsigned int hash, const void *keydata)`::
|
|
||||||
|
|
||||||
Returns the hashmap entry for the specified hash code and key data,
|
|
||||||
or NULL if not found.
|
|
||||||
+
|
|
||||||
`map` is the hashmap structure.
|
|
||||||
+
|
|
||||||
`hash` is the hash code of the entry to look up.
|
|
||||||
+
|
|
||||||
If an entry with matching hash code is found, `keydata` is passed to
|
|
||||||
`hashmap_cmp_fn` to decide whether the entry matches the key. The
|
|
||||||
`entry_or_key` parameter points to a bogus hashmap_entry structure that
|
|
||||||
should not be used in the comparison.
|
|
||||||
|
|
||||||
`void *hashmap_get_next(const struct hashmap *map, const void *entry)`::
|
|
||||||
|
|
||||||
Returns the next equal hashmap entry, or NULL if not found. This can be
|
|
||||||
used to iterate over duplicate entries (see `hashmap_add`).
|
|
||||||
+
|
|
||||||
`map` is the hashmap structure.
|
|
||||||
+
|
|
||||||
`entry` is the hashmap_entry to start the search from, obtained via a previous
|
|
||||||
call to `hashmap_get` or `hashmap_get_next`.
|
|
||||||
|
|
||||||
`void hashmap_add(struct hashmap *map, void *entry)`::
|
|
||||||
|
|
||||||
Adds a hashmap entry. This allows to add duplicate entries (i.e.
|
|
||||||
separate values with the same key according to hashmap_cmp_fn).
|
|
||||||
+
|
|
||||||
`map` is the hashmap structure.
|
|
||||||
+
|
|
||||||
`entry` is the entry to add.
|
|
||||||
|
|
||||||
`void *hashmap_put(struct hashmap *map, void *entry)`::
|
|
||||||
|
|
||||||
Adds or replaces a hashmap entry. If the hashmap contains duplicate
|
|
||||||
entries equal to the specified entry, only one of them will be replaced.
|
|
||||||
+
|
|
||||||
`map` is the hashmap structure.
|
|
||||||
+
|
|
||||||
`entry` is the entry to add or replace.
|
|
||||||
+
|
|
||||||
Returns the replaced entry, or NULL if not found (i.e. the entry was added).
|
|
||||||
|
|
||||||
`void *hashmap_remove(struct hashmap *map, const void *key, const void *keydata)`::
|
|
||||||
|
|
||||||
Removes a hashmap entry matching the specified key. If the hashmap
|
|
||||||
contains duplicate entries equal to the specified key, only one of
|
|
||||||
them will be removed.
|
|
||||||
+
|
|
||||||
`map` is the hashmap structure.
|
|
||||||
+
|
|
||||||
`key` is a hashmap_entry structure (or user data structure that starts with
|
|
||||||
hashmap_entry) that has at least been initialized with the proper hash code
|
|
||||||
(via `hashmap_entry_init`).
|
|
||||||
+
|
|
||||||
If an entry with matching hash code is found, `key` and `keydata` are
|
|
||||||
passed to `hashmap_cmp_fn` to decide whether the entry matches the key.
|
|
||||||
+
|
|
||||||
Returns the removed entry, or NULL if not found.
|
|
||||||
|
|
||||||
`void hashmap_disallow_rehash(struct hashmap *map, unsigned value)`::
|
|
||||||
|
|
||||||
Disallow/allow automatic rehashing of the hashmap during inserts
|
|
||||||
and deletes.
|
|
||||||
+
|
|
||||||
This is useful if the caller knows that the hashmap will be accessed
|
|
||||||
by multiple threads.
|
|
||||||
+
|
|
||||||
The caller is still responsible for any necessary locking; this simply
|
|
||||||
prevents unexpected rehashing. The caller is also responsible for properly
|
|
||||||
sizing the initial hashmap to ensure good performance.
|
|
||||||
+
|
|
||||||
A call to allow rehashing does not force a rehash; that might happen
|
|
||||||
with the next insert or delete.
|
|
||||||
|
|
||||||
`void hashmap_iter_init(struct hashmap *map, struct hashmap_iter *iter)`::
|
|
||||||
`void *hashmap_iter_next(struct hashmap_iter *iter)`::
|
|
||||||
`void *hashmap_iter_first(struct hashmap *map, struct hashmap_iter *iter)`::
|
|
||||||
|
|
||||||
Used to iterate over all entries of a hashmap. Note that it is
|
|
||||||
not safe to add or remove entries to the hashmap while
|
|
||||||
iterating.
|
|
||||||
+
|
|
||||||
`hashmap_iter_init` initializes a `hashmap_iter` structure.
|
|
||||||
+
|
|
||||||
`hashmap_iter_next` returns the next hashmap_entry, or NULL if there are no
|
|
||||||
more entries.
|
|
||||||
+
|
|
||||||
`hashmap_iter_first` is a combination of both (i.e. initializes the iterator
|
|
||||||
and returns the first entry, if any).
|
|
||||||
|
|
||||||
`const char *strintern(const char *string)`::
|
|
||||||
`const void *memintern(const void *data, size_t len)`::
|
|
||||||
|
|
||||||
Returns the unique, interned version of the specified string or data,
|
|
||||||
similar to the `String.intern` API in Java and .NET, respectively.
|
|
||||||
Interned strings remain valid for the entire lifetime of the process.
|
|
||||||
+
|
|
||||||
Can be used as `[x]strdup()` or `xmemdupz` replacement, except that interned
|
|
||||||
strings / data must not be modified or freed.
|
|
||||||
+
|
|
||||||
Interned strings are best used for short strings with high probability of
|
|
||||||
duplicates.
|
|
||||||
+
|
|
||||||
Uses a hashmap to store the pool of interned strings.
|
|
||||||
|
|
||||||
Usage example
|
|
||||||
-------------
|
|
||||||
|
|
||||||
Here's a simple usage example that maps long keys to double values.
|
|
||||||
------------
|
|
||||||
struct hashmap map;
|
|
||||||
|
|
||||||
struct long2double {
|
|
||||||
struct hashmap_entry ent; /* must be the first member! */
|
|
||||||
long key;
|
|
||||||
double value;
|
|
||||||
};
|
|
||||||
|
|
||||||
static int long2double_cmp(const struct long2double *e1, const struct long2double *e2, const void *unused)
|
|
||||||
{
|
|
||||||
return !(e1->key == e2->key);
|
|
||||||
}
|
|
||||||
|
|
||||||
void long2double_init(void)
|
|
||||||
{
|
|
||||||
hashmap_init(&map, (hashmap_cmp_fn) long2double_cmp, 0);
|
|
||||||
}
|
|
||||||
|
|
||||||
void long2double_free(void)
|
|
||||||
{
|
|
||||||
hashmap_free(&map, 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
static struct long2double *find_entry(long key)
|
|
||||||
{
|
|
||||||
struct long2double k;
|
|
||||||
hashmap_entry_init(&k, memhash(&key, sizeof(long)));
|
|
||||||
k.key = key;
|
|
||||||
return hashmap_get(&map, &k, NULL);
|
|
||||||
}
|
|
||||||
|
|
||||||
double get_value(long key)
|
|
||||||
{
|
|
||||||
struct long2double *e = find_entry(key);
|
|
||||||
return e ? e->value : 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
void set_value(long key, double value)
|
|
||||||
{
|
|
||||||
struct long2double *e = find_entry(key);
|
|
||||||
if (!e) {
|
|
||||||
e = malloc(sizeof(struct long2double));
|
|
||||||
hashmap_entry_init(e, memhash(&key, sizeof(long)));
|
|
||||||
e->key = key;
|
|
||||||
hashmap_add(&map, e);
|
|
||||||
}
|
|
||||||
e->value = value;
|
|
||||||
}
|
|
||||||
------------
|
|
||||||
|
|
||||||
Using variable-sized keys
|
|
||||||
-------------------------
|
|
||||||
|
|
||||||
The `hashmap_entry_get` and `hashmap_entry_remove` functions expect an ordinary
|
|
||||||
`hashmap_entry` structure as key to find the correct entry. If the key data is
|
|
||||||
variable-sized (e.g. a FLEX_ARRAY string) or quite large, it is undesirable
|
|
||||||
to create a full-fledged entry structure on the heap and copy all the key data
|
|
||||||
into the structure.
