Merge pull request #1586 from enzoampil/include_special_tokens_in_bert_examples
Add special tokens to documentation for bert examples to resolve issue: #1561
This commit is contained in:
Коммит
2fa8737c44
|
@ -268,7 +268,7 @@ class CTRLModel(CTRLPreTrainedModel):
|
|||
|
||||
tokenizer = CTRLTokenizer.from_pretrained('ctrl')
|
||||
model = CTRLModel.from_pretrained('ctrl')
|
||||
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
|
@ -458,7 +458,7 @@ class CTRLLMHeadModel(CTRLPreTrainedModel):
|
|||
tokenizer = CTRLTokenizer.from_pretrained('ctrl')
|
||||
model = CTRLLMHeadModel.from_pretrained('ctrl')
|
||||
|
||||
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, labels=input_ids)
|
||||
loss, logits = outputs[:2]
|
||||
|
||||
|
|
|
@ -415,7 +415,7 @@ class DistilBertModel(DistilBertPreTrainedModel):
|
|||
|
||||
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
||||
model = DistilBertModel.from_pretrained('distilbert-base-uncased')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
|
@ -511,7 +511,7 @@ class DistilBertForMaskedLM(DistilBertPreTrainedModel):
|
|||
|
||||
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
||||
model = DistilBertForMaskedLM.from_pretrained('distilbert-base-uncased')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, masked_lm_labels=input_ids)
|
||||
loss, prediction_scores = outputs[:2]
|
||||
|
||||
|
@ -581,7 +581,7 @@ class DistilBertForSequenceClassification(DistilBertPreTrainedModel):
|
|||
|
||||
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
||||
model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, labels=labels)
|
||||
loss, logits = outputs[:2]
|
||||
|
@ -656,7 +656,7 @@ class DistilBertForQuestionAnswering(DistilBertPreTrainedModel):
|
|||
|
||||
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
||||
model = DistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
start_positions = torch.tensor([1])
|
||||
end_positions = torch.tensor([3])
|
||||
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
||||
|
|
|
@ -345,7 +345,7 @@ class GPT2Model(GPT2PreTrainedModel):
|
|||
|
||||
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
model = GPT2Model.from_pretrained('gpt2')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
|
@ -523,7 +523,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
|
|||
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
||||
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, labels=input_ids)
|
||||
loss, logits = outputs[:2]
|
||||
|
||||
|
|
|
@ -349,7 +349,7 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
|
|||
|
||||
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
|
||||
model = OpenAIGPTModel.from_pretrained('openai-gpt')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
|
@ -491,7 +491,7 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
|
|||
|
||||
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
|
||||
model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, labels=input_ids)
|
||||
loss, logits = outputs[:2]
|
||||
|
||||
|
|
|
@ -188,7 +188,7 @@ class RobertaModel(BertModel):
|
|||
|
||||
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
||||
model = RobertaModel.from_pretrained('roberta-base')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
|
@ -236,7 +236,7 @@ class RobertaForMaskedLM(BertPreTrainedModel):
|
|||
|
||||
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
||||
model = RobertaForMaskedLM.from_pretrained('roberta-base')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, masked_lm_labels=input_ids)
|
||||
loss, prediction_scores = outputs[:2]
|
||||
|
||||
|
@ -327,7 +327,7 @@ class RobertaForSequenceClassification(BertPreTrainedModel):
|
|||
|
||||
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
||||
model = RobertaForSequenceClassification.from_pretrained('roberta-base')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, labels=labels)
|
||||
loss, logits = outputs[:2]
|
||||
|
|
|
@ -677,7 +677,7 @@ class TFBertModel(TFBertPreTrainedModel):
|
|||
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
model = TFBertModel.from_pretrained('bert-base-uncased')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
|
@ -716,7 +716,7 @@ class TFBertForPreTraining(TFBertPreTrainedModel):
|
|||
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
model = TFBertForPreTraining.from_pretrained('bert-base-uncased')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
prediction_scores, seq_relationship_scores = outputs[:2]
|
||||
|
||||
|
@ -765,7 +765,7 @@ class TFBertForMaskedLM(TFBertPreTrainedModel):
|
|||
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
model = TFBertForMaskedLM.from_pretrained('bert-base-uncased')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
prediction_scores = outputs[0]
|
||||
|
||||
|
@ -812,7 +812,7 @@ class TFBertForNextSentencePrediction(TFBertPreTrainedModel):
|
|||
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
model = TFBertForNextSentencePrediction.from_pretrained('bert-base-uncased')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
seq_relationship_scores = outputs[0]
|
||||
|
||||
|
@ -857,7 +857,7 @@ class TFBertForSequenceClassification(TFBertPreTrainedModel):
|
|||
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
logits = outputs[0]
|
||||
|
||||
|
