huggingface-transformers/tests/test_modeling_tf_t5.py

168 строки
6.3 KiB
Python
Исходник Обычный вид История

2019-11-06 13:52:50 +03:00
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2019-12-22 18:20:32 +03:00
2019-11-06 13:52:50 +03:00
import unittest
from transformers import T5Config, is_tf_available
2019-11-06 13:52:50 +03:00
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_tf, slow
2019-11-06 13:52:50 +03:00
if is_tf_available():
from transformers.modeling_tf_t5 import TFT5Model, TFT5WithLMHeadModel
2019-11-06 13:52:50 +03:00
2019-12-10 17:11:07 +03:00
@require_tf
class TFT5ModelTest(TFModelTesterMixin, unittest.TestCase):
2019-11-06 13:52:50 +03:00
is_encoder_decoder = True
all_model_classes = (TFT5Model, TFT5WithLMHeadModel) if is_tf_available() else ()
2019-11-06 13:52:50 +03:00
class TFT5ModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
n_positions=14,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
d_ff=37,
relative_attention_num_buckets=8,
dropout_rate=0.1,
initializer_factor=0.002,
scope=None,
):
2019-11-06 13:52:50 +03:00
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.n_positions = n_positions
2019-11-06 13:52:50 +03:00
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.d_ff = d_ff
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.initializer_factor = initializer_factor
2019-11-06 13:52:50 +03:00
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_labels = None
if self.use_labels:
token_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
2019-11-06 13:52:50 +03:00
config = T5Config(
2019-12-16 11:59:36 +03:00
vocab_size=self.vocab_size,
n_positions=self.n_positions,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
)
return (config, input_ids, input_mask, token_labels)
def create_and_check_t5_model(self, config, input_ids, input_mask, token_labels):
2019-11-06 13:52:50 +03:00
model = TFT5Model(config=config)
inputs = {
"encoder_input_ids": input_ids,
"decoder_input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
encoder_output, decoder_output = model(inputs)
2019-11-06 13:52:50 +03:00
encoder_output, decoder_output = model(
input_ids, decoder_attention_mask=input_mask, encoder_input_ids=input_ids
)
2019-11-06 13:52:50 +03:00
result = {
"encoder_output": encoder_output.numpy(),
"decoder_output": decoder_output.numpy(),
2019-11-06 13:52:50 +03:00
}
self.parent.assertListEqual(
list(result["encoder_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(
list(result["decoder_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
2019-11-06 13:52:50 +03:00
def create_and_check_t5_with_lm_head(self, config, input_ids, input_mask, token_labels):
2019-11-06 13:52:50 +03:00
model = TFT5WithLMHeadModel(config=config)
inputs = {
"encoder_input_ids": input_ids,
"decoder_input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
prediction_scores, decoder_output = model(inputs)
2019-11-06 13:52:50 +03:00
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
2019-11-06 13:52:50 +03:00
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, input_mask, token_labels) = config_and_inputs
inputs_dict = {
"encoder_input_ids": input_ids,
"decoder_input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
2019-11-06 13:52:50 +03:00
return config, inputs_dict
def setUp(self):
self.model_tester = TFT5ModelTest.TFT5ModelTester(self)
self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37)
2019-11-06 13:52:50 +03:00
def test_config(self):
self.config_tester.run_common_tests()
def test_t5_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_t5_model(*config_and_inputs)
def test_with_lm_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_t5_with_lm_head(*config_and_inputs)
2019-12-10 17:11:07 +03:00
@slow
2019-11-06 13:52:50 +03:00
def test_model_from_pretrained(self):
for model_name in ["t5-small"]:
model = TFT5Model.from_pretrained(model_name, cache_dir=CACHE_DIR)
2019-11-06 13:52:50 +03:00
self.assertIsNotNone(model)