|
|
||||||
|
|
||||||
In this case, the `keydata` parameter can be used to pass
|
|
||||||
variable-sized key data directly to the comparison function, and the `key`
|
|
||||||
parameter can be a stripped-down, fixed size entry structure allocated on the
|
|
||||||
stack.
|
|
||||||
|
|
||||||
See test-hashmap.c for an example using arbitrary-length strings as keys.
|
|
7
attr.c
7
attr.c
|
@ -76,9 +76,10 @@ struct attr_hash_entry {
|
||||||
};
|
};
|
||||||
|
|
||||||
/* attr_hashmap comparison function */
|
/* attr_hashmap comparison function */
|
||||||
static int attr_hash_entry_cmp(const struct attr_hash_entry *a,
|
static int attr_hash_entry_cmp(void *unused_cmp_data,
|
||||||
|
const struct attr_hash_entry *a,
|
||||||
const struct attr_hash_entry *b,
|
const struct attr_hash_entry *b,
|
||||||
void *unused)
|
void *unused_keydata)
|
||||||
{
|
{
|
||||||
return (a->keylen != b->keylen) || strncmp(a->key, b->key, a->keylen);
|
return (a->keylen != b->keylen) || strncmp(a->key, b->key, a->keylen);
|
||||||
}
|
}
|
||||||
|
@ -86,7 +87,7 @@ static int attr_hash_entry_cmp(const struct attr_hash_entry *a,
|
||||||
/* Initialize an 'attr_hashmap' object */
|
/* Initialize an 'attr_hashmap' object */
|
||||||
static void attr_hashmap_init(struct attr_hashmap *map)
|
static void attr_hashmap_init(struct attr_hashmap *map)
|
||||||
{
|
{
|
||||||
hashmap_init(&map->map, (hashmap_cmp_fn) attr_hash_entry_cmp, 0);
|
hashmap_init(&map->map, (hashmap_cmp_fn) attr_hash_entry_cmp, NULL, 0);
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
|
|
|
@ -54,8 +54,10 @@ static const char *prio_names[] = {
|
||||||
N_("head"), N_("lightweight"), N_("annotated"),
|
N_("head"), N_("lightweight"), N_("annotated"),
|
||||||
};
|
};
|
||||||
|
|
||||||
static int commit_name_cmp(const struct commit_name *cn1,
|
static int commit_name_cmp(const void *unused_cmp_data,
|
||||||
const struct commit_name *cn2, const void *peeled)
|
const struct commit_name *cn1,
|
||||||
|
const struct commit_name *cn2,
|
||||||
|
const void *peeled)
|
||||||
{
|
{
|
||||||
return oidcmp(&cn1->peeled, peeled ? peeled : &cn2->peeled);
|
return oidcmp(&cn1->peeled, peeled ? peeled : &cn2->peeled);
|
||||||
}
|
}
|
||||||
|
@ -501,7 +503,7 @@ int cmd_describe(int argc, const char **argv, const char *prefix)
|
||||||
return cmd_name_rev(args.argc, args.argv, prefix);
|
return cmd_name_rev(args.argc, args.argv, prefix);
|
||||||
}
|
}
|
||||||
|
|
||||||
hashmap_init(&names, (hashmap_cmp_fn) commit_name_cmp, 0);
|
hashmap_init(&names, (hashmap_cmp_fn) commit_name_cmp, NULL, 0);
|
||||||
for_each_rawref(get_name, NULL);
|
for_each_rawref(get_name, NULL);
|
||||||
if (!names.size && !always)
|
if (!names.size && !always)
|
||||||
die(_("No names found, cannot describe anything."));
|
die(_("No names found, cannot describe anything."));
|
||||||
|
|
|
@ -130,8 +130,10 @@ struct working_tree_entry {
|
||||||
char path[FLEX_ARRAY];
|
char path[FLEX_ARRAY];
|
||||||
};
|
};
|
||||||
|
|
||||||
static int working_tree_entry_cmp(struct working_tree_entry *a,
|
static int working_tree_entry_cmp(const void *unused_cmp_data,
|
||||||
struct working_tree_entry *b, void *keydata)
|
struct working_tree_entry *a,
|
||||||
|
struct working_tree_entry *b,
|
||||||
|
void *unused_keydata)
|
||||||
{
|
{
|
||||||
return strcmp(a->path, b->path);
|
return strcmp(a->path, b->path);
|
||||||
}
|
}
|
||||||
|
@ -146,7 +148,9 @@ struct pair_entry {
|
||||||
const char path[FLEX_ARRAY];
|
const char path[FLEX_ARRAY];
|
||||||
};
|
};
|
||||||
|
|
||||||
static int pair_cmp(struct pair_entry *a, struct pair_entry *b, void *keydata)
|
static int pair_cmp(const void *unused_cmp_data,
|
||||||
|
struct pair_entry *a, struct pair_entry *b,
|
||||||
|
void *unused_keydata)
|
||||||
{
|
{
|
||||||
return strcmp(a->path, b->path);
|
return strcmp(a->path, b->path);
|
||||||
}
|
}
|
||||||
|
@ -174,7 +178,9 @@ struct path_entry {
|
||||||
char path[FLEX_ARRAY];
|
char path[FLEX_ARRAY];
|
||||||
};
|
};
|
||||||
|
|
||||||
static int path_entry_cmp(struct path_entry *a, struct path_entry *b, void *key)
|
static int path_entry_cmp(const void *unused_cmp_data,
|
||||||
|
struct path_entry *a, struct path_entry *b,
|
||||||
|
void *key)
|
||||||
{
|
{
|
||||||
return strcmp(a->path, key ? key : b->path);
|
return strcmp(a->path, key ? key : b->path);
|
||||||
}
|
}
|
||||||
|
@ -367,9 +373,9 @@ static int run_dir_diff(const char *extcmd, int symlinks, const char *prefix,
|
||||||
wtdir_len = wtdir.len;
|
wtdir_len = wtdir.len;
|
||||||
|
|
||||||
hashmap_init(&working_tree_dups,
|
hashmap_init(&working_tree_dups,
|
||||||
(hashmap_cmp_fn)working_tree_entry_cmp, 0);
|
(hashmap_cmp_fn)working_tree_entry_cmp, NULL, 0);
|
||||||
hashmap_init(&submodules, (hashmap_cmp_fn)pair_cmp, 0);
|
hashmap_init(&submodules, (hashmap_cmp_fn)pair_cmp, NULL, 0);
|
||||||
hashmap_init(&symlinks2, (hashmap_cmp_fn)pair_cmp, 0);
|
hashmap_init(&symlinks2, (hashmap_cmp_fn)pair_cmp, NULL, 0);
|
||||||
|
|
||||||
child.no_stdin = 1;
|
child.no_stdin = 1;
|
||||||
child.git_cmd = 1;
|
child.git_cmd = 1;
|
||||||
|
@ -580,9 +586,9 @@ static int run_dir_diff(const char *extcmd, int symlinks, const char *prefix,
|
||||||
* files through the symlink.
|
* files through the symlink.