@ -994,7 +994,7 @@ class TFBertForTokenClassification(TFBertPreTrainedModel):
|
|||
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
model = TFBertForTokenClassification.from_pretrained('bert-base-uncased')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
scores = outputs[0]
|
||||
|
||||
|
@ -1047,7 +1047,7 @@ class TFBertForQuestionAnswering(TFBertPreTrainedModel):
|
|||
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
model = TFBertForQuestionAnswering.from_pretrained('bert-base-uncased')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
start_scores, end_scores = outputs[:2]
|
||||
|
||||
|
|
|
@ -418,7 +418,7 @@ class TFCTRLModel(TFCTRLPreTrainedModel):
|
|||
|
||||
tokenizer = CTRLTokenizer.from_pretrained('ctrl')
|
||||
model = TFCTRLModel.from_pretrained('ctrl')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
|
@ -481,7 +481,7 @@ class TFCTRLLMHeadModel(TFCTRLPreTrainedModel):
|
|||
tokenizer = CTRLTokenizer.from_pretrained('ctrl')
|
||||
model = TFCTRLLMHeadModel.from_pretrained('ctrl')
|
||||
|
||||
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, labels=input_ids)
|
||||
loss, logits = outputs[:2]
|
||||
|
||||
|
|
|
@ -454,7 +454,7 @@ class TFGPT2Model(TFGPT2PreTrainedModel):
|
|||
|
||||
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
model = TFGPT2Model.from_pretrained('gpt2')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
|
@ -495,7 +495,7 @@ class TFGPT2LMHeadModel(TFGPT2PreTrainedModel):
|
|||
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
model = TFGPT2LMHeadModel.from_pretrained('gpt2')
|
||||
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
logits = outputs[0]
|
||||
|
||||
|
|
|
@ -431,7 +431,7 @@ class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel):
|
|||
|
||||
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
|
||||
model = TFOpenAIGPTModel.from_pretrained('openai-gpt')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
|
@ -467,7 +467,7 @@ class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel):
|
|||
|
||||
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
|
||||
model = TFOpenAIGPTLMHeadModel.from_pretrained('openai-gpt')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
logits = outputs[0]
|
||||
|
||||
|
|
|
@ -199,7 +199,7 @@ class TFRobertaModel(TFRobertaPreTrainedModel):
|
|||
|
||||
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
||||
model = TFRobertaModel.from_pretrained('roberta-base')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
|
@ -276,7 +276,7 @@ class TFRobertaForMaskedLM(TFRobertaPreTrainedModel):
|
|||
|
||||
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
||||
model = TFRobertaForMaskedLM.from_pretrained('roberta-base')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids, masked_lm_labels=input_ids)
|
||||
prediction_scores = outputs[0]
|
||||
|
||||
|
@ -347,7 +347,7 @@ class TFRobertaForSequenceClassification(TFRobertaPreTrainedModel):
|
|||
|
||||
tokenizer = RoertaTokenizer.from_pretrained('roberta-base')
|
||||
model = TFRobertaForSequenceClassification.from_pretrained('roberta-base')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
labels = tf.constant([1])[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
logits = outputs[0]
|
||||
|
|
|
@ -673,7 +673,7 @@ class TFTransfoXLModel(TFTransfoXLPreTrainedModel):
|
|||
|
||||
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
|
||||
model = TFTransfoXLModel.from_pretrained('transfo-xl-wt103')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states, mems = outputs[:2]
|
||||
|
||||
|
@ -715,7 +715,7 @@ class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel):
|
|||
|
||||
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
|
||||
model = TFTransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
prediction_scores, mems = outputs[:2]
|
||||
|
||||
|
|
|
@ -576,7 +576,7 @@ class TFXLMModel(TFXLMPreTrainedModel):
|
|||
|
||||
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
model = TFXLMModel.from_pretrained('xlm-mlm-en-2048')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
|
@ -649,7 +649,7 @@ class TFXLMWithLMHeadModel(TFXLMPreTrainedModel):
|
|||
|
||||
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
model = TFXLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
|
@ -695,7 +695,7 @@ class TFXLMForSequenceClassification(TFXLMPreTrainedModel):
|
|||
|
||||
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
model = TFXLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
labels = tf.constant([1])[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
logits = outputs[0]
|
||||
|
@ -743,7 +743,7 @@ class TFXLMForQuestionAnsweringSimple(TFXLMPreTrainedModel):
|
|||
|
||||
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
model = TFXLMForQuestionAnsweringSimple.from_pretrained('xlm-mlm-en-2048')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
start_scores, end_scores = outputs[:2]
|
||||
|
||||
|
|
|
@ -811,7 +811,7 @@ class TFXLNetModel(TFXLNetPreTrainedModel):
|
|||
|
||||
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
|
||||
model = TFXLNetModel.from_pretrained('xlnet-large-cased')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
|
@ -855,7 +855,7 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel):
|
|||
model = TFXLNetLMHeadModel.from_pretrained('xlnet-large-cased')
