[Trainer/Deepspeed] handle get_last_lr() before first step() (#10362)
* handle get_last_lr() before first step() * abstract away the lr getting logic * cleanup * add test * move to utils
This commit is contained in:
Родитель
4a1ab7cb6c
Коммит
3437d12134
|
@ -78,6 +78,31 @@ class TrainerIntegrationDeepSpeed(TestCasePlus):
|
|||
trainer.train()
|
||||
assert "DeepSpeed info" in cs.out, "expected DeepSpeed logger output but got none"
|
||||
|
||||
def test_early_get_last_lr(self):
|
||||
# with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
|
||||
# not run for the first few dozen steps while loss scale is too large, and thus during
|
||||
# that time `get_last_lr` will fail if called during that warm up stage,
|
||||
#
|
||||
# setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
|
||||
# `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
|
||||
with mockenv_context(**self.dist_env_1_gpu):
|
||||
a = b = 0.0
|
||||
trainer = get_regression_trainer(
|
||||
a=a,
|
||||
b=b,
|
||||
local_rank=0,
|
||||
train_len=8,
|
||||
deepspeed=self.ds_config_file,
|
||||
per_device_train_batch_size=8,
|
||||
logging_steps=1,
|
||||
)
|
||||
trainer.train()
|
||||
no_grad_accum_a = trainer.model.a.item()
|
||||
|
||||
# it's enough that train didn't fail for this test, but we must check that
|
||||
# optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
|
||||
self.assertEqual(no_grad_accum_a, a)
|
||||
|
||||
def test_gradient_accumulation(self):
|
||||
|
||||
# this test measures that we get identical weights and similar loss with:
|
||||
|
|
|
@ -82,6 +82,7 @@ from .trainer_pt_utils import (
|
|||
SequentialDistributedSampler,
|
||||
distributed_broadcast_scalars,
|
||||
distributed_concat,
|
||||
get_learning_rate,
|
||||
nested_concat,
|
||||
nested_detach,
|
||||
nested_numpify,
|
||||
|
@ -1129,12 +1130,8 @@ class Trainer:
|
|||
tr_loss -= tr_loss
|
||||
|
||||
logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
|
||||
# backward compatibility for pytorch schedulers
|
||||
logs["learning_rate"] = (
|
||||
self.lr_scheduler.get_last_lr()[0]
|
||||
if version.parse(torch.__version__) >= version.parse("1.4")
|
||||
else self.lr_scheduler.get_lr()[0]
|
||||
)
|
||||
logs["learning_rate"] = get_learning_rate(self)
|
||||
|
||||
self._total_loss_scalar += tr_loss_scalar
|
||||
self._globalstep_last_logged = self.state.global_step
|
||||
|
||||
|
|
|
@ -24,6 +24,7 @@ from typing import Iterator, List, Optional, Union
|
|||
|
||||
import numpy as np
|
||||
import torch
|
||||
from packaging import version
|
||||
from torch.utils.data.dataset import Dataset
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from torch.utils.data.sampler import RandomSampler, Sampler
|
||||
|
@ -262,6 +263,29 @@ def _get_first_shape(arrays):
|
|||
return arrays.shape
|
||||
|
||||
|
||||
def get_learning_rate(trainer):
|
||||
if trainer.deepspeed:
|
||||
# with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
|
||||
# not run for the first few dozen steps while loss scale is too large, and thus during
|
||||
# that time `get_last_lr` will fail if called during that warm up stage, so work around it:
|
||||
try:
|
||||
last_lr = trainer.lr_scheduler.get_last_lr()[0]
|
||||
except AssertionError as e:
|
||||
if "need to call step" in str(e):
|
||||
logger.warn("tried to get lr value before scheduler/optimizer started stepping, returning lr=0")
|
||||
last_lr = 0
|
||||
else:
|
||||
raise
|
||||
else:
|
||||
last_lr = (
|
||||
# backward compatibility for pytorch schedulers
|
||||
trainer.lr_scheduler.get_last_lr()[0]
|
||||
if version.parse(torch.__version__) >= version.parse("1.4")
|
||||
else trainer.lr_scheduler.get_lr()[0]
|
||||
)
|
||||
return last_lr
|
||||
|
||||
|
||||
class DistributedTensorGatherer:
|
||||
"""
|
||||
A class responsible for properly gathering tensors (or nested list/tuple of tensors) on the CPU by chunks.
|
||||
|
|
Загрузка…
Ссылка в новой задаче