зеркало из https://github.com/microsoft/git.git
Merge branch 'mt/parallel-checkout-part-2'
The checkout machinery has been taught to perform the actual write-out of the files in parallel when able. * mt/parallel-checkout-part-2: parallel-checkout: add design documentation parallel-checkout: support progress displaying parallel-checkout: add configuration options parallel-checkout: make it truly parallel unpack-trees: add basic support for parallel checkout
This commit is contained in:
Коммит
a1cac26cc6
|
@ -33,6 +33,7 @@
|
|||
/git-check-mailmap
|
||||
/git-check-ref-format
|
||||
/git-checkout
|
||||
/git-checkout--worker
|
||||
/git-checkout-index
|
||||
/git-cherry
|
||||
/git-cherry-pick
|
||||
|
|
|
@ -91,6 +91,7 @@ TECH_DOCS += technical/multi-pack-index
|
|||
TECH_DOCS += technical/pack-format
|
||||
TECH_DOCS += technical/pack-heuristics
|
||||
TECH_DOCS += technical/pack-protocol
|
||||
TECH_DOCS += technical/parallel-checkout
|
||||
TECH_DOCS += technical/partial-clone
|
||||
TECH_DOCS += technical/protocol-capabilities
|
||||
TECH_DOCS += technical/protocol-common
|
||||
|
|
|
@ -21,3 +21,24 @@ checkout.guess::
|
|||
Provides the default value for the `--guess` or `--no-guess`
|
||||
option in `git checkout` and `git switch`. See
|
||||
linkgit:git-switch[1] and linkgit:git-checkout[1].
|
||||
|
||||
checkout.workers::
|
||||
The number of parallel workers to use when updating the working tree.
|
||||
The default is one, i.e. sequential execution. If set to a value less
|
||||
than one, Git will use as many workers as the number of logical cores
|
||||
available. This setting and `checkout.thresholdForParallelism` affect
|
||||
all commands that perform checkout. E.g. checkout, clone, reset,
|
||||
sparse-checkout, etc.
|
||||
+
|
||||
Note: parallel checkout usually delivers better performance for repositories
|
||||
located on SSDs or over NFS. For repositories on spinning disks and/or machines
|
||||
with a small number of cores, the default sequential checkout often performs
|
||||
better. The size and compression level of a repository might also influence how
|
||||
well the parallel version performs.
|
||||
|
||||
checkout.thresholdForParallelism::
|
||||
When running parallel checkout with a small number of files, the cost
|
||||
of subprocess spawning and inter-process communication might outweigh
|
||||
the parallelization gains. This setting allows to define the minimum
|
||||
number of files for which parallel checkout should be attempted. The
|
||||
default is 100.
|
||||
|
|
|
@ -0,0 +1,270 @@
|
|||
Parallel Checkout Design Notes
|
||||
==============================
|
||||
|
||||
The "Parallel Checkout" feature attempts to use multiple processes to
|
||||
parallelize the work of uncompressing the blobs, applying in-core
|
||||
filters, and writing the resulting contents to the working tree during a
|
||||
checkout operation. It can be used by all checkout-related commands,
|
||||
such as `clone`, `checkout`, `reset`, `sparse-checkout`, and others.
|
||||
|
||||
These commands share the following basic structure:
|
||||
|
||||
* Step 1: Read the current index file into memory.
|
||||
|
||||
* Step 2: Modify the in-memory index based upon the command, and
|
||||
temporarily mark all cache entries that need to be updated.
|
||||
|
||||
* Step 3: Populate the working tree to match the new candidate index.
|
||||
This includes iterating over all of the to-be-updated cache entries
|
||||
and delete, create, or overwrite the associated files in the working
|
||||
tree.
|
||||
|
||||
* Step 4: Write the new index to disk.
|
||||
|
||||
Step 3 is the focus of the "parallel checkout" effort described here.
|
||||
|
||||
Sequential Implementation
|
||||
-------------------------
|
||||
|
||||
For the purposes of discussion here, the current sequential
|
||||
implementation of Step 3 is divided in 3 parts, each one implemented in
|
||||
its own function:
|
||||
|
||||
* Step 3a: `unpack-trees.c:check_updates()` contains a series of
|
||||
sequential loops iterating over the `cache_entry`'s array. The main
|
||||
loop in this function calls the Step 3b function for each of the
|
||||
to-be-updated entries.
|
||||
|
||||
* Step 3b: `entry.c:checkout_entry()` examines the existing working tree
|
||||
for file conflicts, collisions, and unsaved changes. It removes files
|
||||
and creates leading directories as necessary. It calls the Step 3c
|
||||
function for each entry to be written.
|
||||
|
||||
* Step 3c: `entry.c:write_entry()` loads the blob into memory, smudges
|
||||
it if necessary, creates the file in the working tree, writes the
|
||||
smudged contents, calls `fstat()` or `lstat()`, and updates the
|
||||
associated `cache_entry` struct with the stat information gathered.
|
||||
|
||||
It wouldn't be safe to perform Step 3b in parallel, as there could be
|
||||
race conditions between file creations and removals. Instead, the
|
||||
parallel checkout framework lets the sequential code handle Step 3b,
|
||||
and uses parallel workers to replace the sequential
|
||||
`entry.c:write_entry()` calls from Step 3c.
|
||||
|
||||
Rejected Multi-Threaded Solution
|
||||
--------------------------------
|
||||
|
||||
The most "straightforward" implementation would be to spread the set of
|
||||
to-be-updated cache entries across multiple threads. But due to the
|
||||
thread-unsafe functions in the ODB code, we would have to use locks to
|
||||
coordinate the parallel operation. An early prototype of this solution
|
||||
showed that the multi-threaded checkout would bring performance
|
||||
improvements over the sequential code, but there was still too much lock
|
||||
contention. A `perf` profiling indicated that around 20% of the runtime
|
||||
during a local Linux clone (on an SSD) was spent in locking functions.
|
||||
For this reason this approach was rejected in favor of using multiple
|
||||
child processes, which led to a better performance.
|
||||
|
||||
Multi-Process Solution
|
||||
----------------------
|
||||
|
||||
Parallel checkout alters the aforementioned Step 3 to use multiple
|
||||
`checkout--worker` background processes to distribute the work. The
|
||||
long-running worker processes are controlled by the foreground Git
|
||||
command using the existing run-command API.
|
||||
|
||||
Overview
|
||||
~~~~~~~~
|
||||
|
||||
Step 3b is only slightly altered; for each entry to be checked out, the
|
||||
main process performs the following steps:
|
||||
|
||||
* M1: Check whether there is any untracked or unclean file in the
|
||||
working tree which would be overwritten by this entry, and decide
|
||||
whether to proceed (removing the file(s)) or not.
|
||||
|
||||
* M2: Create the leading directories.
|
||||
|
||||
* M3: Load the conversion attributes for the entry's path.
|
||||
|
||||
* M4: Check, based on the entry's type and conversion attributes,
|
||||
whether the entry is eligible for parallel checkout (more on this
|
||||
later). If it is eligible, enqueue the entry and the loaded
|
||||
attributes to later write the entry in parallel. If not, write the
|
||||
entry right away, using the default sequential code.
|
||||
|
||||
Note: we save the conversion attributes associated with each entry
|
||||
because the workers don't have access to the main process' index state,
|
||||
so they can't load the attributes by themselves (and the attributes are
|
||||
needed to properly smudge the entry). Additionally, this has a positive
|
||||
impact on performance as (1) we don't need to load the attributes twice
|
||||
and (2) the attributes machinery is optimized to handle paths in
|
||||
sequential order.
