Integrate fast tokenizers library inside transformers (#2674)

* Implemented fast version of tokenizers

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Bumped tokenizers version requirements to latest 0.2.1

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Added matching tests

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Matching OpenAI GPT tokenization !

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Matching GPT2 on tokenizers

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Expose add_prefix_space as constructor parameter for GPT2

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Matching Roberta tokenization !

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Removed fast implementation of CTRL.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Binding TransformerXL tokenizers to Rust.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Updating tests accordingly.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Added tokenizers as top-level modules.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Black & isort.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Rename LookupTable to WordLevel to match Rust side.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Black.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Use "fast" suffix instead of "ru" for rust tokenizers implementations.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Introduce tokenize() method on fast tokenizers.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* encode_plus dispatchs to batch_encode_plus

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* batch_encode_plus now dispatchs to encode if there is only one input element.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Bind all the encode_plus parameter to the forwarded batch_encode_plus call.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Bump tokenizers dependency to 0.3.0

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Formatting.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Fix tokenization_auto with support for new (python, fast) mapping schema.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Give correct fixtures path in test_tokenization_fast.py for the CLI.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Expose max_len_ properties on BertTokenizerFast

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Move max_len_ properties to PreTrainedTokenizerFast and override in specific subclasses.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* _convert_encoding should keep the batch axis tensor if only one sample in the batch.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Add warning message for RobertaTokenizerFast if used for MLM.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Added use_fast (bool) parameter on AutoTokenizer.from_pretrained().

This allows to easily enable/disable Rust-based tokenizer instantiation.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Let's tokenizers handle all the truncation and padding stuff.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Allow to provide tokenizer arguments during pipeline creation.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Update test_fill_mask pipeline to not use fast tokenizers.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Fix too much parameters for convert_encoding.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* When enabling padding, max_length should be set to None.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Avoid returning nested tensors of length 1 when calling encode_plus

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Ensure output is padded when return_tensor is not None.

Tensor creation requires the inital list input to be of the exact same size.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Disable transfoxl unittest if pytorch is not available (required to load the model)

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* encode_plus should not remove the leading batch axis if return_tensor is set

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Temporary disable fast tokenizers on QA pipelines.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Fix formatting issues.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Update tokenizers to 0.4.0

* Update style

* Enable truncation + stride unit test on fast tokenizers.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Add unittest ensuring special_tokens set match between Python and Rust.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Ensure special_tokens are correctly set during construction.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Give more warning feedback to the user in case of padding without pad_token.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* quality & format.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Added possibility to add a single token as str

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Added unittest for add_tokens and add_special_tokens on fast tokenizers.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Fix rebase mismatch on pipelines qa default model.

QA requires cased input while the tokenizers would be uncased.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Using offset mapping relative to the original string + unittest.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: save_vocabulary requires folder and file name

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Simplify import for Bert.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: truncate_and_pad disables padding according to the same heuristic than the one enabling padding.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Remove private member access in tokenize()

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Bump tokenizers dependency to 0.4.2

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* format & quality.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Use named arguments when applicable.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Add Github link to Roberta/GPT2 space issue on masked input.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Move max_len_single_sentence / max_len_sentences_pair to PreTrainedTokenizerFast + tests.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Relax type checking to include tuple and list object.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Document the truncate_and_pad manager behavior.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Raise an exception if return_offsets_mapping is not available with the current tokenizer.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Ensure padding is set on the tokenizers before setting any padding strategy + unittest.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* On pytorch we need to stack tensor to get proper new axis.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Generalize tests to different framework removing hard written return_tensors="..."

