Fix Inconsistent NER Grouping (Pipeline) (#4987)

* Add B I handling to grouping

* Add fix to include separate entity as last token

* move last_idx definition outside loop

* Use first entity in entity group as reference for entity type

* Add test cases

* Take out extra class accidentally added

* Return tf ner grouped test to original

* Take out redundant last entity

* Get last_idx safely

Co-authored-by: ColleterVi <36503688+ColleterVi@users.noreply.github.com>

* Fix first entity comment

* Create separate functions for group_sub_entities and group_entities (splitting call method to testable functions)

* Take out unnecessary last_idx

* Remove additional forward pass test

* Move token classification basic tests to separate class

* Move token classification basic tests back to monocolumninputtestcase

* Move base ner tests to nerpipelinetests

* Take out unused kwargs

* Add back mandatory_keys argument

* Add unitary tests for group_entities in _test_ner_pipeline

* Fix last entity handling

* Fix grouping fucntion used

* Add typing to group_sub_entities and group_entities

Co-authored-by: ColleterVi <36503688+ColleterVi@users.noreply.github.com>
This commit is contained in:
Lorenzo Ampil 2020-07-09 04:18:17 +08:00 коммит произвёл GitHub
Родитель 82ce8488bb
Коммит 0cc4eae0e6
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
2 изменённых файлов: 141 добавлений и 61 удалений

Просмотреть файл

@ -1003,8 +1003,6 @@ class TokenClassificationPipeline(Pipeline):
labels_idx = score.argmax(axis=-1) labels_idx = score.argmax(axis=-1)
entities = [] entities = []
entity_groups = []
entity_group_disagg = []
# Filter to labels not in `self.ignore_labels` # Filter to labels not in `self.ignore_labels`
filtered_labels_idx = [ filtered_labels_idx = [
(idx, label_idx) (idx, label_idx)
@ -1020,37 +1018,13 @@ class TokenClassificationPipeline(Pipeline):
"entity": self.model.config.id2label[label_idx], "entity": self.model.config.id2label[label_idx],
"index": idx, "index": idx,
} }
last_idx, _ = filtered_labels_idx[-1]
if self.grouped_entities:
if not entity_group_disagg:
entity_group_disagg += [entity]
if idx == last_idx:
entity_groups += [self.group_entities(entity_group_disagg)]
continue
# If the current entity is similar and adjacent to the previous entity, append it to the disaggregated entity group
if (
entity["entity"] == entity_group_disagg[-1]["entity"]
and entity["index"] == entity_group_disagg[-1]["index"] + 1
):
entity_group_disagg += [entity]
# Group the entities at the last entity
if idx == last_idx:
entity_groups += [self.group_entities(entity_group_disagg)]
# If the current entity is different from the previous entity, aggregate the disaggregated entity group
else:
entity_groups += [self.group_entities(entity_group_disagg)]
entity_group_disagg = [entity]
entities += [entity] entities += [entity]
# Ensure if an entity is the latest one in the sequence it gets appended to the output # Append grouped entities
if len(entity_group_disagg) > 0:
entity_groups.append(self.group_entities(entity_group_disagg))
# Append
if self.grouped_entities: if self.grouped_entities:
answers += [entity_groups] answers += [self.group_entities(entities)]
# Append ungrouped entities
else: else:
answers += [entities] answers += [entities]
@ -1058,12 +1032,12 @@ class TokenClassificationPipeline(Pipeline):
return answers[0] return answers[0]
return answers return answers
def group_entities(self, entities): def group_sub_entities(self, entities: List[dict]) -> dict:
""" """
Returns grouped entities Returns grouped sub entities
""" """
# Get the last entity in the entity group # Get the first entity in the entity group
entity = entities[-1]["entity"] entity = entities[0]["entity"]
scores = np.mean([entity["score"] for entity in entities]) scores = np.mean([entity["score"] for entity in entities])
tokens = [entity["word"] for entity in entities] tokens = [entity["word"] for entity in entities]
@ -1074,6 +1048,45 @@ class TokenClassificationPipeline(Pipeline):
} }
return entity_group return entity_group
def group_entities(self, entities: List[dict]) -> List[dict]:
"""
Returns grouped entities
"""
entity_groups = []
entity_group_disagg = []
if entities:
last_idx = entities[-1]["index"]
for entity in entities:
is_last_idx = entity["index"] == last_idx
if not entity_group_disagg:
entity_group_disagg += [entity]
if is_last_idx:
entity_groups += [self.group_sub_entities(entity_group_disagg)]
continue
# If the current entity is similar and adjacent to the previous entity, append it to the disaggregated entity group
# The split is meant to account for the "B" and "I" suffixes
if (
entity["entity"].split("-")[-1] == entity_group_disagg[-1]["entity"].split("-")[-1]
and entity["index"] == entity_group_disagg[-1]["index"] + 1
):
entity_group_disagg += [entity]
# Group the entities at the last entity
if is_last_idx:
entity_groups += [self.group_sub_entities(entity_group_disagg)]
# If the current entity is different from the previous entity, aggregate the disaggregated entity group
else:
entity_groups += [self.group_sub_entities(entity_group_disagg)]
entity_group_disagg = [entity]
# If it's the last entity, add it to the entity groups
if is_last_idx:
entity_groups += [self.group_sub_entities(entity_group_disagg)]
return entity_groups
NerPipeline = TokenClassificationPipeline NerPipeline = TokenClassificationPipeline