|
||||
|
||||
After all entries have passed through the above steps, the main process
|
||||
checks if the number of enqueued entries is sufficient to spread among
|
||||
the workers. If not, it just writes them sequentially. Otherwise, it
|
||||
spawns the workers and distributes the queued entries uniformly in
|
||||
continuous chunks. This aims to minimize the chances of two workers
|
||||
writing to the same directory simultaneously, which could increase lock
|
||||
contention in the kernel.
|
||||
|
||||
Then, for each assigned item, each worker:
|
||||
|
||||
* W1: Checks if there is any non-directory file in the leading part of
|
||||
the entry's path or if there already exists a file at the entry' path.
|
||||
If so, mark the entry with `PC_ITEM_COLLIDED` and skip it (more on
|
||||
this later).
|
||||
|
||||
* W2: Creates the file (with O_CREAT and O_EXCL).
|
||||
|
||||
* W3: Loads the blob into memory (inflating and delta reconstructing
|
||||
it).
|
||||
|
||||
* W4: Applies any required in-process filter, like end-of-line
|
||||
conversion and re-encoding.
|
||||
|
||||
* W5: Writes the result to the file descriptor opened at W2.
|
||||
|
||||
* W6: Calls `fstat()` or lstat()` on the just-written path, and sends
|
||||
the result back to the main process, together with the end status of
|
||||
the operation and the item's identification number.
|
||||
|
||||
Note that, when possible, steps W3 to W5 are delegated to the streaming
|
||||
machinery, removing the need to keep the entire blob in memory.
|
||||
|
||||
If the worker fails to read the blob or to write it to the working tree,
|
||||
it removes the created file to avoid leaving empty files behind. This is
|
||||
the *only* time a worker is allowed to remove a file.
|
||||
|
||||
As mentioned earlier, it is the responsibility of the main process to
|
||||
remove any file that blocks the checkout operation (or abort if the
|
||||
removal(s) would cause data loss and the user didn't ask to `--force`).
|
||||
This is crucial to avoid race conditions and also to properly detect
|
||||
path collisions at Step W1.
|
||||
|
||||
After the workers finish writing the items and sending back the required
|
||||
information, the main process handles the results in two steps:
|
||||
|
||||
- First, it updates the in-memory index with the `lstat()` information
|
||||
sent by the workers. (This must be done first as this information
|
||||
might me required in the following step.)
|
||||
|
||||
- Then it writes the items which collided on disk (i.e. items marked
|
||||
with `PC_ITEM_COLLIDED`). More on this below.
|
||||
|
||||
Path Collisions
|
||||
---------------
|
||||
|
||||
Path collisions happen when two different paths correspond to the same
|
||||
entry in the file system. E.g. the paths 'a' and 'A' would collide in a
|
||||
case-insensitive file system.
|
||||
|
||||
The sequential checkout deals with collisions in the same way that it
|
||||
deals with files that were already present in the working tree before
|
||||
checkout. Basically, it checks if the path that it wants to write
|
||||
already exists on disk, makes sure the existing file doesn't have
|
||||
unsaved data, and then overwrites it. (To be more pedantic: it deletes
|
||||
the existing file and creates the new one.) So, if there are multiple
|
||||
colliding files to be checked out, the sequential code will write each
|
||||
one of them but only the last will actually survive on disk.
|
||||
|
||||
Parallel checkout aims to reproduce the same behavior. However, we
|
||||
cannot let the workers racily write to the same file on disk. Instead,
|
||||
the workers detect when the entry that they want to check out would
|
||||
collide with an existing file, and mark it with `PC_ITEM_COLLIDED`.
|
||||
Later, the main process can sequentially feed these entries back to
|
||||
`checkout_entry()` without the risk of race conditions. On clone, this
|
||||
also has the effect of marking the colliding entries to later emit a
|
||||
warning for the user, like the classic sequential checkout does.
|
||||
|
||||
The workers are able to detect both collisions among the entries being
|
||||
concurrently written and collisions between a parallel-eligible entry
|
||||
and an ineligible entry. The general idea for collision detection is
|
||||
quite straightforward: for each parallel-eligible entry, the main
|
||||
process must remove all files that prevent this entry from being written
|
||||
(before enqueueing it). This includes any non-directory file in the
|
||||
leading path of the entry. Later, when a worker gets assigned the entry,
|
||||
it looks again for the non-directories files and for an already existing
|
||||
file at the entry's path. If any of these checks finds something, the
|
||||
worker knows that there was a path collision.
|
||||
|
||||
Because parallel checkout can distinguish path collisions from the case
|
||||
where the file was already present in the working tree before checkout,
|
||||
we could alternatively choose to skip the checkout of colliding entries.
|
||||
However, each entry that doesn't get written would have NULL `lstat()`
|
||||
fields on the index. This could cause performance penalties for
|
||||
subsequent commands that need to refresh the index, as they would have
|
||||
to go to the file system to see if the entry is dirty. Thus, if we have
|
||||
N entries in a colliding group and we decide to write and `lstat()` only
|
||||
one of them, every subsequent `git-status` will have to read, convert,
|
||||
and hash the written file N - 1 times. By checking out all colliding
|
||||
entries (like the sequential code does), we only pay the overhead once,
|
||||
during checkout.
|
||||
|
||||
Eligible Entries for Parallel Checkout
|
||||
--------------------------------------
|
||||
|
||||
As previously mentioned, not all entries passed to `checkout_entry()`
|
||||
will be considered eligible for parallel checkout. More specifically, we
|
||||
exclude:
|
||||
|
||||
- Symbolic links; to avoid race conditions that, in combination with
|
||||
path collisions, could cause workers to write files at the wrong
|
||||
place. For example, if we were to concurrently check out a symlink
|
||||
'a' -> 'b' and a regular file 'A/f' in a case-insensitive file system,
|
||||
we could potentially end up writing the file 'A/f' at 'a/f', due to a
|
||||
race condition.
|
||||
|
||||
- Regular files that require external filters (either "one shot" filters
|
||||
or long-running process filters). These filters are black-boxes to Git
|
||||
and may have their own internal locking or non-concurrent assumptions.
|
||||
So it might not be safe to run multiple instances in parallel.
|
||||
+
|
||||
Besides, long-running filters may use the delayed checkout feature to
|
||||
postpone the return of some filtered blobs. The delayed checkout queue
|
||||
and the parallel checkout queue are not compatible and should remain
|
||||
separate.
|
||||
+
|
||||
Note: regular files that only require internal filters, like end-of-line
|
||||
conversion and re-encoding, are eligible for parallel checkout.
|
||||
|
||||
Ineligible entries are checked out by the classic sequential codepath
|
||||
*before* spawning workers.
|
||||
|
||||
Note: submodules's files are also eligible for parallel checkout (as
|
||||
long as they don't fall into any of the excluding categories mentioned
|
||||
above). But since each submodule is checked out in its own child
|
||||
process, we don't mix the superproject's and the submodules' files in
|
||||
the same parallel checkout process or queue.
|
||||
|
||||
The API
|
||||
-------
|
||||
|
||||
The parallel checkout API was designed with the goal of minimizing
|
||||
changes to the current users of the checkout machinery. This means that
|
||||
they don't have to call a different function for sequential or parallel
|
||||
checkout. As already mentioned, `checkout_entry()` will automatically
|
||||
insert the given entry in the parallel checkout queue when this feature
|
||||
is enabled and the entry is eligible; otherwise, it will just write the
|
||||
entry right away, using the sequential code. In general, callers of the
|
||||
parallel checkout API should look similar to this:
|
||||
|
||||
----------------------------------------------
|
||||
int pc_workers, pc_threshold, err = 0;
|
||||
struct checkout state;
|
||||
|
||||
get_parallel_checkout_configs(&pc_workers, &pc_threshold);
|
||||
|
||||
/*
|
||||
* This check is not strictly required, but it
|
||||
* should save some time in sequential mode.