|
||||
|
||||
# We show how to setup inputs to predict a next token using a bi-directional context.
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is very <mask>"))[None, :] # We will predict the masked token
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=True))[None, :] # We will predict the masked token
|
||||
perm_mask = tf.zeros((1, input_ids.shape[1], input_ids.shape[1]))
|
||||
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
|
||||
target_mapping = tf.zeros((1, 1, input_ids.shape[1])) # Shape [1, 1, seq_length] => let's predict one token
|
||||
|
@ -911,7 +911,7 @@ class TFXLNetForSequenceClassification(TFXLNetPreTrainedModel):
|
|||
|
||||
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
|
||||
model = TFXLNetForSequenceClassification.from_pretrained('xlnet-large-cased')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
logits = outputs[0]
|
||||
|
||||
|
@ -1022,7 +1022,7 @@ class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel):
|
|||
|
||||
tokenizer = XLNetTokenizer.from_pretrained('xlnet-base-cased')
|
||||
model = TFXLNetForQuestionAnsweringSimple.from_pretrained('xlnet-base-cased')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
start_scores, end_scores = outputs[:2]
|
||||
|
||||
|
@ -1086,7 +1086,7 @@ class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel):
|
|||
|
||||
# tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
# model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased')
|
||||
# input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
# input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
# start_positions = tf.constant([1])
|
||||
# end_positions = tf.constant([3])
|
||||
# outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
||||
|
|
|
@ -582,7 +582,7 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
|
|||
|
||||
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
|
||||
model = TransfoXLModel.from_pretrained('transfo-xl-wt103')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states, mems = outputs[:2]
|
||||
|
||||
|
@ -825,7 +825,7 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
|
|||
|
||||
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
|
||||
model = TransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
prediction_scores, mems = outputs[:2]
|
||||
|
||||
|
|
|
@ -346,7 +346,7 @@ class XLMModel(XLMPreTrainedModel):
|
|||
|
||||
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
model = XLMModel.from_pretrained('xlm-mlm-en-2048')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
|
@ -634,7 +634,7 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
|
|||
|
||||
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
model = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
|
@ -696,7 +696,7 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
|
|||
|
||||
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
model = XLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, labels=labels)
|
||||
loss, logits = outputs[:2]
|
||||
|
@ -780,7 +780,7 @@ class XLMForQuestionAnsweringSimple(XLMPreTrainedModel):
|
|||
|
||||
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
model = XLMForQuestionAnsweringSimple.from_pretrained('xlm-mlm-en-2048')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
start_positions = torch.tensor([1])
|
||||
end_positions = torch.tensor([3])
|
||||
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
||||
|
@ -876,7 +876,7 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
|
|||
|
||||
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
model = XLMForQuestionAnswering.from_pretrained('xlm-mlm-en-2048')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
start_positions = torch.tensor([1])
|
||||
end_positions = torch.tensor([3])
|
||||
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
||||
|
|
|
@ -589,7 +589,7 @@ class XLNetModel(XLNetPreTrainedModel):
|
|||
|
||||
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
|
||||
model = XLNetModel.from_pretrained('xlnet-large-cased')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
|
@ -925,7 +925,7 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
|
|||
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
|
||||
model = XLNetLMHeadModel.from_pretrained('xlnet-large-cased')
|
||||
# We show how to setup inputs to predict a next token using a bi-directional context.
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0) # We will predict the masked token
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=True)).unsqueeze(0) # We will predict the masked token
|
||||
perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
|
||||
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
|
||||
target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float) # Shape [1, 1, seq_length] => let's predict one token
|
||||
|
@ -1007,7 +1007,7 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
|
|||
|
||||
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
|
||||
model = XLNetForSequenceClassification.from_pretrained('xlnet-large-cased')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, labels=labels)
|
||||
loss, logits = outputs[:2]
|
||||
|
@ -1294,7 +1294,7 @@ class XLNetForQuestionAnsweringSimple(XLNetPreTrainedModel):
|
|||
|
||||
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
start_positions = torch.tensor([1])
|
||||
end_positions = torch.tensor([3])
|
||||
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
||||
|
@ -1409,7 +1409,7 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
|
|||
|
||||
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
|
||||
model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||
start_positions = torch.tensor([1])
|
||||
end_positions = torch.tensor([3])
|
||||
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
||||
|
|
Загрузка…
Ссылка в новой задаче