|
||||||
*/
|
*/
|
||||||
hashmap_init(&wt_modified, (hashmap_cmp_fn)path_entry_cmp,
|
hashmap_init(&wt_modified, (hashmap_cmp_fn)path_entry_cmp,
|
||||||
wtindex.cache_nr);
|
NULL, wtindex.cache_nr);
|
||||||
hashmap_init(&tmp_modified, (hashmap_cmp_fn)path_entry_cmp,
|
hashmap_init(&tmp_modified, (hashmap_cmp_fn)path_entry_cmp,
|
||||||
wtindex.cache_nr);
|
NULL, wtindex.cache_nr);
|
||||||
|
|
||||||
for (i = 0; i < wtindex.cache_nr; i++) {
|
for (i = 0; i < wtindex.cache_nr; i++) {
|
||||||
struct hashmap_entry dummy;
|
struct hashmap_entry dummy;
|
||||||
|
|
|
@ -93,8 +93,9 @@ struct anonymized_entry {
|
||||||
size_t anon_len;
|
size_t anon_len;
|
||||||
};
|
};
|
||||||
|
|
||||||
static int anonymized_entry_cmp(const void *va, const void *vb,
|
static int anonymized_entry_cmp(const void *unused_cmp_data,
|
||||||
const void *data)
|
const void *va, const void *vb,
|
||||||
|
const void *unused_keydata)
|
||||||
{
|
{
|
||||||
const struct anonymized_entry *a = va, *b = vb;
|
const struct anonymized_entry *a = va, *b = vb;
|
||||||
return a->orig_len != b->orig_len ||
|
return a->orig_len != b->orig_len ||
|
||||||
|
@ -113,7 +114,7 @@ static const void *anonymize_mem(struct hashmap *map,
|
||||||
struct anonymized_entry key, *ret;
|
struct anonymized_entry key, *ret;
|
||||||
|
|
||||||
if (!map->cmpfn)
|
if (!map->cmpfn)
|
||||||
hashmap_init(map, anonymized_entry_cmp, 0);
|
hashmap_init(map, anonymized_entry_cmp, NULL, 0);
|
||||||
|
|
||||||
hashmap_entry_init(&key, memhash(orig, *len));
|
hashmap_entry_init(&key, memhash(orig, *len));
|
||||||
key.orig = orig;
|
key.orig = orig;
|
||||||
|
|
9
config.c
9
config.c
|
@ -1714,15 +1714,18 @@ static int configset_add_value(struct config_set *cs, const char *key, const cha
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
static int config_set_element_cmp(const struct config_set_element *e1,
|
static int config_set_element_cmp(const void *unused_cmp_data,
|
||||||
const struct config_set_element *e2, const void *unused)
|
const struct config_set_element *e1,
|
||||||
|
const struct config_set_element *e2,
|
||||||
|
const void *unused_keydata)
|
||||||
{
|
{
|
||||||
return strcmp(e1->key, e2->key);
|
return strcmp(e1->key, e2->key);
|
||||||
}
|
}
|
||||||
|
|
||||||
void git_configset_init(struct config_set *cs)
|
void git_configset_init(struct config_set *cs)
|
||||||
{
|
{
|
||||||
hashmap_init(&cs->config_hash, (hashmap_cmp_fn)config_set_element_cmp, 0);
|
hashmap_init(&cs->config_hash, (hashmap_cmp_fn)config_set_element_cmp,
|
||||||
|
NULL, 0);
|
||||||
cs->hash_initialized = 1;
|
cs->hash_initialized = 1;
|
||||||
cs->list.nr = 0;
|
cs->list.nr = 0;
|
||||||
cs->list.alloc = 0;
|
cs->list.alloc = 0;
|
||||||
|
|
|
@ -583,7 +583,8 @@ static int apply_multi_file_filter(const char *path, const char *src, size_t len
|
||||||
|
|
||||||
if (!subprocess_map_initialized) {
|
if (!subprocess_map_initialized) {
|
||||||
subprocess_map_initialized = 1;
|
subprocess_map_initialized = 1;
|
||||||
hashmap_init(&subprocess_map, (hashmap_cmp_fn) cmd2process_cmp, 0);
|
hashmap_init(&subprocess_map, (hashmap_cmp_fn) cmd2process_cmp,
|
||||||
|
NULL, 0);
|
||||||
entry = NULL;
|
entry = NULL;
|
||||||
} else {
|
} else {
|
||||||
entry = (struct cmd2process *)subprocess_find_entry(&subprocess_map, cmd);
|
entry = (struct cmd2process *)subprocess_find_entry(&subprocess_map, cmd);
|
||||||
|
|
|
@ -341,7 +341,7 @@ static int find_exact_renames(struct diff_options *options)
|
||||||
/* Add all sources to the hash table in reverse order, because
|
/* Add all sources to the hash table in reverse order, because
|
||||||
* later on they will be retrieved in LIFO order.
|
* later on they will be retrieved in LIFO order.
|
||||||
*/
|
*/
|
||||||
hashmap_init(&file_table, NULL, rename_src_nr);
|
hashmap_init(&file_table, NULL, NULL, rename_src_nr);
|
||||||
for (i = rename_src_nr-1; i >= 0; i--)
|
for (i = rename_src_nr-1; i >= 0; i--)
|
||||||
insert_file_table(&file_table, i, rename_src[i].p->one);
|
insert_file_table(&file_table, i, rename_src[i].p->one);
|
||||||
|
|
||||||
|
|
17
hashmap.c
17
hashmap.c
|
@ -95,7 +95,9 @@ static inline int entry_equals(const struct hashmap *map,
|
||||||
const struct hashmap_entry *e1, const struct hashmap_entry *e2,
|
const struct hashmap_entry *e1, const struct hashmap_entry *e2,
|
||||||
const void *keydata)
|
const void *keydata)
|
||||||
{
|
{
|
||||||
return (e1 == e2) || (e1->hash == e2->hash && !map->cmpfn(e1, e2, keydata));
|
return (e1 == e2) ||
|
||||||
|
(e1->hash == e2->hash &&
|
||||||
|
!map->cmpfn(map->cmpfn_data, e1, e2, keydata));
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline unsigned int bucket(const struct hashmap *map,
|
static inline unsigned int bucket(const struct hashmap *map,
|
||||||
|
@ -140,19 +142,23 @@ static inline struct hashmap_entry **find_entry_ptr(const struct hashmap *map,
|
||||||
return e;
|
return e;
|
||||||
}
|
}
|
||||||
|
|
||||||
static int always_equal(const void *unused1, const void *unused2, const void *unused3)
|
static int always_equal(const void *unused_cmp_data,
|
||||||
|
const void *unused1,
|
||||||
|
const void *unused2,
|
||||||
|
const void *unused_keydata)
|
||||||
{
|
{
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
void hashmap_init(struct hashmap *map, hashmap_cmp_fn equals_function,
|
void hashmap_init(struct hashmap *map, hashmap_cmp_fn equals_function,
|
||||||
size_t initial_size)
|
const void *cmpfn_data, size_t initial_size)
|
||||||
{
|
{
|
||||||
unsigned int size = HASHMAP_INITIAL_SIZE;
|
unsigned int size = HASHMAP_INITIAL_SIZE;
|
||||||
|
|
||||||
memset(map, 0, sizeof(*map));
|
memset(map, 0, sizeof(*map));
|
||||||
|
|
||||||
map->cmpfn = equals_function ? equals_function : always_equal;
|
map->cmpfn = equals_function ? equals_function : always_equal;
|
||||||
|
map->cmpfn_data = cmpfn_data;
|
||||||
|
|
||||||
/* calculate initial table size and allocate the table */
|
/* calculate initial table size and allocate the table */
|
||||||
initial_size = (unsigned int) ((uint64_t) initial_size * 100
|
initial_size = (unsigned int) ((uint64_t) initial_size * 100
|
||||||
|
@ -260,7 +266,8 @@ struct pool_entry {
|
||||||
unsigned char data[FLEX_ARRAY];
|
unsigned char data[FLEX_ARRAY];
|
||||||
};
|
};
|
||||||
|
|
||||||
static int pool_entry_cmp(const struct pool_entry *e1,
|
static int pool_entry_cmp(const void *unused_cmp_data,
|
||||||
|
const struct pool_entry *e1,
|
||||||
const struct pool_entry *e2,
|
const struct pool_entry *e2,
|
||||||
const unsigned char *keydata)
|
const unsigned char *keydata)
|
||||||
{
|
{
|
||||||
|
@ -275,7 +282,7 @@ const void *memintern(const void *data, size_t len)
|
||||||
|
|
||||||
/* initialize string pool hashmap */
|
/* initialize string pool hashmap */
|
||||||
if (!map.tablesize)
|
if (!map.tablesize)
|
||||||
hashmap_init(&map, (hashmap_cmp_fn) pool_entry_cmp, 0);
|
hashmap_init(&map, (hashmap_cmp_fn) pool_entry_cmp, NULL, 0);
|
||||||
|
|
||||||
/* lookup interned string in pool */
|
/* lookup interned string in pool */
|
||||||
hashmap_entry_init(&key, memhash(data, len));
|
hashmap_entry_init(&key, memhash(data, len));
|
||||||
|
|
356
hashmap.h
356
hashmap.h
|
@ -3,17 +3,123 @@
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Generic implementation of hash-based key-value mappings.
|
* Generic implementation of hash-based key-value mappings.
|
||||||
* See Documentation/technical/api-hashmap.txt.
|
*
|
||||||
|
* An example that maps long to a string:
|
||||||
|
* For the sake of the example this allows to lookup exact values, too
|
||||||
|
* (i.e. it is operated as a set, the value is part of the key)
|
||||||
|
* -------------------------------------
|
||||||
|
*
|
||||||
|
* struct hashmap map;
|
||||||
|
* struct long2string {
|
||||||
|
* struct hashmap_entry ent; // must be the first member!