|
||||
*/
|
||||
if (pc_workers > 1)
|
||||
init_parallel_checkout();
|
||||
|
||||
for (each cache_entry ce to-be-updated)
|
||||
err |= checkout_entry(ce, &state, NULL, NULL);
|
||||
|
||||
err |= run_parallel_checkout(&state, pc_workers, pc_threshold, NULL, NULL);
|
||||
----------------------------------------------
|
2
Makefile
2
Makefile
|
@ -948,6 +948,7 @@ LIB_OBJS += pack-revindex.o
|
|||
LIB_OBJS += pack-write.o
|
||||
LIB_OBJS += packfile.o
|
||||
LIB_OBJS += pager.o
|
||||
LIB_OBJS += parallel-checkout.o
|
||||
LIB_OBJS += parse-options-cb.o
|
||||
LIB_OBJS += parse-options.o
|
||||
LIB_OBJS += patch-delta.o
|
||||
|
@ -1064,6 +1065,7 @@ BUILTIN_OBJS += builtin/check-attr.o
|
|||
BUILTIN_OBJS += builtin/check-ignore.o
|
||||
BUILTIN_OBJS += builtin/check-mailmap.o
|
||||
BUILTIN_OBJS += builtin/check-ref-format.o
|
||||
BUILTIN_OBJS += builtin/checkout--worker.o
|
||||
BUILTIN_OBJS += builtin/checkout-index.o
|
||||
BUILTIN_OBJS += builtin/checkout.o
|
||||
BUILTIN_OBJS += builtin/clean.o
|
||||
|
|
|
@ -123,6 +123,7 @@ int cmd_bugreport(int argc, const char **argv, const char *prefix);
|
|||
int cmd_bundle(int argc, const char **argv, const char *prefix);
|
||||
int cmd_cat_file(int argc, const char **argv, const char *prefix);
|
||||
int cmd_checkout(int argc, const char **argv, const char *prefix);
|
||||
int cmd_checkout__worker(int argc, const char **argv, const char *prefix);
|
||||
int cmd_checkout_index(int argc, const char **argv, const char *prefix);
|
||||
int cmd_check_attr(int argc, const char **argv, const char *prefix);
|
||||
int cmd_check_ignore(int argc, const char **argv, const char *prefix);
|
||||
|
|
|
@ -0,0 +1,145 @@
|
|||
#include "builtin.h"
|
||||
#include "config.h"
|
||||
#include "entry.h"
|
||||
#include "parallel-checkout.h"
|
||||
#include "parse-options.h"
|
||||
#include "pkt-line.h"
|
||||
|
||||
static void packet_to_pc_item(const char *buffer, int len,
|
||||
struct parallel_checkout_item *pc_item)
|
||||
{
|
||||
const struct pc_item_fixed_portion *fixed_portion;
|
||||
const char *variant;
|
||||
char *encoding;
|
||||
|
||||
if (len < sizeof(struct pc_item_fixed_portion))
|
||||
BUG("checkout worker received too short item (got %dB, exp %dB)",
|
||||
len, (int)sizeof(struct pc_item_fixed_portion));
|
||||
|
||||
fixed_portion = (struct pc_item_fixed_portion *)buffer;
|
||||
|
||||
if (len - sizeof(struct pc_item_fixed_portion) !=
|
||||
fixed_portion->name_len + fixed_portion->working_tree_encoding_len)
|
||||
BUG("checkout worker received corrupted item");
|
||||
|
||||
variant = buffer + sizeof(struct pc_item_fixed_portion);
|
||||
|
||||
/*
|
||||
* Note: the main process uses zero length to communicate that the
|
||||
* encoding is NULL. There is no use case that requires sending an
|
||||
* actual empty string, since convert_attrs() never sets
|
||||
* ca.working_tree_enconding to "".
|
||||
*/
|
||||
if (fixed_portion->working_tree_encoding_len) {
|
||||
encoding = xmemdupz(variant,
|
||||
fixed_portion->working_tree_encoding_len);
|
||||
variant += fixed_portion->working_tree_encoding_len;
|
||||
} else {
|
||||
encoding = NULL;
|
||||
}
|
||||
|
||||
memset(pc_item, 0, sizeof(*pc_item));
|
||||
pc_item->ce = make_empty_transient_cache_entry(fixed_portion->name_len);
|
||||
pc_item->ce->ce_namelen = fixed_portion->name_len;
|
||||
pc_item->ce->ce_mode = fixed_portion->ce_mode;
|
||||
memcpy(pc_item->ce->name, variant, pc_item->ce->ce_namelen);
|
||||
oidcpy(&pc_item->ce->oid, &fixed_portion->oid);
|
||||
|
||||
pc_item->id = fixed_portion->id;
|
||||
pc_item->ca.crlf_action = fixed_portion->crlf_action;
|
||||
pc_item->ca.ident = fixed_portion->ident;
|
||||
pc_item->ca.working_tree_encoding = encoding;
|
||||
}
|
||||
|
||||
static void report_result(struct parallel_checkout_item *pc_item)
|
||||
{
|
||||
struct pc_item_result res;
|
||||
size_t size;
|
||||
|
||||
res.id = pc_item->id;
|
||||
res.status = pc_item->status;
|
||||
|
||||
if (pc_item->status == PC_ITEM_WRITTEN) {
|
||||
res.st = pc_item->st;
|
||||
size = sizeof(res);
|
||||
} else {
|
||||
size = PC_ITEM_RESULT_BASE_SIZE;
|
||||
}
|
||||
|
||||
packet_write(1, (const char *)&res, size);
|
||||
}
|
||||
|
||||
/* Free the worker-side malloced data, but not pc_item itself. */
|
||||
static void release_pc_item_data(struct parallel_checkout_item *pc_item)
|
||||
{
|
||||
free((char *)pc_item->ca.working_tree_encoding);
|
||||
discard_cache_entry(pc_item->ce);
|
||||
}
|
||||
|
||||
static void worker_loop(struct checkout *state)
|
||||
{
|
||||
struct parallel_checkout_item *items = NULL;
|
||||
size_t i, nr = 0, alloc = 0;
|
||||
|
||||
while (1) {
|
||||
int len = packet_read(0, NULL, NULL, packet_buffer,
|
||||
sizeof(packet_buffer), 0);
|
||||
|
||||
if (len < 0)
|
||||
BUG("packet_read() returned negative value");
|
||||
else if (!len)
|
||||
break;
|
||||
|
||||
ALLOC_GROW(items, nr + 1, alloc);
|
||||
packet_to_pc_item(packet_buffer, len, &items[nr++]);
|
||||
}
|
||||
|
||||
for (i = 0; i < nr; i++) {
|
||||
struct parallel_checkout_item *pc_item = &items[i];
|
||||
write_pc_item(pc_item, state);
|
||||
report_result(pc_item);
|
||||
release_pc_item_data(pc_item);
|
||||
}
|
||||
|
||||
packet_flush(1);
|
||||
|
||||
free(items);
|
||||
}
|
||||
|
||||
static const char * const checkout_worker_usage[] = {
|
||||
N_("git checkout--worker [<options>]"),
|
||||
NULL
|
||||
};
|
||||
|
||||
int cmd_checkout__worker(int argc, const char **argv, const char *prefix)
|
||||
{
|
||||
struct checkout state = CHECKOUT_INIT;
|
||||
struct option checkout_worker_options[] = {
|
||||
OPT_STRING(0, "prefix", &state.base_dir, N_("string"),
|
||||
N_("when creating files, prepend <string>")),
|
||||
OPT_END()
|
||||
};
|
||||
|
||||
if (argc == 2 && !strcmp(argv[1], "-h"))
|
||||
usage_with_options(checkout_worker_usage,
|
||||
checkout_worker_options);
|
||||
|
||||
git_config(git_default_config, NULL);
|
||||
argc = parse_options(argc, argv, prefix, checkout_worker_options,
|
||||
checkout_worker_usage, 0);
|
||||
if (argc > 0)
|
||||
usage_with_options(checkout_worker_usage, checkout_worker_options);
|
||||
|
||||
if (state.base_dir)
|
||||
state.base_dir_len = strlen(state.base_dir);
|
||||
|
||||
/*
|
||||
* Setting this on a worker won't actually update the index. We just
|
||||
* need to tell the checkout machinery to lstat() the written entries,
|
||||
* so that we can send this data back to the main process.