Просмотреть файл

@ -38,6 +38,7 @@ expected_fill_mask_result = [
{"sequence": "<s>The largest city in France is Lyon</s>", "score": 0.21112334728240967, "token": 12790}, {"sequence": "<s>The largest city in France is Lyon</s>", "score": 0.21112334728240967, "token": 12790},
], ],
] ]
SUMMARIZATION_KWARGS = dict(num_beams=2, min_length=2, max_length=5) SUMMARIZATION_KWARGS = dict(num_beams=2, min_length=2, max_length=5)
@ -156,34 +157,6 @@ class MonoColumnInputTestCase(unittest.TestCase):
self.assertRaises(Exception, nlp, invalid_inputs) self.assertRaises(Exception, nlp, invalid_inputs)
@require_torch
def test_torch_ner(self):
mandatory_keys = {"entity", "word", "score"}
for model_name in NER_FINETUNED_MODELS:
nlp = pipeline(task="ner", model=model_name, tokenizer=model_name)
self._test_mono_column_pipeline(nlp, VALID_INPUTS, mandatory_keys)
@require_torch
def test_ner_grouped(self):
mandatory_keys = {"entity_group", "word", "score"}
for model_name in NER_FINETUNED_MODELS:
nlp = pipeline(task="ner", model=model_name, tokenizer=model_name, grouped_entities=True)
self._test_mono_column_pipeline(nlp, VALID_INPUTS, mandatory_keys)
@require_tf
def test_tf_ner(self):
mandatory_keys = {"entity", "word", "score"}
for model_name in NER_FINETUNED_MODELS:
nlp = pipeline(task="ner", model=model_name, tokenizer=model_name, framework="tf")
self._test_mono_column_pipeline(nlp, VALID_INPUTS, mandatory_keys)
@require_tf
def test_tf_ner_grouped(self):
mandatory_keys = {"entity_group", "word", "score"}
for model_name in NER_FINETUNED_MODELS:
nlp = pipeline(task="ner", model=model_name, tokenizer=model_name, framework="tf", grouped_entities=True)
self._test_mono_column_pipeline(nlp, VALID_INPUTS, mandatory_keys)
@require_torch @require_torch
def test_torch_sentiment_analysis(self): def test_torch_sentiment_analysis(self):
mandatory_keys = {"label", "score"} mandatory_keys = {"label", "score"}
@ -393,6 +366,100 @@ class QAPipelineTests(unittest.TestCase):
self._test_qa_pipeline(nlp) self._test_qa_pipeline(nlp)
class NerPipelineTests(unittest.TestCase):
def _test_ner_pipeline(
self, nlp: Pipeline, output_keys: Iterable[str],
):
ungrouped_ner_inputs = [
[
{"entity": "B-PER", "index": 1, "score": 0.9994944930076599, "word": "Cons"},
{"entity": "B-PER", "index": 2, "score": 0.8025449514389038, "word": "##uelo"},
{"entity": "I-PER", "index": 3, "score": 0.9993102550506592, "word": "Ara"},
{"entity": "I-PER", "index": 4, "score": 0.9993743896484375, "word": "##új"},
{"entity": "I-PER", "index": 5, "score": 0.9992871880531311, "word": "##o"},
{"entity": "I-PER", "index": 6, "score": 0.9993029236793518, "word": "No"},
{"entity": "I-PER", "index": 7, "score": 0.9981776475906372, "word": "##guera"},
{"entity": "B-PER", "index": 15, "score": 0.9998136162757874, "word": "Andrés"},
{"entity": "I-PER", "index": 16, "score": 0.999740719795227, "word": "Pas"},