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Bump tokenizer dependency for num_special_tokens_to_add

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Overflowing tokens in batch_encode_plus are now stacked over the batch axis.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Improved error message for padding strategy without pad token.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Bumping tokenizers dependency to 0.5.0 for release.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Optimizing convert_encoding around 4x improvement. 🚀

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* expose pad_to_max_length in encode_plus to avoid duplicating the parameters in kwargs

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Generate a proper overflow_to_sampling_mapping when return_overflowing_tokens is True.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Fix unittests for overflow_to_sampling_mapping not being returned as tensor.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Format & quality.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Remove perfect alignment constraint for Roberta (allowing 1% difference max)

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Triggering final CI

Co-authored-by: MOI Anthony <xn1t0x@gmail.com>
This commit is contained in:
Funtowicz Morgan 2020-02-19 17:35:40 +01:00 коммит произвёл GitHub
Родитель ffb93ec0cc
Коммит 3f3fa7f7da
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
14 изменённых файлов: 1013 добавлений и 185 удалений

Просмотреть файл

@ -89,7 +89,7 @@ setup(
packages=find_packages("src"),
install_requires=[
"numpy",
"tokenizers == 0.0.11",
"tokenizers == 0.5.0",
# accessing files from S3 directly
"boto3",
# filesystem locks e.g. to prevent parallel downloads

Просмотреть файл

@ -110,13 +110,13 @@ from .tokenization_bert import BasicTokenizer, BertTokenizer, BertTokenizerFast,
from .tokenization_bert_japanese import BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer
from .tokenization_camembert import CamembertTokenizer
from .tokenization_ctrl import CTRLTokenizer
from .tokenization_distilbert import DistilBertTokenizer
from .tokenization_distilbert import DistilBertTokenizer, DistilBertTokenizerFast
from .tokenization_flaubert import FlaubertTokenizer
from .tokenization_gpt2 import GPT2Tokenizer, GPT2TokenizerFast
from .tokenization_openai import OpenAIGPTTokenizer
from .tokenization_roberta import RobertaTokenizer
from .tokenization_openai import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast
from .tokenization_roberta import RobertaTokenizer, RobertaTokenizerFast
from .tokenization_t5 import T5Tokenizer
from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer
from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer, TransfoXLTokenizerFast
# Tokenizers
from .tokenization_utils import PreTrainedTokenizer

Просмотреть файл

@ -982,7 +982,7 @@ SUPPORTED_TASKS = {
"default": {
"model": {"pt": "distilbert-base-cased-distilled-squad", "tf": "distilbert-base-cased-distilled-squad"},
"config": None,
"tokenizer": "distilbert-base-cased",
"tokenizer": ("distilbert-base-cased", {"use_fast": False}),
},
},
"fill-mask": {
@ -992,7 +992,7 @@ SUPPORTED_TASKS = {
"default": {
"model": {"pt": "distilroberta-base", "tf": "distilroberta-base"},
"config": None,
"tokenizer": "distilroberta-base",
"tokenizer": ("distilroberta-base", {"use_fast": False}),
},
},
}
@ -1057,8 +1057,12 @@ def pipeline(
modelcard = config
# Instantiate tokenizer if needed
if isinstance(tokenizer, str):
tokenizer = AutoTokenizer.from_pretrained(tokenizer)
if isinstance(tokenizer, (str, tuple)):
if isinstance(tokenizer, tuple):
# For tuple we have (tokenizer name, {kwargs})
tokenizer = AutoTokenizer.from_pretrained(tokenizer[0], **tokenizer[1])
else:
tokenizer = AutoTokenizer.from_pretrained(tokenizer)
# Instantiate config if needed
if isinstance(config, str):