|
||||
*/
|
||||
state.refresh_cache = 1;
|
||||
|
||||
worker_loop(&state);
|
||||
return 0;
|
||||
}
|
17
entry.c
17
entry.c
|
@ -7,6 +7,7 @@
|
|||
#include "progress.h"
|
||||
#include "fsmonitor.h"
|
||||
#include "entry.h"
|
||||
#include "parallel-checkout.h"
|
||||
|
||||
static void create_directories(const char *path, int path_len,
|
||||
const struct checkout *state)
|
||||
|
@ -428,8 +429,17 @@ static void mark_colliding_entries(const struct checkout *state,
|
|||
for (i = 0; i < state->istate->cache_nr; i++) {
|
||||
struct cache_entry *dup = state->istate->cache[i];
|
||||
|
||||
if (dup == ce)
|
||||
break;
|
||||
if (dup == ce) {
|
||||
/*
|
||||
* Parallel checkout doesn't create the files in index
|
||||
* order. So the other side of the collision may appear
|
||||
* after the given cache_entry in the array.
|
||||
*/
|
||||
if (parallel_checkout_status() == PC_RUNNING)
|
||||
continue;
|
||||
else
|
||||
break;
|
||||
}
|
||||
|
||||
if (dup->ce_flags & (CE_MATCHED | CE_VALID | CE_SKIP_WORKTREE))
|
||||
continue;
|
||||
|
@ -538,6 +548,9 @@ int checkout_entry_ca(struct cache_entry *ce, struct conv_attrs *ca,
|
|||
ca = &ca_buf;
|
||||
}
|
||||
|
||||
if (!enqueue_checkout(ce, ca))
|
||||
return 0;
|
||||
|
||||
return write_entry(ce, path.buf, ca, state, 0);
|
||||
}
|
||||
|
||||
|
|
2
git.c
2
git.c
|
@ -490,6 +490,8 @@ static struct cmd_struct commands[] = {
|
|||
{ "check-mailmap", cmd_check_mailmap, RUN_SETUP },
|
||||
{ "check-ref-format", cmd_check_ref_format, NO_PARSEOPT },
|
||||
{ "checkout", cmd_checkout, RUN_SETUP | NEED_WORK_TREE },
|
||||
{ "checkout--worker", cmd_checkout__worker,
|
||||
RUN_SETUP | NEED_WORK_TREE | SUPPORT_SUPER_PREFIX },
|
||||
{ "checkout-index", cmd_checkout_index,
|
||||
RUN_SETUP | NEED_WORK_TREE},
|
||||
{ "cherry", cmd_cherry, RUN_SETUP },
|
||||
|
|
|
@ -0,0 +1,655 @@
|
|||
#include "cache.h"
|
||||
#include "config.h"
|
||||
#include "entry.h"
|
||||
#include "parallel-checkout.h"
|
||||
#include "pkt-line.h"
|
||||
#include "progress.h"
|
||||
#include "run-command.h"
|
||||
#include "sigchain.h"
|
||||
#include "streaming.h"
|
||||
#include "thread-utils.h"
|
||||
|
||||
struct pc_worker {
|
||||
struct child_process cp;
|
||||
size_t next_item_to_complete, nr_items_to_complete;
|
||||
};
|
||||
|
||||
struct parallel_checkout {
|
||||
enum pc_status status;
|
||||
struct parallel_checkout_item *items; /* The parallel checkout queue. */
|
||||
size_t nr, alloc;
|
||||
struct progress *progress;
|
||||
unsigned int *progress_cnt;
|
||||
};
|
||||
|
||||
static struct parallel_checkout parallel_checkout;
|
||||
|
||||
enum pc_status parallel_checkout_status(void)
|
||||
{
|
||||
return parallel_checkout.status;
|
||||
}
|
||||
|
||||
static const int DEFAULT_THRESHOLD_FOR_PARALLELISM = 100;
|
||||
static const int DEFAULT_NUM_WORKERS = 1;
|
||||
|
||||
void get_parallel_checkout_configs(int *num_workers, int *threshold)
|
||||
{
|
||||
if (git_config_get_int("checkout.workers", num_workers))
|
||||
*num_workers = DEFAULT_NUM_WORKERS;
|
||||
else if (*num_workers < 1)
|
||||
*num_workers = online_cpus();
|
||||
|
||||
if (git_config_get_int("checkout.thresholdForParallelism", threshold))
|
||||
*threshold = DEFAULT_THRESHOLD_FOR_PARALLELISM;
|
||||
}
|
||||
|
||||
void init_parallel_checkout(void)
|
||||
{
|
||||
if (parallel_checkout.status != PC_UNINITIALIZED)
|
||||
BUG("parallel checkout already initialized");
|
||||
|
||||
parallel_checkout.status = PC_ACCEPTING_ENTRIES;
|
||||
}
|
||||
|
||||
static void finish_parallel_checkout(void)
|
||||
{
|
||||
if (parallel_checkout.status == PC_UNINITIALIZED)
|
||||
BUG("cannot finish parallel checkout: not initialized yet");
|
||||
|
||||
free(parallel_checkout.items);
|
||||
memset(¶llel_checkout, 0, sizeof(parallel_checkout));
|
||||
}
|
||||
|
||||
static int is_eligible_for_parallel_checkout(const struct cache_entry *ce,
|
||||
const struct conv_attrs *ca)
|
||||
{
|
||||
enum conv_attrs_classification c;
|
||||
size_t packed_item_size;
|
||||
|
||||
/*
|
||||
* Symlinks cannot be checked out in parallel as, in case of path
|
||||
* collision, they could racily replace leading directories of other
|
||||
* entries being checked out. Submodules are checked out in child
|
||||
* processes, which have their own parallel checkout queues.
|
||||
*/
|
||||
if (!S_ISREG(ce->ce_mode))
|
||||
return 0;
|
||||
|
||||
packed_item_size = sizeof(struct pc_item_fixed_portion) + ce->ce_namelen +
|
||||
(ca->working_tree_encoding ? strlen(ca->working_tree_encoding) : 0);
|
||||
|
||||
/*
|
||||
* The amount of data we send to the workers per checkout item is
|
||||
* typically small (75~300B). So unless we find an insanely huge path
|
||||
* of 64KB, we should never reach the 65KB limit of one pkt-line. If
|
||||
* that does happen, we let the sequential code handle the item.
