This commit is contained in:
Girishkumar 2020-05-19 19:26:24 +05:30 коммит произвёл GitHub
Родитель 384f0eb2f9
Коммит 31eedff5a0
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
1 изменённых файлов: 60 добавлений и 68 удалений

Просмотреть файл

@ -5,12 +5,12 @@ https://huggingface.co/savasy/bert-base-turkish-sentiment-cased
This model is used for Sentiment Analysis, which is based on BERTurk for Turkish Language https://huggingface.co/dbmdz/bert-base-turkish-cased
# Dataset
## Dataset
The dataset is taken from the studies [2] and [3] and merged.
The dataset is taken from the studies [[2]](#paper-2) and [[3]](#paper-3), and merged.
* The study [2] gathered movie and product reviews. The products are book, DVD, electronics, and kitchen.
The movie dataset is taken from a cinema Web page (www.beyazperde.com) with
The movie dataset is taken from a cinema Web page ([Beyazperde](www.beyazperde.com)) with
5331 positive and 5331 negative sentences. Reviews in the Web page are marked in
scale from 0 to 5 by the users who made the reviews. The study considered a review
sentiment positive if the rating is equal to or bigger than 4, and negative if it is less
@ -19,9 +19,9 @@ Web page. They constructed benchmark dataset consisting of reviews regarding som
products (book, DVD, etc.). Likewise, reviews are marked in the range from 1 to 5,
and majority class of reviews are 5. Each category has 700 positive and 700 negative
reviews in which average rating of negative reviews is 2.27 and of positive reviews
is 4.5. This dataset is also used the study [1]
is 4.5. This dataset is also used by the study [[1]](#paper-1).
* The study[3] collected tweet dataset. They proposed a new approach for automatically classifying the sentiment of microblog messages. The proposed approach is based on utilizing robust feature representation and fusion.
* The study [[3]](#paper-3) collected tweet dataset. They proposed a new approach for automatically classifying the sentiment of microblog messages. The proposed approach is based on utilizing robust feature representation and fusion.
*Merged Dataset*
@ -32,20 +32,21 @@ is 4.5. This dataset is also used the study [1]
| 32000 |train.tsv|
| *48290* |*total*|
### The dataset is used by following papers
The dataset is used by following papers
* 1 Yildirim, Savaş. (2020). Comparing Deep Neural Networks to Traditional Models for Sentiment Analysis in Turkish Language. 10.1007/978-981-15-1216-2_12.
* 2 Demirtas, Erkin and Mykola Pechenizkiy. 2013. Cross-lingual polarity detection with machine translation. In Proceedings of the Second International Workshop on Issues of Sentiment
<a id="paper-1">[1]</a> Yildirim, Savaş. (2020). Comparing Deep Neural Networks to Traditional Models for Sentiment Analysis in Turkish Language. 10.1007/978-981-15-1216-2_12.
