Some more cuda compiler changes

This commit is contained in:
Ritwik Das 2022-05-13 15:12:07 -07:00
Родитель 7ed9a2c615
Коммит 4872459307
1 изменённых файлов: 51 добавлений и 32 удалений

Просмотреть файл

@ -3,12 +3,7 @@ import pathlib
import sys
import numpy as np
from typing import List
# CUDA stuff
# TODO: move from pvnrtc module to cuda entirely to reduce dependencies
from pynvrtc.compiler import Program
from cuda import cuda, nvrtc
from .arg_info import ArgInfo, verify_args
from .callable_func import CallableFunc
from .gpu_headers import CUDA_HEADER_MAP
@ -43,16 +38,44 @@ def _find_cuda_incl_path() -> pathlib.Path:
return cuda_path
def compile_cuda_program(cuda_src_path: pathlib.Path, func_name):
src = cuda_src_path.read_text()
prog = Program(src=src, name=func_name, headers=CUDA_HEADER_MAP.values(), include_names=CUDA_HEADER_MAP.keys())
ptx = prog.compile([
'-use_fast_math',
'-default-device',
'-std=c++11'
])
opts = [
# https://docs.nvidia.com/cuda/nvrtc/index.html#group__options
b'--gpu-architecture=compute_86',
b'--ptxas-options=--warn-on-spills', # https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#options-for-passing-specific-phase-options-ptxas-options
b'-use_fast_math',
b'--include-path=/usr/local/cuda-11.6/targets/x86_64-linux/include/',
b'-std=c++17',
b'-default-device',
#b'--restrict',
#b'--device-int128'
]
# Create program
err, prog = nvrtc.nvrtcCreateProgram(str.encode(src), func_name.encode('utf-8'), 0, [], [])
ASSERT_DRV(err)
# Compile program
err = nvrtc.nvrtcCompileProgram(prog, len(opts), opts)
if err != nvrtc.nvrtcResult.NVRTC_SUCCESS:
err, log_size = nvrtc.nvrtcGetProgramLogSize(prog)
ASSERT_DRV(err)
log = "0" * log_size
e_log = log.encode('utf-8')
err = nvrtc.nvrtcGetProgramLog(prog, e_log)
print(e_log.decode('utf-8'))
# Get PTX from compilation
err, ptxSize = nvrtc.nvrtcGetPTXSize(prog)
ASSERT_DRV(err)
ptx = b" " * ptxSize
err = nvrtc.nvrtcGetPTX(prog, ptx)
# prog = Program(src=src, name=func_name)
# ptx = prog.compile(opts)
return ptx
@ -73,8 +96,9 @@ def initialize_cuda():
def get_func_from_ptx(ptx, func_name):
# Note: Incompatible --gpu-architecture would be detected here
err, ptx_mod = cuda.cuModuleLoadData(ptx.encode('utf-8'))
# Load PTX as module data and retrieve function
ptx = np.char.array(ptx)
err, ptx_mod = cuda.cuModuleLoadData(ptx)
ASSERT_DRV(err)
err, kernel = cuda.cuModuleGetFunction(ptx_mod, func_name.encode('utf-8'))
ASSERT_DRV(err)
@ -82,57 +106,52 @@ def get_func_from_ptx(ptx, func_name):
return kernel
def _cuda_transfer_mem(usage, func, source_args: List, dest_args: List, arg_infos: List[ArgInfo], stream=None):
def _cuda_transfer_mem(usage, func, source_args: List, dest_args: List, arg_infos: List[ArgInfo]):
for source_arg, dest_arg, arg_info in zip(source_args, dest_args, arg_infos):
if usage in arg_info.usage.value:
if stream:
err, = func(dest_arg, source_arg, arg_info.total_byte_size, stream)
else:
err, = func(dest_arg, source_arg, arg_info.total_byte_size)
err, = func(dest_arg, source_arg, arg_info.total_byte_size)
ASSERT_DRV(err)
def transfer_mem_host_to_cuda(device_args: List, host_args: List[np.array], arg_infos: List[ArgInfo], stream=None):
def transfer_mem_host_to_cuda(device_args: List, host_args: List[np.array], arg_infos: List[ArgInfo]):
_cuda_transfer_mem(
usage='input',
func=cuda.cuMemCpyHtoDAsync if stream else cuda.cuMemcpyHtoD,
func=cuda.cuMemcpyHtoD,
source_args=[a.ctypes.data for a in host_args],
dest_args=device_args,
arg_infos=arg_infos,
stream=stream
arg_infos=arg_infos
)
def transfer_mem_cuda_to_host(device_args: List, host_args: List[np.array], arg_infos: List[ArgInfo], stream=None):
def transfer_mem_cuda_to_host(device_args: List, host_args: List[np.array], arg_infos: List[ArgInfo]):
_cuda_transfer_mem(
usage='output',
func=cuda.cuMemcpyDtoHAsync if stream else cuda.cuMemcpyDtoH,
func=cuda.cuMemcpyDtoH,
source_args=device_args,
dest_args=[a.ctypes.data for a in host_args],
arg_infos=arg_infos,
stream=stream
arg_infos=arg_infos
)
def allocate_cuda_mem(arg_infos: List[ArgInfo], stream=None):
def allocate_cuda_mem(arg_infos: List[ArgInfo]):
device_mem = []
for arg in arg_infos:
size = arg.total_byte_size
err, mem = cuda.cuMemAllocAsync(size, stream) if stream else cuda.cuMemAlloc(size)
err, mem = cuda.cuMemAlloc(size)
try:
ASSERT_DRV(err)
except:
free_cuda_mem(device_mem, stream)
free_cuda_mem(device_mem)
raise
device_mem.append(mem)
return device_mem
def free_cuda_mem(args, stream=None):
def free_cuda_mem(args):
for arg in args:
cuda.cuMemFreeAsync(arg, stream) if stream else cuda.cuMemFree(arg)
cuda.cuMemFree(arg)
def device_args_to_ptr_list(device_args: List):