|
||||
*/
|
||||
if (packed_item_size > LARGE_PACKET_DATA_MAX)
|
||||
return 0;
|
||||
|
||||
c = classify_conv_attrs(ca);
|
||||
switch (c) {
|
||||
case CA_CLASS_INCORE:
|
||||
return 1;
|
||||
|
||||
case CA_CLASS_INCORE_FILTER:
|
||||
/*
|
||||
* It would be safe to allow concurrent instances of
|
||||
* single-file smudge filters, like rot13, but we should not
|
||||
* assume that all filters are parallel-process safe. So we
|
||||
* don't allow this.
|
||||
*/
|
||||
return 0;
|
||||
|
||||
case CA_CLASS_INCORE_PROCESS:
|
||||
/*
|
||||
* The parallel queue and the delayed queue are not compatible,
|
||||
* so they must be kept completely separated. And we can't tell
|
||||
* if a long-running process will delay its response without
|
||||
* actually asking it to perform the filtering. Therefore, this
|
||||
* type of filter is not allowed in parallel checkout.
|
||||
*
|
||||
* Furthermore, there should only be one instance of the
|
||||
* long-running process filter as we don't know how it is
|
||||
* managing its own concurrency. So, spreading the entries that
|
||||
* requisite such a filter among the parallel workers would
|
||||
* require a lot more inter-process communication. We would
|
||||
* probably have to designate a single process to interact with
|
||||
* the filter and send all the necessary data to it, for each
|
||||
* entry.
|
||||
*/
|
||||
return 0;
|
||||
|
||||
case CA_CLASS_STREAMABLE:
|
||||
return 1;
|
||||
|
||||
default:
|
||||
BUG("unsupported conv_attrs classification '%d'", c);
|
||||
}
|
||||
}
|
||||
|
||||
int enqueue_checkout(struct cache_entry *ce, struct conv_attrs *ca)
|
||||
{
|
||||
struct parallel_checkout_item *pc_item;
|
||||
|
||||
if (parallel_checkout.status != PC_ACCEPTING_ENTRIES ||
|
||||
!is_eligible_for_parallel_checkout(ce, ca))
|
||||
return -1;
|
||||
|
||||
ALLOC_GROW(parallel_checkout.items, parallel_checkout.nr + 1,
|
||||
parallel_checkout.alloc);
|
||||
|
||||
pc_item = ¶llel_checkout.items[parallel_checkout.nr];
|
||||
pc_item->ce = ce;
|
||||
memcpy(&pc_item->ca, ca, sizeof(pc_item->ca));
|
||||
pc_item->status = PC_ITEM_PENDING;
|
||||
pc_item->id = parallel_checkout.nr;
|
||||
parallel_checkout.nr++;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
size_t pc_queue_size(void)
|
||||
{
|
||||
return parallel_checkout.nr;
|
||||
}
|
||||
|
||||
static void advance_progress_meter(void)
|
||||
{
|
||||
if (parallel_checkout.progress) {
|
||||
(*parallel_checkout.progress_cnt)++;
|
||||
display_progress(parallel_checkout.progress,
|
||||
*parallel_checkout.progress_cnt);
|
||||
}
|
||||
}
|
||||
|
||||
static int handle_results(struct checkout *state)
|
||||
{
|
||||
int ret = 0;
|
||||
size_t i;
|
||||
int have_pending = 0;
|
||||
|
||||
/*
|
||||
* We first update the successfully written entries with the collected
|
||||
* stat() data, so that they can be found by mark_colliding_entries(),
|
||||
* in the next loop, when necessary.
|
||||
*/
|
||||
for (i = 0; i < parallel_checkout.nr; i++) {
|
||||
struct parallel_checkout_item *pc_item = ¶llel_checkout.items[i];
|
||||
if (pc_item->status == PC_ITEM_WRITTEN)
|
||||
update_ce_after_write(state, pc_item->ce, &pc_item->st);
|
||||
}
|
||||
|
||||
for (i = 0; i < parallel_checkout.nr; i++) {
|
||||
struct parallel_checkout_item *pc_item = ¶llel_checkout.items[i];
|
||||
|
||||
switch(pc_item->status) {
|
||||
case PC_ITEM_WRITTEN:
|
||||
/* Already handled */
|
||||
break;
|
||||
case PC_ITEM_COLLIDED:
|
||||
/*
|
||||
* The entry could not be checked out due to a path
|
||||
* collision with another entry. Since there can only
|
||||
* be one entry of each colliding group on the disk, we
|
||||
* could skip trying to check out this one and move on.
|
||||
* However, this would leave the unwritten entries with
|
||||
* null stat() fields on the index, which could
|
||||
* potentially slow down subsequent operations that
|
||||
* require refreshing it: git would not be able to
|
||||
* trust st_size and would have to go to the filesystem
|
||||
* to see if the contents match (see ie_modified()).
|
||||
*
|
||||
* Instead, let's pay the overhead only once, now, and
|
||||
* call checkout_entry_ca() again for this file, to
|
||||
* have its stat() data stored in the index. This also
|
||||
* has the benefit of adding this entry and its
|
||||
* colliding pair to the collision report message.
|
||||
* Additionally, this overwriting behavior is consistent
|
||||
* with what the sequential checkout does, so it doesn't
|
||||
* add any extra overhead.
|
||||
*/
|
||||
ret |= checkout_entry_ca(pc_item->ce, &pc_item->ca,
|
||||
state, NULL, NULL);
|
||||
advance_progress_meter();
|
||||
break;
|
||||
case PC_ITEM_PENDING:
|
||||
have_pending = 1;
|
||||
/* fall through */
|
||||
case PC_ITEM_FAILED:
|
||||
ret = -1;
|
||||
break;
|
||||
default:
|
||||
BUG("unknown checkout item status in parallel checkout");
|
||||
}
|
||||
}
|
||||
|
||||
if (have_pending)
|
||||
error("parallel checkout finished with pending entries");
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int reset_fd(int fd, const char *path)
|
||||
{
|
||||
if (lseek(fd, 0, SEEK_SET) != 0)
|
||||
return error_errno("failed to rewind descriptor of '%s'", path);
|
||||
if (ftruncate(fd, 0))
|
||||
return error_errno("failed to truncate file '%s'", path);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int write_pc_item_to_fd(struct parallel_checkout_item *pc_item, int fd,
|
||||
const char *path)
|
||||
{
|
||||
int ret;
|
||||
struct stream_filter *filter;
|
||||
struct strbuf buf = STRBUF_INIT;
|
||||
char *blob;
|
||||
unsigned long size;
|
||||
ssize_t wrote;
|
||||
|
||||
/* Sanity check */
|
||||
assert(is_eligible_for_parallel_checkout(pc_item->ce, &pc_item->ca));
|
||||
|
||||
filter = get_stream_filter_ca(&pc_item->ca, &pc_item->ce->oid);
|
||||
if (filter) {
|
||||
if (stream_blob_to_fd(fd, &pc_item->ce->oid, filter, 1)) {
|
||||
/* On error, reset fd to try writing without streaming */
|
||||
if (reset_fd(fd, path))
|
||||
return -1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
blob = read_blob_entry(pc_item->ce, &size);
|
||||
if (!blob)
|
||||
return error("cannot read object %s '%s'",
|
||||
oid_to_hex(&pc_item->ce->oid), pc_item->ce->name);
|
||||
|
||||
/*
|
||||
* checkout metadata is used to give context for external process
|
||||
* filters. Files requiring such filters are not eligible for parallel
|
||||
* checkout, so pass NULL. Note: if that changes, the metadata must also
|
||||
* be passed from the main process to the workers.