|
||||||
|
* long key;
|
||||||
|
* char value[FLEX_ARRAY]; // be careful with allocating on stack!
|
||||||
|
* };
|
||||||
|
*
|
||||||
|
* #define COMPARE_VALUE 1
|
||||||
|
*
|
||||||
|
* static int long2string_cmp(const struct long2string *e1,
|
||||||
|
* const struct long2string *e2,
|
||||||
|
* const void *keydata, const void *userdata)
|
||||||
|
* {
|
||||||
|
* char *string = keydata;
|
||||||
|
* unsigned *flags = (unsigned*)userdata;
|
||||||
|
*
|
||||||
|
* if (flags & COMPARE_VALUE)
|
||||||
|
* return !(e1->key == e2->key) || (keydata ?
|
||||||
|
* strcmp(e1->value, keydata) : strcmp(e1->value, e2->value));
|
||||||
|
* else
|
||||||
|
* return !(e1->key == e2->key);
|
||||||
|
* }
|
||||||
|
*
|
||||||
|
* int main(int argc, char **argv)
|
||||||
|
* {
|
||||||
|
* long key;
|
||||||
|
* char *value, *action;
|
||||||
|
*
|
||||||
|
* unsigned flags = ALLOW_DUPLICATE_KEYS;
|
||||||
|
*
|
||||||
|
* hashmap_init(&map, (hashmap_cmp_fn) long2string_cmp, &flags, 0);
|
||||||
|
*
|
||||||
|
* while (scanf("%s %l %s", action, key, value)) {
|
||||||
|
*
|
||||||
|
* if (!strcmp("add", action)) {
|
||||||
|
* struct long2string *e;
|
||||||
|
* e = malloc(sizeof(struct long2string) + strlen(value));
|
||||||
|
* hashmap_entry_init(e, memhash(&key, sizeof(long)));
|
||||||
|
* e->key = key;
|
||||||
|
* memcpy(e->value, value, strlen(value));
|
||||||
|
* hashmap_add(&map, e);
|
||||||
|
* }
|
||||||
|
*
|
||||||
|
* if (!strcmp("print_all_by_key", action)) {
|
||||||
|
* flags &= ~COMPARE_VALUE;
|
||||||
|
*
|
||||||
|
* struct long2string k;
|
||||||
|
* hashmap_entry_init(&k, memhash(&key, sizeof(long)));
|
||||||
|
* k.key = key;
|
||||||
|
*
|
||||||
|
* struct long2string *e = hashmap_get(&map, &k, NULL);
|
||||||
|
* if (e) {
|
||||||
|
* printf("first: %l %s\n", e->key, e->value);
|
||||||
|
* while (e = hashmap_get_next(&map, e))
|
||||||
|
* printf("found more: %l %s\n", e->key, e->value);
|
||||||
|
* }
|
||||||
|
* }
|
||||||
|
*
|
||||||
|
* if (!strcmp("has_exact_match", action)) {
|
||||||
|
* flags |= COMPARE_VALUE;
|
||||||
|
*
|
||||||
|
* struct long2string *e;
|
||||||
|
* e = malloc(sizeof(struct long2string) + strlen(value));
|
||||||
|
* hashmap_entry_init(e, memhash(&key, sizeof(long)));
|
||||||
|
* e->key = key;
|
||||||
|
* memcpy(e->value, value, strlen(value));
|
||||||
|
*
|
||||||
|
* printf("%s found\n", hashmap_get(&map, e, NULL) ? "" : "not");
|
||||||
|
* }
|
||||||
|
*
|
||||||
|
* if (!strcmp("has_exact_match_no_heap_alloc", action)) {
|
||||||
|
* flags |= COMPARE_VALUE;
|
||||||
|
*
|
||||||
|
* struct long2string e;
|
||||||
|
* hashmap_entry_init(e, memhash(&key, sizeof(long)));
|
||||||
|
* e.key = key;
|
||||||
|
*
|
||||||
|
* printf("%s found\n", hashmap_get(&map, e, value) ? "" : "not");
|
||||||
|
* }
|
||||||
|
*
|
||||||
|
* if (!strcmp("end", action)) {
|
||||||
|
* hashmap_free(&map, 1);
|
||||||
|
* break;
|
||||||
|
* }
|
||||||
|
* }
|
||||||
|
* }
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/* FNV-1 functions */
|
/*
|
||||||
|
* Ready-to-use hash functions for strings, using the FNV-1 algorithm (see
|
||||||
|
* http://www.isthe.com/chongo/tech/comp/fnv).
|
||||||
|
* `strhash` and `strihash` take 0-terminated strings, while `memhash` and
|
||||||
|
* `memihash` operate on arbitrary-length memory.
|
||||||
|
* `strihash` and `memihash` are case insensitive versions.
|
||||||
|
* `memihash_cont` is a variant of `memihash` that allows a computation to be
|
||||||
|
* continued with another chunk of data.
|
||||||
|
*/
|
||||||
extern unsigned int strhash(const char *buf);
|
extern unsigned int strhash(const char *buf);
|
||||||
extern unsigned int strihash(const char *buf);
|
extern unsigned int strihash(const char *buf);
|
||||||
extern unsigned int memhash(const void *buf, size_t len);
|
extern unsigned int memhash(const void *buf, size_t len);
|
||||||
extern unsigned int memihash(const void *buf, size_t len);
|
extern unsigned int memihash(const void *buf, size_t len);
|
||||||
extern unsigned int memihash_cont(unsigned int hash_seed, const void *buf, size_t len);
|
extern unsigned int memihash_cont(unsigned int hash_seed, const void *buf, size_t len);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Converts a cryptographic hash (e.g. SHA-1) into an int-sized hash code
|
||||||
|
* for use in hash tables. Cryptographic hashes are supposed to have
|
||||||
|
* uniform distribution, so in contrast to `memhash()`, this just copies
|
||||||
|
* the first `sizeof(int)` bytes without shuffling any bits. Note that
|
||||||
|
* the results will be different on big-endian and little-endian
|
||||||
|
* platforms, so they should not be stored or transferred over the net.
|
||||||
|
*/
|
||||||
static inline unsigned int sha1hash(const unsigned char *sha1)
|
static inline unsigned int sha1hash(const unsigned char *sha1)
|
||||||
{
|
{
|
||||||
/*
|
/*
|
||||||
|
@ -25,86 +131,255 @@ static inline unsigned int sha1hash(const unsigned char *sha1)
|
||||||
return hash;
|
return hash;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* data structures */
|
/*
|
||||||
|
* struct hashmap_entry is an opaque structure representing an entry in the
|
||||||
|
* hash table, which must be used as first member of user data structures.
|
||||||
|
* Ideally it should be followed by an int-sized member to prevent unused
|
||||||
|
* memory on 64-bit systems due to alignment.
|
||||||
|
*/
|
||||||
struct hashmap_entry {
|
struct hashmap_entry {
|
||||||
|
/*
|
||||||
|
* next points to the next entry in case of collisions (i.e. if
|
||||||
|
* multiple entries map to the same bucket)
|
||||||
|
*/
|
||||||
struct hashmap_entry *next;
|
struct hashmap_entry *next;
|
||||||
|
|
||||||
|
/* entry's hash code */
|
||||||
unsigned int hash;
|
unsigned int hash;
|
||||||
};
|
};
|
||||||
|
|
||||||
typedef int (*hashmap_cmp_fn)(const void *entry, const void *entry_or_key,
|
/*
|
||||||
|
* User-supplied function to test two hashmap entries for equality. Shall
|
||||||
|
* return 0 if the entries are equal.
|
||||||
|
*
|
||||||
|
* This function is always called with non-NULL `entry` and `entry_or_key`
|
||||||
|
* parameters that have the same hash code.
|
||||||
|
*
|
||||||
|
* When looking up an entry, the `key` and `keydata` parameters to hashmap_get
|
||||||
|
* and hashmap_remove are always passed as second `entry_or_key` and third
|
||||||
|
* argument `keydata`, respectively. Otherwise, `keydata` is NULL.
|
||||||
|
*
|
||||||
|
* When it is too expensive to allocate a user entry (either because it is
|
||||||
|
* large or varialbe sized, such that it is not on the stack), then the
|
||||||
|
* relevant data to check for equality should be passed via `keydata`.
