Test XLA examples (#5583)
* Test XLA examples * Style * Using `require_torch_tpu` * Style * No need for pytest
This commit is contained in:
Родитель
3bd55199cd
Коммит
0533cf4706
|
@ -0,0 +1,91 @@
|
||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2018 HuggingFace Inc..
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import sys
|
||||||
|
import unittest
|
||||||
|
from time import time
|
||||||
|
from unittest.mock import patch
|
||||||
|
|
||||||
|
from transformers.testing_utils import require_torch_tpu
|
||||||
|
|
||||||
|
|
||||||
|
logging.basicConfig(level=logging.DEBUG)
|
||||||
|
|
||||||
|
logger = logging.getLogger()
|
||||||
|
|
||||||
|
|
||||||
|
def get_setup_file():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("-f")
|
||||||
|
args = parser.parse_args()
|
||||||
|
return args.f
|
||||||
|
|
||||||
|
|
||||||
|
@require_torch_tpu
|
||||||
|
class TorchXLAExamplesTests(unittest.TestCase):
|
||||||
|
def test_run_glue(self):
|
||||||
|
import xla_spawn
|
||||||
|
|
||||||
|
stream_handler = logging.StreamHandler(sys.stdout)
|
||||||
|
logger.addHandler(stream_handler)
|
||||||
|
|
||||||
|
output_directory = "run_glue_output"
|
||||||
|
|
||||||
|
testargs = f"""
|
||||||
|
text-classification/run_glue.py
|
||||||
|
--num_cores=8
|
||||||
|
text-classification/run_glue.py
|
||||||
|
--do_train
|
||||||
|
--do_eval
|
||||||
|
--task_name=MRPC
|
||||||
|
--data_dir=../glue_data/MRPC
|
||||||
|
--cache_dir=./cache_dir
|
||||||
|
--num_train_epochs=1
|
||||||
|
--max_seq_length=128
|
||||||
|
--learning_rate=3e-5
|
||||||
|
--output_dir={output_directory}
|
||||||
|
--overwrite_output_dir
|
||||||
|
--logging_steps=5
|
||||||
|
--save_steps=5
|
||||||
|
--overwrite_cache
|
||||||
|
--tpu_metrics_debug
|
||||||
|
--model_name_or_path=bert-base-cased
|
||||||
|
--per_device_train_batch_size=64
|
||||||
|
--per_device_eval_batch_size=64
|
||||||
|
--evaluate_during_training
|
||||||
|
--overwrite_cache
|
||||||
|
""".split()
|
||||||
|
with patch.object(sys, "argv", testargs):
|
||||||
|
start = time()
|
||||||
|
xla_spawn.main()
|
||||||
|
end = time()
|
||||||
|
|
||||||
|
result = {}
|
||||||
|
with open(f"{output_directory}/eval_results_mrpc.txt") as f:
|
||||||
|
lines = f.readlines()
|
||||||
|
for line in lines:
|
||||||
|
key, value = line.split(" = ")
|
||||||
|
result[key] = float(value)
|
||||||
|
|
||||||
|
del result["eval_loss"]
|
||||||
|
for value in result.values():
|
||||||
|
# Assert that the model trains
|
||||||
|
self.assertGreaterEqual(value, 0.70)
|
||||||
|
|
||||||
|
# Assert that the script takes less than 100 seconds to make sure it doesn't hang.
|
||||||
|
self.assertLess(end - start, 100)
|
|
@ -2,7 +2,7 @@ import os
|
||||||
import unittest
|
import unittest
|
||||||
from distutils.util import strtobool
|
from distutils.util import strtobool
|
||||||
|
|
||||||
from transformers.file_utils import _tf_available, _torch_available
|
from transformers.file_utils import _tf_available, _torch_available, _torch_tpu_available
|
||||||
|
|
||||||
|
|
||||||
SMALL_MODEL_IDENTIFIER = "julien-c/bert-xsmall-dummy"
|
SMALL_MODEL_IDENTIFIER = "julien-c/bert-xsmall-dummy"
|
||||||
|
@ -113,6 +113,16 @@ def require_multigpu(test_case):
|
||||||
return test_case
|
return test_case
|
||||||
|
|
||||||
|
|
||||||
|
def require_torch_tpu(test_case):
|
||||||
|
"""
|
||||||
|
Decorator marking a test that requires a TPU (in PyTorch).
|
||||||
|
"""
|
||||||
|
if not _torch_tpu_available:
|
||||||
|
return unittest.skip("test requires PyTorch TPU")
|
||||||
|
|
||||||
|
return test_case
|
||||||
|
|
||||||
|
|
||||||
if _torch_available:
|
if _torch_available:
|
||||||
# Set the USE_CUDA environment variable to select a GPU.
|
# Set the USE_CUDA environment variable to select a GPU.
|
||||||
torch_device = "cuda" if parse_flag_from_env("USE_CUDA") else "cpu"
|
torch_device = "cuda" if parse_flag_from_env("USE_CUDA") else "cpu"
|
||||||
|
|
Загрузка…
Ссылка в новой задаче