|
||||
*/
|
||||
ret = convert_to_working_tree_ca(&pc_item->ca, pc_item->ce->name,
|
||||
blob, size, &buf, NULL);
|
||||
|
||||
if (ret) {
|
||||
size_t newsize;
|
||||
free(blob);
|
||||
blob = strbuf_detach(&buf, &newsize);
|
||||
size = newsize;
|
||||
}
|
||||
|
||||
wrote = write_in_full(fd, blob, size);
|
||||
free(blob);
|
||||
if (wrote < 0)
|
||||
return error("unable to write file '%s'", path);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int close_and_clear(int *fd)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
if (*fd >= 0) {
|
||||
ret = close(*fd);
|
||||
*fd = -1;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void write_pc_item(struct parallel_checkout_item *pc_item,
|
||||
struct checkout *state)
|
||||
{
|
||||
unsigned int mode = (pc_item->ce->ce_mode & 0100) ? 0777 : 0666;
|
||||
int fd = -1, fstat_done = 0;
|
||||
struct strbuf path = STRBUF_INIT;
|
||||
const char *dir_sep;
|
||||
|
||||
strbuf_add(&path, state->base_dir, state->base_dir_len);
|
||||
strbuf_add(&path, pc_item->ce->name, pc_item->ce->ce_namelen);
|
||||
|
||||
dir_sep = find_last_dir_sep(path.buf);
|
||||
|
||||
/*
|
||||
* The leading dirs should have been already created by now. But, in
|
||||
* case of path collisions, one of the dirs could have been replaced by
|
||||
* a symlink (checked out after we enqueued this entry for parallel
|
||||
* checkout). Thus, we must check the leading dirs again.
|
||||
*/
|
||||
if (dir_sep && !has_dirs_only_path(path.buf, dir_sep - path.buf,
|
||||
state->base_dir_len)) {
|
||||
pc_item->status = PC_ITEM_COLLIDED;
|
||||
goto out;
|
||||
}
|
||||
|
||||
fd = open(path.buf, O_WRONLY | O_CREAT | O_EXCL, mode);
|
||||
|
||||
if (fd < 0) {
|
||||
if (errno == EEXIST || errno == EISDIR) {
|
||||
/*
|
||||
* Errors which probably represent a path collision.
|
||||
* Suppress the error message and mark the item to be
|
||||
* retried later, sequentially. ENOTDIR and ENOENT are
|
||||
* also interesting, but the above has_dirs_only_path()
|
||||
* call should have already caught these cases.
|
||||
*/
|
||||
pc_item->status = PC_ITEM_COLLIDED;
|
||||
} else {
|
||||
error_errno("failed to open file '%s'", path.buf);
|
||||
pc_item->status = PC_ITEM_FAILED;
|
||||
}
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (write_pc_item_to_fd(pc_item, fd, path.buf)) {
|
||||
/* Error was already reported. */
|
||||
pc_item->status = PC_ITEM_FAILED;
|
||||
close_and_clear(&fd);
|
||||
unlink(path.buf);
|
||||
goto out;
|
||||
}
|
||||
|
||||
fstat_done = fstat_checkout_output(fd, state, &pc_item->st);
|
||||
|
||||
if (close_and_clear(&fd)) {
|
||||
error_errno("unable to close file '%s'", path.buf);
|
||||
pc_item->status = PC_ITEM_FAILED;
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (state->refresh_cache && !fstat_done && lstat(path.buf, &pc_item->st) < 0) {
|
||||
error_errno("unable to stat just-written file '%s'", path.buf);
|
||||
pc_item->status = PC_ITEM_FAILED;
|
||||
goto out;
|
||||
}
|
||||
|
||||
pc_item->status = PC_ITEM_WRITTEN;
|
||||
|
||||
out:
|
||||
strbuf_release(&path);
|
||||
}
|
||||
|
||||
static void send_one_item(int fd, struct parallel_checkout_item *pc_item)
|
||||
{
|
||||
size_t len_data;
|
||||
char *data, *variant;
|
||||
struct pc_item_fixed_portion *fixed_portion;
|
||||
const char *working_tree_encoding = pc_item->ca.working_tree_encoding;
|
||||
size_t name_len = pc_item->ce->ce_namelen;
|
||||
size_t working_tree_encoding_len = working_tree_encoding ?
|
||||
strlen(working_tree_encoding) : 0;
|
||||
|
||||
/*
|
||||
* Any changes in the calculation of the message size must also be made
|
||||
* in is_eligible_for_parallel_checkout().
|
||||
*/
|
||||
len_data = sizeof(struct pc_item_fixed_portion) + name_len +
|
||||
working_tree_encoding_len;
|
||||
|
||||
data = xcalloc(1, len_data);
|
||||
|
||||
fixed_portion = (struct pc_item_fixed_portion *)data;
|
||||
fixed_portion->id = pc_item->id;
|
||||
fixed_portion->ce_mode = pc_item->ce->ce_mode;
|
||||
fixed_portion->crlf_action = pc_item->ca.crlf_action;
|
||||
fixed_portion->ident = pc_item->ca.ident;
|
||||
fixed_portion->name_len = name_len;
|
||||
fixed_portion->working_tree_encoding_len = working_tree_encoding_len;
|
||||
/*
|
||||
* We use hashcpy() instead of oidcpy() because the hash[] positions
|
||||
* after `the_hash_algo->rawsz` might not be initialized. And Valgrind
|
||||
* would complain about passing uninitialized bytes to a syscall
|
||||
* (write(2)). There is no real harm in this case, but the warning could
|
||||
* hinder the detection of actual errors.
|
||||
*/
|
||||
hashcpy(fixed_portion->oid.hash, pc_item->ce->oid.hash);
|
||||
|
||||
variant = data + sizeof(*fixed_portion);
|
||||
if (working_tree_encoding_len) {
|
||||
memcpy(variant, working_tree_encoding, working_tree_encoding_len);
|
||||
variant += working_tree_encoding_len;
|
||||
}
|
||||
memcpy(variant, pc_item->ce->name, name_len);
|
||||
|
||||
packet_write(fd, data, len_data);
|
||||
|
||||
free(data);
|
||||
}
|
||||
|
||||
static void send_batch(int fd, size_t start, size_t nr)
|
||||
{
|
||||
size_t i;
|
||||
sigchain_push(SIGPIPE, SIG_IGN);
|
||||
for (i = 0; i < nr; i++)
|
||||
send_one_item(fd, ¶llel_checkout.items[start + i]);
|
||||
packet_flush(fd);
|
||||
sigchain_pop(SIGPIPE);
|
||||
}
|
||||
|
||||
static struct pc_worker *setup_workers(struct checkout *state, int num_workers)
|
||||
{
|
||||
struct pc_worker *workers;
|
||||
int i, workers_with_one_extra_item;
|
||||
size_t base_batch_size, batch_beginning = 0;
|
||||
|
||||
ALLOC_ARRAY(workers, num_workers);
|
||||
|
||||
for (i = 0; i < num_workers; i++) {
|
||||
struct child_process *cp = &workers[i].cp;
|
||||
|
||||
child_process_init(cp);
|
||||
cp->git_cmd = 1;
|
||||
cp->in = -1;
|
||||
cp->out = -1;
|
||||
cp->clean_on_exit = 1;
|
||||
strvec_push(&cp->args, "checkout--worker");
|
||||
if (state->base_dir_len)
|
||||
strvec_pushf(&cp->args, "--prefix=%s", state->base_dir);
|
||||
if (start_command(cp))
|
||||
die("failed to spawn checkout worker");
|
||||
}
|
||||
|
||||
base_batch_size = parallel_checkout.nr / num_workers;
|
||||
workers_with_one_extra_item = parallel_checkout.nr % num_workers;
|
||||
|
||||
for (i = 0; i < num_workers; i++) {
|
||||
struct pc_worker *worker = &workers[i];
|
||||
size_t batch_size = base_batch_size;
|
||||
|
||||
/* distribute the extra work evenly */
|
||||
if (i < workers_with_one_extra_item)
|
||||
batch_size++;
|
||||
|
||||
send_batch(worker->cp.in, batch_beginning, batch_size);
|
||||
worker->next_item_to_complete = batch_beginning;
|
||||
worker->nr_items_to_complete = batch_size;
|
||||
|
||||
batch_beginning += batch_size;
|
||||
}
|
||||
|
||||
return workers;
|
||||
}
|
||||
|
||||
static void finish_workers(struct pc_worker *workers, int num_workers)
|
||||
{
|
||||
int i;
|
||||
|
||||
/*
|
||||
* Close pipes before calling finish_command() to let the workers
|
||||
* exit asynchronously and avoid spending extra time on wait().