|
||||||
|
* In this case `key` can be a stripped down version of the user key data
|
||||||
|
* or even just a hashmap_entry having the correct hash.
|
||||||
|
*
|
||||||
|
* The `hashmap_cmp_fn_data` entry is the pointer given in the init function.
|
||||||
|
*/
|
||||||
|
typedef int (*hashmap_cmp_fn)(const void *hashmap_cmp_fn_data,
|
||||||
|
const void *entry, const void *entry_or_key,
|
||||||
const void *keydata);
|
const void *keydata);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* struct hashmap is the hash table structure. Members can be used as follows,
|
||||||
|
* but should not be modified directly.
|
||||||
|
*/
|
||||||
struct hashmap {
|
struct hashmap {
|
||||||
struct hashmap_entry **table;
|
struct hashmap_entry **table;
|
||||||
hashmap_cmp_fn cmpfn;
|
|
||||||
unsigned int size, tablesize, grow_at, shrink_at;
|
|
||||||
unsigned disallow_rehash : 1;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct hashmap_iter {
|
/* Stores the comparison function specified in `hashmap_init()`. */
|
||||||
struct hashmap *map;
|
hashmap_cmp_fn cmpfn;
|
||||||
struct hashmap_entry *next;
|
const void *cmpfn_data;
|
||||||
unsigned int tablepos;
|
|
||||||
|
/* total number of entries (0 means the hashmap is empty) */
|
||||||
|
unsigned int size;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* tablesize is the allocated size of the hash table. A non-0 value
|
||||||
|
* indicates that the hashmap is initialized. It may also be useful
|
||||||
|
* for statistical purposes (i.e. `size / tablesize` is the current
|
||||||
|
* load factor).
|
||||||
|
*/
|
||||||
|
unsigned int tablesize;
|
||||||
|
|
||||||
|
unsigned int grow_at;
|
||||||
|
unsigned int shrink_at;
|
||||||
|
|
||||||
|
/* See `hashmap_disallow_rehash`. */
|
||||||
|
unsigned disallow_rehash : 1;
|
||||||
};
|
};
|
||||||
|
|
||||||
/* hashmap functions */
|
/* hashmap functions */
|
||||||
|
|
||||||
extern void hashmap_init(struct hashmap *map, hashmap_cmp_fn equals_function,
|
/*
|
||||||
|
* Initializes a hashmap structure.
|
||||||
|
*
|
||||||
|
* `map` is the hashmap to initialize.
|
||||||
|
*
|
||||||
|
* The `equals_function` can be specified to compare two entries for equality.
|
||||||
|
* If NULL, entries are considered equal if their hash codes are equal.
|
||||||
|
*
|
||||||
|
* The `equals_function_data` parameter can be used to provide additional data
|
||||||
|
* (a callback cookie) that will be passed to `equals_function` each time it
|
||||||
|
* is called. This allows a single `equals_function` to implement multiple
|
||||||
|
* comparison functions.
|
||||||
|
*
|
||||||
|
* If the total number of entries is known in advance, the `initial_size`
|
||||||
|
* parameter may be used to preallocate a sufficiently large table and thus
|
||||||
|
* prevent expensive resizing. If 0, the table is dynamically resized.
|
||||||
|
*/
|
||||||
|
extern void hashmap_init(struct hashmap *map,
|
||||||
|
hashmap_cmp_fn equals_function,
|
||||||
|
const void *equals_function_data,
|
||||||
size_t initial_size);
|
size_t initial_size);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Frees a hashmap structure and allocated memory.
|
||||||
|
*
|
||||||
|
* If `free_entries` is true, each hashmap_entry in the map is freed as well
|
||||||
|
* using stdlibs free().
|
||||||
|
*/
|
||||||
extern void hashmap_free(struct hashmap *map, int free_entries);
|
extern void hashmap_free(struct hashmap *map, int free_entries);
|
||||||
|
|
||||||
/* hashmap_entry functions */
|
/* hashmap_entry functions */
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initializes a hashmap_entry structure.
|
||||||
|
*
|
||||||
|
* `entry` points to the entry to initialize.
|
||||||
|
* `hash` is the hash code of the entry.
|
||||||
|
*
|
||||||
|
* The hashmap_entry structure does not hold references to external resources,
|
||||||
|
* and it is safe to just discard it once you are done with it (i.e. if
|
||||||
|
* your structure was allocated with xmalloc(), you can just free(3) it,
|
||||||
|
* and if it is on stack, you can just let it go out of scope).
|
||||||
|
*/
|
||||||
static inline void hashmap_entry_init(void *entry, unsigned int hash)
|
static inline void hashmap_entry_init(void *entry, unsigned int hash)
|
||||||
{
|
{
|
||||||
struct hashmap_entry *e = entry;
|
struct hashmap_entry *e = entry;
|
||||||
e->hash = hash;
|
e->hash = hash;
|
||||||
e->next = NULL;
|
e->next = NULL;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Returns the hashmap entry for the specified key, or NULL if not found.
|
||||||
|
*
|
||||||
|
* `map` is the hashmap structure.
|
||||||
|
*
|
||||||
|
* `key` is a user data structure that starts with hashmap_entry that has at
|
||||||
|
* least been initialized with the proper hash code (via `hashmap_entry_init`).
|
||||||
|
*
|
||||||
|
* `keydata` is a data structure that holds just enough information to check
|
||||||
|
* for equality to a given entry.
|
||||||
|
*
|
||||||
|
* If the key data is variable-sized (e.g. a FLEX_ARRAY string) or quite large,
|
||||||
|
* it is undesirable to create a full-fledged entry structure on the heap and
|
||||||
|
* copy all the key data into the structure.
|
||||||
|
*
|
||||||
|
* In this case, the `keydata` parameter can be used to pass
|
||||||
|
* variable-sized key data directly to the comparison function, and the `key`
|
||||||
|
* parameter can be a stripped-down, fixed size entry structure allocated on the
|
||||||
|
* stack.
|
||||||
|
*
|
||||||
|
* If an entry with matching hash code is found, `key` and `keydata` are passed
|
||||||
|
* to `hashmap_cmp_fn` to decide whether the entry matches the key.
|
||||||
|
*/
|
||||||
extern void *hashmap_get(const struct hashmap *map, const void *key,
|
extern void *hashmap_get(const struct hashmap *map, const void *key,
|
||||||
const void *keydata);
|
const void *keydata);
|
||||||
extern void *hashmap_get_next(const struct hashmap *map, const void *entry);
|
|
||||||
extern void hashmap_add(struct hashmap *map, void *entry);
|
|
||||||
extern void *hashmap_put(struct hashmap *map, void *entry);
|
|
||||||
extern void *hashmap_remove(struct hashmap *map, const void *key,
|
|
||||||
const void *keydata);
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Returns the hashmap entry for the specified hash code and key data,
|
||||||
|
* or NULL if not found.
|
||||||
|
*
|
||||||
|
* `map` is the hashmap structure.
|
||||||
|
* `hash` is the hash code of the entry to look up.
|
||||||
|
*
|
||||||
|
* If an entry with matching hash code is found, `keydata` is passed to
|
||||||
|
* `hashmap_cmp_fn` to decide whether the entry matches the key. The
|
||||||
|
* `entry_or_key` parameter of `hashmap_cmp_fn` points to a hashmap_entry
|
||||||
|
* structure that should not be used in the comparison.
|
||||||
|
*/
|
||||||
static inline void *hashmap_get_from_hash(const struct hashmap *map,
|
static inline void *hashmap_get_from_hash(const struct hashmap *map,
|
||||||
unsigned int hash, const void *keydata)
|
unsigned int hash,
|
||||||
|
const void *keydata)
|
||||||
{
|
{
|
||||||
struct hashmap_entry key;
|
struct hashmap_entry key;
|
||||||
hashmap_entry_init(&key, hash);
|
hashmap_entry_init(&key, hash);
|
||||||
return hashmap_get(map, &key, keydata);
|
return hashmap_get(map, &key, keydata);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Returns the next equal hashmap entry, or NULL if not found. This can be
|
||||||
|
* used to iterate over duplicate entries (see `hashmap_add`).
|
||||||
|
*
|
||||||
|
* `map` is the hashmap structure.
|
||||||
|
* `entry` is the hashmap_entry to start the search from, obtained via a previous
|
||||||
|
* call to `hashmap_get` or `hashmap_get_next`.