{"entity": "I-PER", "index": 17, "score": 0.9997414350509644, "word": "##tran"},
{"entity": "I-PER", "index": 18, "score": 0.9996136426925659, "word": "##a"},
{"entity": "B-ORG", "index": 28, "score": 0.9989739060401917, "word": "Far"},
{"entity": "I-ORG", "index": 29, "score": 0.7188422083854675, "word": "##c"},
],
[
{"entity": "I-PER", "index": 1, "score": 0.9968166351318359, "word": "En"},
{"entity": "I-PER", "index": 2, "score": 0.9957635998725891, "word": "##zo"},
{"entity": "I-ORG", "index": 7, "score": 0.9986497163772583, "word": "UN"},
],
]
expected_grouped_ner_results = [
[
{"entity_group": "B-PER", "score": 0.9710702640669686, "word": "Consuelo Araújo Noguera"},
{"entity_group": "B-PER", "score": 0.9997273534536362, "word": "Andrés Pastrana"},
{"entity_group": "B-ORG", "score": 0.8589080572128296, "word": "Farc"},
],
[
{"entity_group": "I-PER", "score": 0.9962901175022125, "word": "Enzo"},
{"entity_group": "I-ORG", "score": 0.9986497163772583, "word": "UN"},
],
]
self.assertIsNotNone(nlp)
mono_result = nlp(VALID_INPUTS[0])
self.assertIsInstance(mono_result, list)
self.assertIsInstance(mono_result[0], (dict, list))
if isinstance(mono_result[0], list):
mono_result = mono_result[0]
for key in output_keys:
self.assertIn(key, mono_result[0])
multi_result = [nlp(input) for input in VALID_INPUTS]
self.assertIsInstance(multi_result, list)
self.assertIsInstance(multi_result[0], (dict, list))
if isinstance(multi_result[0], list):
multi_result = multi_result[0]
for result in multi_result:
for key in output_keys:
self.assertIn(key, result)
for ungrouped_input, grouped_result in zip(ungrouped_ner_inputs, expected_grouped_ner_results):
self.assertEqual(nlp.group_entities(ungrouped_input), grouped_result)
@require_torch
def test_torch_ner(self):
mandatory_keys = {"entity", "word", "score"}
for model_name in NER_FINETUNED_MODELS:
nlp = pipeline(task="ner", model=model_name, tokenizer=model_name)
self._test_ner_pipeline(nlp, mandatory_keys)
@require_torch
def test_ner_grouped(self):
mandatory_keys = {"entity_group", "word", "score"}
for model_name in NER_FINETUNED_MODELS:
nlp = pipeline(task="ner", model=model_name, tokenizer=model_name, grouped_entities=True)
self._test_ner_pipeline(nlp, mandatory_keys)
@require_tf
def test_tf_ner(self):
mandatory_keys = {"entity", "word", "score"}
for model_name in NER_FINETUNED_MODELS:
nlp = pipeline(task="ner", model=model_name, tokenizer=model_name, framework="tf")
self._test_ner_pipeline(nlp, mandatory_keys)
@require_tf
def test_tf_ner_grouped(self):
mandatory_keys = {"entity_group", "word", "score"}
for model_name in NER_FINETUNED_MODELS:
nlp = pipeline(task="ner", model=model_name, tokenizer=model_name, framework="tf", grouped_entities=True)
self._test_ner_pipeline(nlp, mandatory_keys)
class PipelineCommonTests(unittest.TestCase): class PipelineCommonTests(unittest.TestCase):
pipelines = SUPPORTED_TASKS.keys() pipelines = SUPPORTED_TASKS.keys()