|
||||
*/
|
||||
for (i = 0; i < num_workers; i++) {
|
||||
struct child_process *cp = &workers[i].cp;
|
||||
if (cp->in >= 0)
|
||||
close(cp->in);
|
||||
if (cp->out >= 0)
|
||||
close(cp->out);
|
||||
}
|
||||
|
||||
for (i = 0; i < num_workers; i++) {
|
||||
int rc = finish_command(&workers[i].cp);
|
||||
if (rc > 128) {
|
||||
/*
|
||||
* For a normal non-zero exit, the worker should have
|
||||
* already printed something useful to stderr. But a
|
||||
* death by signal should be mentioned to the user.
|
||||
*/
|
||||
error("checkout worker %d died of signal %d", i, rc - 128);
|
||||
}
|
||||
}
|
||||
|
||||
free(workers);
|
||||
}
|
||||
|
||||
static inline void assert_pc_item_result_size(int got, int exp)
|
||||
{
|
||||
if (got != exp)
|
||||
BUG("wrong result size from checkout worker (got %dB, exp %dB)",
|
||||
got, exp);
|
||||
}
|
||||
|
||||
static void parse_and_save_result(const char *buffer, int len,
|
||||
struct pc_worker *worker)
|
||||
{
|
||||
struct pc_item_result *res;
|
||||
struct parallel_checkout_item *pc_item;
|
||||
struct stat *st = NULL;
|
||||
|
||||
if (len < PC_ITEM_RESULT_BASE_SIZE)
|
||||
BUG("too short result from checkout worker (got %dB, exp >=%dB)",
|
||||
len, (int)PC_ITEM_RESULT_BASE_SIZE);
|
||||
|
||||
res = (struct pc_item_result *)buffer;
|
||||
|
||||
/*
|
||||
* Worker should send either the full result struct on success, or
|
||||
* just the base (i.e. no stat data), otherwise.
|
||||
*/
|
||||
if (res->status == PC_ITEM_WRITTEN) {
|
||||
assert_pc_item_result_size(len, (int)sizeof(struct pc_item_result));
|
||||
st = &res->st;
|
||||
} else {
|
||||
assert_pc_item_result_size(len, (int)PC_ITEM_RESULT_BASE_SIZE);
|
||||
}
|
||||
|
||||
if (!worker->nr_items_to_complete)
|
||||
BUG("received result from supposedly finished checkout worker");
|
||||
if (res->id != worker->next_item_to_complete)
|
||||
BUG("unexpected item id from checkout worker (got %"PRIuMAX", exp %"PRIuMAX")",
|
||||
(uintmax_t)res->id, (uintmax_t)worker->next_item_to_complete);
|
||||
|
||||
worker->next_item_to_complete++;
|
||||
worker->nr_items_to_complete--;
|
||||
|
||||
pc_item = ¶llel_checkout.items[res->id];
|
||||
pc_item->status = res->status;
|
||||
if (st)
|
||||
pc_item->st = *st;
|
||||
|
||||
if (res->status != PC_ITEM_COLLIDED)
|
||||
advance_progress_meter();
|
||||
}
|
||||
|
||||
static void gather_results_from_workers(struct pc_worker *workers,
|
||||
int num_workers)
|
||||
{
|
||||
int i, active_workers = num_workers;
|
||||
struct pollfd *pfds;
|
||||
|
||||
CALLOC_ARRAY(pfds, num_workers);
|
||||
for (i = 0; i < num_workers; i++) {
|
||||
pfds[i].fd = workers[i].cp.out;
|
||||
pfds[i].events = POLLIN;
|
||||
}
|
||||
|
||||
while (active_workers) {
|
||||
int nr = poll(pfds, num_workers, -1);
|
||||
|
||||
if (nr < 0) {
|
||||
if (errno == EINTR)
|
||||
continue;
|
||||
die_errno("failed to poll checkout workers");
|
||||
}
|
||||
|
||||
for (i = 0; i < num_workers && nr > 0; i++) {
|
||||
struct pc_worker *worker = &workers[i];
|
||||
struct pollfd *pfd = &pfds[i];
|
||||
|
||||
if (!pfd->revents)
|
||||
continue;
|
||||
|
||||
if (pfd->revents & POLLIN) {
|
||||
int len = packet_read(pfd->fd, NULL, NULL,
|
||||
packet_buffer,
|
||||
sizeof(packet_buffer), 0);
|
||||
|
||||
if (len < 0) {
|
||||
BUG("packet_read() returned negative value");
|
||||
} else if (!len) {
|
||||
pfd->fd = -1;
|
||||
active_workers--;
|
||||
} else {
|
||||
parse_and_save_result(packet_buffer,
|
||||
len, worker);
|
||||
}
|
||||
} else if (pfd->revents & POLLHUP) {
|
||||
pfd->fd = -1;
|
||||
active_workers--;
|
||||
} else if (pfd->revents & (POLLNVAL | POLLERR)) {
|
||||
die("error polling from checkout worker");
|
||||
}
|
||||
|
||||
nr--;
|
||||
}
|
||||
}
|
||||
|
||||
free(pfds);
|
||||
}
|
||||
|
||||
static void write_items_sequentially(struct checkout *state)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < parallel_checkout.nr; i++) {
|
||||
struct parallel_checkout_item *pc_item = ¶llel_checkout.items[i];
|
||||
write_pc_item(pc_item, state);
|
||||
if (pc_item->status != PC_ITEM_COLLIDED)
|
||||
advance_progress_meter();
|
||||
}
|
||||
}
|
||||
|
||||
int run_parallel_checkout(struct checkout *state, int num_workers, int threshold,
|
||||
struct progress *progress, unsigned int *progress_cnt)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (parallel_checkout.status != PC_ACCEPTING_ENTRIES)
|
||||
BUG("cannot run parallel checkout: uninitialized or already running");
|
||||
|
||||
parallel_checkout.status = PC_RUNNING;
|
||||
parallel_checkout.progress = progress;
|
||||
parallel_checkout.progress_cnt = progress_cnt;
|
||||
|
||||
if (parallel_checkout.nr < num_workers)
|
||||
num_workers = parallel_checkout.nr;
|
||||
|
||||
if (num_workers <= 1 || parallel_checkout.nr < threshold) {
|
||||
write_items_sequentially(state);
|
||||
} else {
|
||||
struct pc_worker *workers = setup_workers(state, num_workers);
|
||||
gather_results_from_workers(workers, num_workers);
|
||||
finish_workers(workers, num_workers);
|
||||
}
|
||||
|
||||
ret = handle_results(state);
|
||||
|
||||
finish_parallel_checkout();
|
||||
return ret;
|
||||
}
|
|
@ -0,0 +1,111 @@
|
|||
#ifndef PARALLEL_CHECKOUT_H
|
||||
#define PARALLEL_CHECKOUT_H
|
||||
|
||||
#include "convert.h"
|
||||
|
||||
struct cache_entry;
|
||||
struct checkout;
|
||||
struct progress;
|
||||
|
||||
/****************************************************************
|
||||
* Users of parallel checkout
|
||||
****************************************************************/
|
||||
|
||||
enum pc_status {
|
||||
PC_UNINITIALIZED = 0,
|
||||
PC_ACCEPTING_ENTRIES,
|
||||
PC_RUNNING,
|
||||
};
|
||||
|
||||
enum pc_status parallel_checkout_status(void);
|
||||
void get_parallel_checkout_configs(int *num_workers, int *threshold);
|
||||
|
||||
/*
|
||||
* Put parallel checkout into the PC_ACCEPTING_ENTRIES state. Should be used
|
||||
* only when in the PC_UNINITIALIZED state.