|
||||||
|
*/
|
||||||
|
extern void *hashmap_get_next(const struct hashmap *map, const void *entry);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Adds a hashmap entry. This allows to add duplicate entries (i.e.
|
||||||
|
* separate values with the same key according to hashmap_cmp_fn).
|
||||||
|
*
|
||||||
|
* `map` is the hashmap structure.
|
||||||
|
* `entry` is the entry to add.
|
||||||
|
*/
|
||||||
|
extern void hashmap_add(struct hashmap *map, void *entry);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Adds or replaces a hashmap entry. If the hashmap contains duplicate
|
||||||
|
* entries equal to the specified entry, only one of them will be replaced.
|
||||||
|
*
|
||||||
|
* `map` is the hashmap structure.
|
||||||
|
* `entry` is the entry to add or replace.
|
||||||
|
* Returns the replaced entry, or NULL if not found (i.e. the entry was added).
|
||||||
|
*/
|
||||||
|
extern void *hashmap_put(struct hashmap *map, void *entry);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Removes a hashmap entry matching the specified key. If the hashmap contains
|
||||||
|
* duplicate entries equal to the specified key, only one of them will be
|
||||||
|
* removed. Returns the removed entry, or NULL if not found.
|
||||||
|
*
|
||||||
|
* Argument explanation is the same as in `hashmap_get`.
|
||||||
|
*/
|
||||||
|
extern void *hashmap_remove(struct hashmap *map, const void *key,
|
||||||
|
const void *keydata);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Returns the `bucket` an entry is stored in.
|
||||||
|
* Useful for multithreaded read access.
|
||||||
|
*/
|
||||||
int hashmap_bucket(const struct hashmap *map, unsigned int hash);
|
int hashmap_bucket(const struct hashmap *map, unsigned int hash);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Disallow/allow rehashing of the hashmap.
|
* Disallow/allow rehashing of the hashmap.
|
||||||
* This is useful if the caller knows that the hashmap
|
* This is useful if the caller knows that the hashmap needs multi-threaded
|
||||||
* needs multi-threaded access. The caller is still
|
* access. The caller is still required to guard/lock searches and inserts
|
||||||
* required to guard/lock searches and inserts in a
|
* in a manner appropriate to their usage. This simply prevents the table
|
||||||
* manner appropriate to their usage. This simply
|
* from being unexpectedly re-mapped.
|
||||||
* prevents the table from being unexpectedly re-mapped.
|
|
||||||
*
|
*
|
||||||
* If is up to the caller to ensure that the hashmap is
|
* It is up to the caller to ensure that the hashmap is initialized to a
|
||||||
* initialized to a reasonable size to prevent poor
|
* reasonable size to prevent poor performance.
|
||||||
* performance.
|
|
||||||
*
|
*
|
||||||
* When value=1, prevent future rehashes on adds and deleted.
|
* A call to allow rehashing does not force a rehash; that might happen
|
||||||
* When value=0, allow future rehahses. This DOES NOT force
|
* with the next insert or delete.
|
||||||
* a rehash now.
|
|
||||||
*/
|
*/
|
||||||
static inline void hashmap_disallow_rehash(struct hashmap *map, unsigned value)
|
static inline void hashmap_disallow_rehash(struct hashmap *map, unsigned value)
|
||||||
{
|
{
|
||||||
map->disallow_rehash = value;
|
map->disallow_rehash = value;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* hashmap_iter functions */
|
/*
|
||||||
|
* Used to iterate over all entries of a hashmap. Note that it is
|
||||||
|
* not safe to add or remove entries to the hashmap while
|
||||||
|
* iterating.
|
||||||
|
*/
|
||||||
|
struct hashmap_iter {
|
||||||
|
struct hashmap *map;
|
||||||
|
struct hashmap_entry *next;
|
||||||
|
unsigned int tablepos;
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Initializes a `hashmap_iter` structure. */
|
||||||
extern void hashmap_iter_init(struct hashmap *map, struct hashmap_iter *iter);
|
extern void hashmap_iter_init(struct hashmap *map, struct hashmap_iter *iter);
|
||||||
|
|
||||||
|
/* Returns the next hashmap_entry, or NULL if there are no more entries. */
|
||||||
extern void *hashmap_iter_next(struct hashmap_iter *iter);
|
extern void *hashmap_iter_next(struct hashmap_iter *iter);
|
||||||
|
|
||||||
|
/* Initializes the iterator and returns the first entry, if any. */
|
||||||
static inline void *hashmap_iter_first(struct hashmap *map,
|
static inline void *hashmap_iter_first(struct hashmap *map,
|
||||||
struct hashmap_iter *iter)
|
struct hashmap_iter *iter)
|
||||||
{
|
{
|
||||||
|
@ -112,8 +387,21 @@ static inline void *hashmap_iter_first(struct hashmap *map,
|
||||||
return hashmap_iter_next(iter);
|
return hashmap_iter_next(iter);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* string interning */
|
/* String interning */
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Returns the unique, interned version of the specified string or data,
|
||||||
|
* similar to the `String.intern` API in Java and .NET, respectively.
|
||||||
|
* Interned strings remain valid for the entire lifetime of the process.
|
||||||
|
*
|
||||||
|
* Can be used as `[x]strdup()` or `xmemdupz` replacement, except that interned
|
||||||
|
* strings / data must not be modified or freed.
|
||||||
|
*
|
||||||
|
* Interned strings are best used for short strings with high probability of
|
||||||
|
* duplicates.
|
||||||
|
*
|
||||||
|
* Uses a hashmap to store the pool of interned strings.
|
||||||
|
*/
|
||||||
extern const void *memintern(const void *data, size_t len);
|
extern const void *memintern(const void *data, size_t len);
|
||||||
static inline const char *strintern(const char *string)
|
static inline const char *strintern(const char *string)
|
||||||
{
|
{
|
||||||
|
|
16
name-hash.c
16
name-hash.c
|
@ -16,8 +16,10 @@ struct dir_entry {
|
||||||
char name[FLEX_ARRAY];
|
char name[FLEX_ARRAY];
|
||||||
};
|
};
|
||||||
|
|
||||||
static int dir_entry_cmp(const struct dir_entry *e1,
|
static int dir_entry_cmp(const void *unused_cmp_data,
|
||||||
const struct dir_entry *e2, const char *name)
|
const struct dir_entry *e1,
|
||||||
|
const struct dir_entry *e2,
|
||||||
|
const char *name)
|
||||||
{
|
{
|
||||||
return e1->namelen != e2->namelen || strncasecmp(e1->name,
|
return e1->namelen != e2->namelen || strncasecmp(e1->name,
|
||||||
name ? name : e2->name, e1->namelen);
|
name ? name : e2->name, e1->namelen);
|
||||||
|
@ -107,8 +109,10 @@ static void hash_index_entry(struct index_state *istate, struct cache_entry *ce)
|
||||||
add_dir_entry(istate, ce);
|
add_dir_entry(istate, ce);
|
||||||
}
|
}
|
||||||
|
|
||||||
static int cache_entry_cmp(const struct cache_entry *ce1,
|
static int cache_entry_cmp(const void *unused_cmp_data,
|
||||||
const struct cache_entry *ce2, const void *remove)
|
const struct cache_entry *ce1,
|
||||||
|
const struct cache_entry *ce2,
|
||||||
|
const void *remove)
|
||||||
{
|
{
|
||||||
/*
|
/*
|
||||||
* For remove_name_hash, find the exact entry (pointer equality); for
|
* For remove_name_hash, find the exact entry (pointer equality); for
|
||||||
|
@ -571,9 +575,9 @@ static void lazy_init_name_hash(struct index_state *istate)
|
||||||
if (istate->name_hash_initialized)
|
if (istate->name_hash_initialized)
|
||||||
return;
|
return;
|
||||||
hashmap_init(&istate->name_hash, (hashmap_cmp_fn) cache_entry_cmp,
|
hashmap_init(&istate->name_hash, (hashmap_cmp_fn) cache_entry_cmp,
|
||||||
istate->cache_nr);
|
NULL, istate->cache_nr);
|
||||||
hashmap_init(&istate->dir_hash, (hashmap_cmp_fn) dir_entry_cmp,
|
hashmap_init(&istate->dir_hash, (hashmap_cmp_fn) dir_entry_cmp,
|
||||||
istate->cache_nr);
|
NULL, istate->cache_nr);
|
||||||
|
|
||||||
if (lookup_lazy_params(istate)) {
|
if (lookup_lazy_params(istate)) {
|
||||||
hashmap_disallow_rehash(&istate->dir_hash, 1);
|
hashmap_disallow_rehash(&istate->dir_hash, 1);
|
||||||
|
|
5
oidset.c
5
oidset.c
|
@ -6,7 +6,8 @@ struct oidset_entry {
|
||||||
struct object_id oid;
|
struct object_id oid;
|
||||||
};
|
};
|
||||||
|
|
||||||
static int oidset_hashcmp(const void *va, const void *vb,
|
static int oidset_hashcmp(const void *unused_cmp_data,
|
||||||
|
const void *va, const void *vb,
|
||||||
const void *vkey)
|
const void *vkey)
|
||||||
{
|
{
|
||||||
const struct oidset_entry *a = va, *b = vb;
|
const struct oidset_entry *a = va, *b = vb;
|
||||||
|
@ -30,7 +31,7 @@ int oidset_insert(struct oidset *set, const struct object_id *oid)
|
||||||
struct oidset_entry *entry;
|
struct oidset_entry *entry;
|
||||||
|
|
||||||
if (!set->map.cmpfn)
|
if (!set->map.cmpfn)
|
||||||
hashmap_init(&set->map, oidset_hashcmp, 0);
|
hashmap_init(&set->map, oidset_hashcmp, NULL, 0);
|
||||||
|
|
||||||
if (oidset_contains(set, oid))
|
if (oidset_contains(set, oid))
|
||||||
return 1;
|
return 1;
|
||||||
|
|
10
patch-ids.c
10
patch-ids.c
|
@ -35,9 +35,10 @@ int commit_patch_id(struct commit *commit, struct diff_options *options,
|
||||||
* the side of safety. The actual value being negative does not have
|
* the side of safety. The actual value being negative does not have
|
||||||
* any significance; only that it is non-zero matters.