<a id="paper-2">[2]</a> Demirtas, Erkin and Mykola Pechenizkiy. 2013. Cross-lingual polarity detection with machine translation. In Proceedings of the Second International Workshop on Issues of Sentiment
Discovery and Opinion Mining (WISDOM 13)
* [3] Hayran, A., Sert, M. (2017), "Sentiment Analysis on Microblog Data based on Word Embedding and Fusion Techniques", IEEE 25th Signal Processing and Communications Applications Conference (SIU 2017), Belek, Turkey
# Training
<a id="paper-3">[3]</a> Hayran, A., Sert, M. (2017), "Sentiment Analysis on Microblog Data based on Word Embedding and Fusion Techniques", IEEE 25th Signal Processing and Communications Applications Conference (SIU 2017), Belek, Turkey
```
## Training
```shell
export GLUE_DIR="./sst-2-newall"
export TASK_NAME=SST-2
python3 run_glue.py \
--model_type bert \
@ -59,88 +60,79 @@ python3 run_glue.py \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--output_dir "./model"
```
## Results
> 05/10/2020 17:00:43 - INFO - transformers.trainer - \*\*\*\*\* Running Evaluation \*\*\*\*\*
> 05/10/2020 17:00:43 - INFO - transformers.trainer - Num examples = 7999
> 05/10/2020 17:00:43 - INFO - transformers.trainer - Batch size = 8
> Evaluation: 100% 1000/1000 [00:34<00:00, 29.04it/s]
> 05/10/2020 17:01:17 - INFO - \_\_main__ - \*\*\*\*\* Eval results sst-2 \*\*\*\*\*
> 05/10/2020 17:01:17 - INFO - \_\_main__ - acc = 0.9539942492811602
> 05/10/2020 17:01:17 - INFO - \_\_main__ - loss = 0.16348013816401363
Accuracy is about **95.4%**
# Results
## Code Usage
> 05/10/2020 17:00:43 - INFO - transformers.trainer - ***** Running Evaluation *****
> 05/10/2020 17:00:43 - INFO - transformers.trainer - Num examples = 7999
> 05/10/2020 17:00:43 - INFO - transformers.trainer - Batch size = 8
>Evaluation: 100% 1000/1000 [00:34<00:00, 29.04it/s]
>05/10/2020 17:01:17 - INFO - __main__ - ***** Eval results sst-2 *****
>05/10/2020 17:01:17 - INFO - __main__ - acc = 0.9539942492811602
>05/10/2020 17:01:17 - INFO - __main__ - loss = 0.16348013816401363
Accuracy is about *%95.4*
# Code Usage
```
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
model = AutoModelForSequenceClassification.from_pretrained("savasy/bert-base-turkish-sentiment-cased")
tokenizer = AutoTokenizer.from_pretrained("savasy/bert-base-turkish-sentiment-cased")
sa= pipeline("sentiment-analysis", tokenizer=tokenizer, model=model)
p= sa("bu telefon modelleri çok kaliteli , her parçası çok özel bence")
p = sa("bu telefon modelleri çok kaliteli , her parçası çok özel bence")
print(p)
#[{'label': 'LABEL_1', 'score': 0.9871089}]
print (p[0]['label']=='LABEL_1')
#True
# [{'label': 'LABEL_1', 'score': 0.9871089}]
print(p[0]['label'] == 'LABEL_1')
# True
p= sa("Film çok kötü ve çok sahteydi")
p = sa("Film çok kötü ve çok sahteydi")
print(p)
#[{'label': 'LABEL_0', 'score': 0.9975505}]
print (p[0]['label']=='LABEL_1')
#False
# [{'label': 'LABEL_0', 'score': 0.9975505}]
print(p[0]['label'] == 'LABEL_1')
# False
```
# Test your data
## Test
### Data
Suppose your file has lots of lines of comment and label (1 or 0) at the end (tab seperated)
> comment1 ... \t label
> comment2 ... \t label
> comment1 ... \t label
> comment2 ... \t label
> ...
### Code
```
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
f="/path/to/your/file/yourfile.tsv"
model = AutoModelForSequenceClassification.from_pretrained("savasy/bert-base-turkish-sentiment-cased")
tokenizer = AutoTokenizer.from_pretrained("savasy/bert-base-turkish-sentiment-cased")
sa= pipeline("sentiment-analysis", tokenizer=tokenizer, model=model)
sa = pipeline("sentiment-analysis", tokenizer=tokenizer, model=model)
i,crr=0,0
for line in open(f):
lines=line.strip().split("\t")
if len(lines)==2:
i=i+1
if i%100==0:
print(i)
pred= sa(lines[0])
pred=pred[0]["label"].split("_")[1]
if pred== lines[1]:
crr=crr+1
input_file = "/path/to/your/file/yourfile.tsv"
i, crr = 0, 0
for line in open(input_file):
lines = line.strip().split("\t")
if len(lines) == 2:
i = i + 1
if i%100 == 0:
print(i)
pred = sa(lines[0])
pred = pred[0]["label"].split("_")[1]
if pred == lines[1]:
crr = crr + 1
print(crr, i, crr/i)
```