* Test XLA examples

* Style

* Using `require_torch_tpu`

* Style

* No need for pytest
This commit is contained in:
Lysandre Debut 2020-07-09 09:19:19 -04:00 коммит произвёл GitHub
Родитель 3bd55199cd
Коммит 0533cf4706
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
2 изменённых файлов: 102 добавлений и 1 удалений

Просмотреть файл

@ -0,0 +1,91 @@
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import sys
import unittest
from time import time
from unittest.mock import patch
from transformers.testing_utils import require_torch_tpu
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
def get_setup_file():
parser = argparse.ArgumentParser()
parser.add_argument("-f")
args = parser.parse_args()
return args.f
@require_torch_tpu
class TorchXLAExamplesTests(unittest.TestCase):
def test_run_glue(self):
import xla_spawn
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
output_directory = "run_glue_output"
testargs = f"""
text-classification/run_glue.py
--num_cores=8
text-classification/run_glue.py
--do_train
--do_eval
--task_name=MRPC
--data_dir=../glue_data/MRPC
--cache_dir=./cache_dir
--num_train_epochs=1
--max_seq_length=128
--learning_rate=3e-5
--output_dir={output_directory}
--overwrite_output_dir
--logging_steps=5
--save_steps=5
--overwrite_cache
--tpu_metrics_debug
--model_name_or_path=bert-base-cased
--per_device_train_batch_size=64
--per_device_eval_batch_size=64
--evaluate_during_training
--overwrite_cache
""".split()
with patch.object(sys, "argv", testargs):
start = time()
xla_spawn.main()
end = time()
result = {}
with open(f"{output_directory}/eval_results_mrpc.txt") as f:
lines = f.readlines()
for line in lines:
key, value = line.split(" = ")
result[key] = float(value)
del result["eval_loss"]
for value in result.values():
# Assert that the model trains
self.assertGreaterEqual(value, 0.70)
# Assert that the script takes less than 100 seconds to make sure it doesn't hang.
self.assertLess(end - start, 100)

Просмотреть файл

@ -2,7 +2,7 @@ import os
import unittest import unittest
from distutils.util import strtobool from distutils.util import strtobool
from transformers.file_utils import _tf_available, _torch_available from transformers.file_utils import _tf_available, _torch_available, _torch_tpu_available
SMALL_MODEL_IDENTIFIER = "julien-c/bert-xsmall-dummy" SMALL_MODEL_IDENTIFIER = "julien-c/bert-xsmall-dummy"
@ -113,6 +113,16 @@ def require_multigpu(test_case):
return test_case return test_case
def require_torch_tpu(test_case):
"""
Decorator marking a test that requires a TPU (in PyTorch).
"""
if not _torch_tpu_available:
return unittest.skip("test requires PyTorch TPU")
return test_case
if _torch_available: if _torch_available:
# Set the USE_CUDA environment variable to select a GPU. # Set the USE_CUDA environment variable to select a GPU.
torch_device = "cuda" if parse_flag_from_env("USE_CUDA") else "cpu" torch_device = "cuda" if parse_flag_from_env("USE_CUDA") else "cpu"