|
* any significance; only that it is non-zero matters.
|
||||||
*/
|
*/
|
||||||
static int patch_id_cmp(struct patch_id *a,
|
static int patch_id_cmp(struct diff_options *opt,
|
||||||
|
struct patch_id *a,
|
||||||
struct patch_id *b,
|
struct patch_id *b,
|
||||||
struct diff_options *opt)
|
const void *unused_keydata)
|
||||||
{
|
{
|
||||||
if (is_null_oid(&a->patch_id) &&
|
if (is_null_oid(&a->patch_id) &&
|
||||||
commit_patch_id(a->commit, opt, &a->patch_id, 0))
|
commit_patch_id(a->commit, opt, &a->patch_id, 0))
|
||||||
|
@ -57,7 +58,8 @@ int init_patch_ids(struct patch_ids *ids)
|
||||||
ids->diffopts.detect_rename = 0;
|
ids->diffopts.detect_rename = 0;
|
||||||
DIFF_OPT_SET(&ids->diffopts, RECURSIVE);
|
DIFF_OPT_SET(&ids->diffopts, RECURSIVE);
|
||||||
diff_setup_done(&ids->diffopts);
|
diff_setup_done(&ids->diffopts);
|
||||||
hashmap_init(&ids->patches, (hashmap_cmp_fn)patch_id_cmp, 256);
|
hashmap_init(&ids->patches, (hashmap_cmp_fn)patch_id_cmp,
|
||||||
|
&ids->diffopts, 256);
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -93,7 +95,7 @@ struct patch_id *has_commit_patch_id(struct commit *commit,
|
||||||
if (init_patch_id_entry(&patch, commit, ids))
|
if (init_patch_id_entry(&patch, commit, ids))
|
||||||
return NULL;
|
return NULL;
|
||||||
|
|
||||||
return hashmap_get(&ids->patches, &patch, &ids->diffopts);
|
return hashmap_get(&ids->patches, &patch, NULL);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct patch_id *add_commit_patch_id(struct commit *commit,
|
struct patch_id *add_commit_patch_id(struct commit *commit,
|
||||||
|
|
5
refs.c
5
refs.c
|
@ -1525,7 +1525,8 @@ struct ref_store_hash_entry
|
||||||
char name[FLEX_ARRAY];
|
char name[FLEX_ARRAY];
|
||||||
};
|
};
|
||||||
|
|
||||||
static int ref_store_hash_cmp(const void *entry, const void *entry_or_key,
|
static int ref_store_hash_cmp(const void *unused_cmp_data,
|
||||||
|
const void *entry, const void *entry_or_key,
|
||||||
const void *keydata)
|
const void *keydata)
|
||||||
{
|
{
|
||||||
const struct ref_store_hash_entry *e1 = entry, *e2 = entry_or_key;
|
const struct ref_store_hash_entry *e1 = entry, *e2 = entry_or_key;
|
||||||
|
@ -1608,7 +1609,7 @@ static void register_ref_store_map(struct hashmap *map,
|
||||||
const char *name)
|
const char *name)
|
||||||
{
|
{
|
||||||
if (!map->tablesize)
|
if (!map->tablesize)
|
||||||
hashmap_init(map, ref_store_hash_cmp, 0);
|
hashmap_init(map, ref_store_hash_cmp, NULL, 0);
|
||||||
|
|
||||||
if (hashmap_put(map, alloc_ref_store_hash_entry(name, refs)))
|
if (hashmap_put(map, alloc_ref_store_hash_entry(name, refs)))
|
||||||
die("BUG: %s ref_store '%s' initialized twice", type, name);
|
die("BUG: %s ref_store '%s' initialized twice", type, name);
|
||||||
|
|
7
remote.c
7
remote.c
|
@ -133,7 +133,10 @@ struct remotes_hash_key {
|
||||||
int len;
|
int len;
|
||||||
};
|
};
|
||||||
|
|
||||||
static int remotes_hash_cmp(const struct remote *a, const struct remote *b, const struct remotes_hash_key *key)
|
static int remotes_hash_cmp(const void *unused_cmp_data,
|
||||||
|
const struct remote *a,
|
||||||
|
const struct remote *b,
|
||||||
|
const struct remotes_hash_key *key)
|
||||||
{
|
{
|
||||||
if (key)
|
if (key)
|
||||||
return strncmp(a->name, key->str, key->len) || a->name[key->len];
|
return strncmp(a->name, key->str, key->len) || a->name[key->len];
|
||||||
|
@ -144,7 +147,7 @@ static int remotes_hash_cmp(const struct remote *a, const struct remote *b, cons
|
||||||
static inline void init_remotes_hash(void)
|
static inline void init_remotes_hash(void)
|
||||||
{
|
{
|
||||||
if (!remotes_hash.cmpfn)
|
if (!remotes_hash.cmpfn)
|
||||||
hashmap_init(&remotes_hash, (hashmap_cmp_fn)remotes_hash_cmp, 0);
|
hashmap_init(&remotes_hash, (hashmap_cmp_fn)remotes_hash_cmp, NULL, 0);
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct remote *make_remote(const char *name, int len)
|
static struct remote *make_remote(const char *name, int len)
|
||||||
|
|
|
@ -2275,7 +2275,8 @@ static int delta_base_cache_key_eq(const struct delta_base_cache_key *a,
|
||||||
return a->p == b->p && a->base_offset == b->base_offset;
|
return a->p == b->p && a->base_offset == b->base_offset;
|
||||||
}
|
}
|
||||||
|
|
||||||
static int delta_base_cache_hash_cmp(const void *va, const void *vb,
|
static int delta_base_cache_hash_cmp(const void *unused_cmp_data,
|
||||||
|
const void *va, const void *vb,
|
||||||
const void *vkey)
|
const void *vkey)
|
||||||
{
|
{
|
||||||
const struct delta_base_cache_entry *a = va, *b = vb;
|
const struct delta_base_cache_entry *a = va, *b = vb;
|
||||||
|
@ -2360,7 +2361,7 @@ static void add_delta_base_cache(struct packed_git *p, off_t base_offset,
|
||||||
list_add_tail(&ent->lru, &delta_base_cache_lru);
|
list_add_tail(&ent->lru, &delta_base_cache_lru);
|
||||||
|
|
||||||
if (!delta_base_cache.cmpfn)
|
if (!delta_base_cache.cmpfn)
|
||||||
hashmap_init(&delta_base_cache, delta_base_cache_hash_cmp, 0);
|
hashmap_init(&delta_base_cache, delta_base_cache_hash_cmp, NULL, 0);
|
||||||
hashmap_entry_init(ent, pack_entry_hash(p, base_offset));
|
hashmap_entry_init(ent, pack_entry_hash(p, base_offset));
|
||||||
hashmap_add(&delta_base_cache, ent);
|
hashmap_add(&delta_base_cache, ent);
|
||||||
}
|
}
|
||||||
|
|
|
@ -5,9 +5,10 @@
|
||||||
#include "sigchain.h"
|
#include "sigchain.h"
|
||||||
#include "pkt-line.h"
|
#include "pkt-line.h"
|
||||||
|
|
||||||
int cmd2process_cmp(const struct subprocess_entry *e1,
|
int cmd2process_cmp(const void *unused_cmp_data,
|
||||||
|
const struct subprocess_entry *e1,
|
||||||
const struct subprocess_entry *e2,
|
const struct subprocess_entry *e2,
|
||||||
const void *unused)
|
const void *unused_keydata)
|
||||||
{