|
||||
*/
|
||||
void init_parallel_checkout(void);
|
||||
|
||||
/*
|
||||
* Return -1 if parallel checkout is currently not accepting entries or if the
|
||||
* entry is not eligible for parallel checkout. Otherwise, enqueue the entry
|
||||
* for later write and return 0.
|
||||
*/
|
||||
int enqueue_checkout(struct cache_entry *ce, struct conv_attrs *ca);
|
||||
size_t pc_queue_size(void);
|
||||
|
||||
/*
|
||||
* Write all the queued entries, returning 0 on success. If the number of
|
||||
* entries is smaller than the specified threshold, the operation is performed
|
||||
* sequentially.
|
||||
*/
|
||||
int run_parallel_checkout(struct checkout *state, int num_workers, int threshold,
|
||||
struct progress *progress, unsigned int *progress_cnt);
|
||||
|
||||
/****************************************************************
|
||||
* Interface with checkout--worker
|
||||
****************************************************************/
|
||||
|
||||
enum pc_item_status {
|
||||
PC_ITEM_PENDING = 0,
|
||||
PC_ITEM_WRITTEN,
|
||||
/*
|
||||
* The entry could not be written because there was another file
|
||||
* already present in its path or leading directories. Since
|
||||
* checkout_entry_ca() removes such files from the working tree before
|
||||
* enqueueing the entry for parallel checkout, it means that there was
|
||||
* a path collision among the entries being written.
|
||||
*/
|
||||
PC_ITEM_COLLIDED,
|
||||
PC_ITEM_FAILED,
|
||||
};
|
||||
|
||||
struct parallel_checkout_item {
|
||||
/*
|
||||
* In main process ce points to a istate->cache[] entry. Thus, it's not
|
||||
* owned by us. In workers they own the memory, which *must be* released.
|
||||
*/
|
||||
struct cache_entry *ce;
|
||||
struct conv_attrs ca;
|
||||
size_t id; /* position in parallel_checkout.items[] of main process */
|
||||
|
||||
/* Output fields, sent from workers. */
|
||||
enum pc_item_status status;
|
||||
struct stat st;
|
||||
};
|
||||
|
||||
/*
|
||||
* The fixed-size portion of `struct parallel_checkout_item` that is sent to the
|
||||
* workers. Following this will be 2 strings: ca.working_tree_encoding and
|
||||
* ce.name; These are NOT null terminated, since we have the size in the fixed
|
||||
* portion.
|
||||
*
|
||||
* Note that not all fields of conv_attrs and cache_entry are passed, only the
|
||||
* ones that will be required by the workers to smudge and write the entry.
|
||||
*/
|
||||
struct pc_item_fixed_portion {
|
||||
size_t id;
|
||||
struct object_id oid;
|
||||
unsigned int ce_mode;
|
||||
enum convert_crlf_action crlf_action;
|
||||
int ident;
|
||||
size_t working_tree_encoding_len;
|
||||
size_t name_len;
|
||||
};
|
||||
|
||||
/*
|
||||
* The fields of `struct parallel_checkout_item` that are returned by the
|
||||
* workers. Note: `st` must be the last one, as it is omitted on error.
|
||||
*/
|
||||
struct pc_item_result {
|
||||
size_t id;
|
||||
enum pc_item_status status;
|
||||
struct stat st;
|
||||
};
|
||||
|
||||
#define PC_ITEM_RESULT_BASE_SIZE offsetof(struct pc_item_result, st)
|
||||
|
||||
void write_pc_item(struct parallel_checkout_item *pc_item,
|
||||
struct checkout *state);
|
||||
|
||||
#endif /* PARALLEL_CHECKOUT_H */
|
|
@ -17,6 +17,7 @@
|
|||
#include "object-store.h"
|
||||
#include "promisor-remote.h"
|
||||
#include "entry.h"
|
||||
#include "parallel-checkout.h"
|
||||
|
||||
/*
|
||||
* Error messages expected by scripts out of plumbing commands such as
|
||||
|
@ -398,7 +399,7 @@ static int check_updates(struct unpack_trees_options *o,
|
|||
int errs = 0;
|
||||
struct progress *progress;
|
||||
struct checkout state = CHECKOUT_INIT;
|
||||
int i;
|
||||
int i, pc_workers, pc_threshold;
|
||||
|
||||
trace_performance_enter();
|
||||
state.force = 1;
|
||||
|
@ -441,7 +442,6 @@ static int check_updates(struct unpack_trees_options *o,
|
|||
if (should_update_submodules())
|
||||
load_gitmodules_file(index, &state);
|
||||
|
||||
enable_delayed_checkout(&state);
|
||||
if (has_promisor_remote()) {
|
||||
/*
|
||||
* Prefetch the objects that are to be checked out in the loop
|
||||
|
@ -464,18 +464,31 @@ static int check_updates(struct unpack_trees_options *o,
|
|||
to_fetch.oid, to_fetch.nr);
|
||||
oid_array_clear(&to_fetch);
|
||||
}
|
||||
|
||||
get_parallel_checkout_configs(&pc_workers, &pc_threshold);
|
||||
|
||||
enable_delayed_checkout(&state);
|
||||
if (pc_workers > 1)
|
||||
init_parallel_checkout();
|
||||
for (i = 0; i < index->cache_nr; i++) {
|
||||
struct cache_entry *ce = index->cache[i];
|
||||
|
||||
if (ce->ce_flags & CE_UPDATE) {
|
||||
size_t last_pc_queue_size = pc_queue_size();
|
||||
|
||||
if (ce->ce_flags & CE_WT_REMOVE)
|
||||
BUG("both update and delete flags are set on %s",
|
||||
ce->name);
|
||||
display_progress(progress, ++cnt);
|
||||
ce->ce_flags &= ~CE_UPDATE;
|
||||
errs |= checkout_entry(ce, &state, NULL, NULL);
|
||||
|
||||
if (last_pc_queue_size == pc_queue_size())
|
||||
display_progress(progress, ++cnt);
|
||||
}
|
||||
}
|
||||
if (pc_workers > 1)
|
||||
errs |= run_parallel_checkout(&state, pc_workers, pc_threshold,
|
||||
progress, &cnt);
|
||||
stop_progress(&progress);
|
||||
errs |= finish_delayed_checkout(&state, NULL);
|
||||
git_attr_set_direction(GIT_ATTR_CHECKIN);
|
||||
|
|
Загрузка…
Ссылка в новой задаче