|
{
|
||||||
return strcmp(e1->cmd, e2->cmd);
|
return strcmp(e1->cmd, e2->cmd);
|
||||||
}
|
}
|
||||||
|
|
|
@ -20,8 +20,10 @@ struct subprocess_entry {
|
||||||
|
|
||||||
/* subprocess functions */
|
/* subprocess functions */
|
||||||
|
|
||||||
int cmd2process_cmp(const struct subprocess_entry *e1,
|
extern int cmd2process_cmp(const void *unused_cmp_data,
|
||||||
const struct subprocess_entry *e2, const void *unused);
|
const struct subprocess_entry *e1,
|
||||||
|
const struct subprocess_entry *e2,
|
||||||
|
const void *unused_keydata);
|
||||||
|
|
||||||
typedef int(*subprocess_start_fn)(struct subprocess_entry *entry);
|
typedef int(*subprocess_start_fn)(struct subprocess_entry *entry);
|
||||||
int subprocess_start(struct hashmap *hashmap, struct subprocess_entry *entry, const char *cmd,
|
int subprocess_start(struct hashmap *hashmap, struct subprocess_entry *entry, const char *cmd,
|
||||||
|
|
|
@ -33,17 +33,19 @@ enum lookup_type {
|
||||||
lookup_path
|
lookup_path
|
||||||
};
|
};
|
||||||
|
|
||||||
static int config_path_cmp(const struct submodule_entry *a,
|
static int config_path_cmp(const void *unused_cmp_data,
|
||||||
|
const struct submodule_entry *a,
|
||||||
const struct submodule_entry *b,
|
const struct submodule_entry *b,
|
||||||
const void *unused)
|
const void *unused_keydata)
|
||||||
{
|
{
|
||||||
return strcmp(a->config->path, b->config->path) ||
|
return strcmp(a->config->path, b->config->path) ||
|
||||||
hashcmp(a->config->gitmodules_sha1, b->config->gitmodules_sha1);
|
hashcmp(a->config->gitmodules_sha1, b->config->gitmodules_sha1);
|
||||||
}
|
}
|
||||||
|
|
||||||
static int config_name_cmp(const struct submodule_entry *a,
|
static int config_name_cmp(const void *unused_cmp_data,
|
||||||
|
const struct submodule_entry *a,
|
||||||
const struct submodule_entry *b,
|
const struct submodule_entry *b,
|
||||||
const void *unused)
|
const void *unused_keydata)
|
||||||
{
|
{
|
||||||
return strcmp(a->config->name, b->config->name) ||
|
return strcmp(a->config->name, b->config->name) ||
|
||||||
hashcmp(a->config->gitmodules_sha1, b->config->gitmodules_sha1);
|
hashcmp(a->config->gitmodules_sha1, b->config->gitmodules_sha1);
|
||||||
|
@ -56,8 +58,8 @@ static struct submodule_cache *submodule_cache_alloc(void)
|
||||||
|
|
||||||
static void submodule_cache_init(struct submodule_cache *cache)
|
static void submodule_cache_init(struct submodule_cache *cache)
|
||||||
{
|
{
|
||||||
hashmap_init(&cache->for_path, (hashmap_cmp_fn) config_path_cmp, 0);
|
hashmap_init(&cache->for_path, (hashmap_cmp_fn) config_path_cmp, NULL, 0);
|
||||||
hashmap_init(&cache->for_name, (hashmap_cmp_fn) config_name_cmp, 0);
|
hashmap_init(&cache->for_name, (hashmap_cmp_fn) config_name_cmp, NULL, 0);
|
||||||
cache->initialized = 1;
|
cache->initialized = 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -13,14 +13,18 @@ static const char *get_value(const struct test_entry *e)
|
||||||
return e->key + strlen(e->key) + 1;
|
return e->key + strlen(e->key) + 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
static int test_entry_cmp(const struct test_entry *e1,
|
static int test_entry_cmp(const void *unused_cmp_data,
|
||||||
const struct test_entry *e2, const char* key)
|
const struct test_entry *e1,
|
||||||
|
const struct test_entry *e2,
|
||||||
|
const char* key)
|
||||||
{
|
{
|
||||||
return strcmp(e1->key, key ? key : e2->key);
|
return strcmp(e1->key, key ? key : e2->key);
|
||||||
}
|
}
|
||||||
|
|
||||||
static int test_entry_cmp_icase(const struct test_entry *e1,
|
static int test_entry_cmp_icase(const void *unused_cmp_data,
|
||||||
const struct test_entry *e2, const char* key)
|
const struct test_entry *e1,
|
||||||
|
const struct test_entry *e2,
|
||||||
|
const char* key)
|
||||||
{
|
{
|
||||||
return strcasecmp(e1->key, key ? key : e2->key);
|
return strcasecmp(e1->key, key ? key : e2->key);
|
||||||
}
|
}
|
||||||
|
@ -92,7 +96,8 @@ static void perf_hashmap(unsigned int method, unsigned int rounds)
|
||||||
if (method & TEST_ADD) {
|
if (method & TEST_ADD) {
|
||||||
/* test adding to the map */
|
/* test adding to the map */
|
||||||
for (j = 0; j < rounds; j++) {
|
for (j = 0; j < rounds; j++) {
|
||||||
hashmap_init(&map, (hashmap_cmp_fn) test_entry_cmp, 0);
|
hashmap_init(&map, (hashmap_cmp_fn) test_entry_cmp,
|
||||||
|
NULL, 0);
|
||||||
|
|
||||||
/* add entries */
|
/* add entries */
|
||||||
for (i = 0; i < TEST_SIZE; i++) {
|
for (i = 0; i < TEST_SIZE; i++) {
|
||||||
|
@ -104,7 +109,7 @@ static void perf_hashmap(unsigned int method, unsigned int rounds)
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
/* test map lookups */
|
/* test map lookups */
|
||||||
hashmap_init(&map, (hashmap_cmp_fn) test_entry_cmp, 0);
|
hashmap_init(&map, (hashmap_cmp_fn) test_entry_cmp, NULL, 0);
|
||||||
|
|
||||||
/* fill the map (sparsely if specified) */
|
/* fill the map (sparsely if specified) */
|
||||||
j = (method & TEST_SPARSE) ? TEST_SIZE / 10 : TEST_SIZE;
|
j = (method & TEST_SPARSE) ? TEST_SIZE / 10 : TEST_SIZE;
|
||||||
|
@ -147,7 +152,7 @@ int cmd_main(int argc, const char **argv)
|
||||||
/* init hash map */
|
/* init hash map */
|
||||||
icase = argc > 1 && !strcmp("ignorecase", argv[1]);
|
icase = argc > 1 && !strcmp("ignorecase", argv[1]);
|
||||||
hashmap_init(&map, (hashmap_cmp_fn) (icase ? test_entry_cmp_icase
|
hashmap_init(&map, (hashmap_cmp_fn) (icase ? test_entry_cmp_icase
|
||||||
: test_entry_cmp), 0);
|
: test_entry_cmp), NULL, 0);
|
||||||
|
|
||||||
/* process commands from stdin */
|
/* process commands from stdin */
|
||||||
while (fgets(line, sizeof(line), stdin)) {
|
while (fgets(line, sizeof(line), stdin)) {
|
||||||
|
|
Загрузка…
Ссылка в новой задаче