Просмотреть файл

@ -37,17 +37,17 @@ from .configuration_auto import (
)
from .configuration_utils import PretrainedConfig
from .tokenization_albert import AlbertTokenizer
from .tokenization_bert import BertTokenizer
from .tokenization_bert import BertTokenizer, BertTokenizerFast
from .tokenization_bert_japanese import BertJapaneseTokenizer
from .tokenization_camembert import CamembertTokenizer
from .tokenization_ctrl import CTRLTokenizer
from .tokenization_distilbert import DistilBertTokenizer
from .tokenization_distilbert import DistilBertTokenizer, DistilBertTokenizerFast
from .tokenization_flaubert import FlaubertTokenizer
from .tokenization_gpt2 import GPT2Tokenizer
from .tokenization_openai import OpenAIGPTTokenizer
from .tokenization_roberta import RobertaTokenizer
from .tokenization_gpt2 import GPT2Tokenizer, GPT2TokenizerFast
from .tokenization_openai import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast
from .tokenization_roberta import RobertaTokenizer, RobertaTokenizerFast
from .tokenization_t5 import T5Tokenizer
from .tokenization_transfo_xl import TransfoXLTokenizer
from .tokenization_transfo_xl import TransfoXLTokenizer, TransfoXLTokenizerFast
from .tokenization_xlm import XLMTokenizer
from .tokenization_xlm_roberta import XLMRobertaTokenizer
from .tokenization_xlnet import XLNetTokenizer
@ -58,20 +58,20 @@ logger = logging.getLogger(__name__)
TOKENIZER_MAPPING = OrderedDict(
[
(T5Config, T5Tokenizer),
(DistilBertConfig, DistilBertTokenizer),
(AlbertConfig, AlbertTokenizer),
(CamembertConfig, CamembertTokenizer),
(XLMRobertaConfig, XLMRobertaTokenizer),
(RobertaConfig, RobertaTokenizer),
(BertConfig, BertTokenizer),
(OpenAIGPTConfig, OpenAIGPTTokenizer),
(GPT2Config, GPT2Tokenizer),
(TransfoXLConfig, TransfoXLTokenizer),
(XLNetConfig, XLNetTokenizer),
(FlaubertConfig, FlaubertTokenizer),
(XLMConfig, XLMTokenizer),
(CTRLConfig, CTRLTokenizer),
(T5Config, (T5Tokenizer, None)),
(DistilBertConfig, (DistilBertTokenizer, DistilBertTokenizerFast)),
(AlbertConfig, (AlbertTokenizer, None)),
(CamembertConfig, (CamembertTokenizer, None)),
(XLMRobertaConfig, (XLMRobertaTokenizer, None)),
(RobertaConfig, (RobertaTokenizer, RobertaTokenizerFast)),
(BertConfig, (BertTokenizer, BertTokenizerFast)),
(OpenAIGPTConfig, (OpenAIGPTTokenizer, OpenAIGPTTokenizerFast)),
(GPT2Config, (GPT2Tokenizer, GPT2TokenizerFast)),
(TransfoXLConfig, (TransfoXLTokenizer, TransfoXLTokenizerFast)),
(XLNetConfig, (XLNetTokenizer, None)),
(FlaubertConfig, (FlaubertTokenizer, None)),
(XLMConfig, (XLMTokenizer, None)),
(CTRLConfig, (CTRLTokenizer, None)),
]
)
@ -154,6 +154,9 @@ class AutoTokenizer:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.
use_fast: (`optional`) boolean, default True:
Indicate if transformers should try to load the fast version of the tokenizer (True) or use the Python one (False).
inputs: (`optional`) positional arguments: will be passed to the Tokenizer ``__init__`` method.
kwargs: (`optional`) keyword arguments: will be passed to the Tokenizer ``__init__`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the doc string of :class:`~transformers.PreTrainedTokenizer` for details.
@ -177,9 +180,13 @@ class AutoTokenizer:
if "bert-base-japanese" in pretrained_model_name_or_path:
return BertJapaneseTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
for config_class, tokenizer_class in TOKENIZER_MAPPING.items():
use_fast = kwargs.pop("use_fast", True)
for config_class, (tokenizer_class_py, tokenizer_class_fast) in TOKENIZER_MAPPING.items():
if isinstance(config, config_class):
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
if tokenizer_class_fast and use_fast:
return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
else:
return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
raise ValueError(
"Unrecognized configuration class {} to build an AutoTokenizer.\n"

Просмотреть файл

@ -20,7 +20,7 @@ import logging
import os
import unicodedata
import tokenizers as tk
from tokenizers import BertWordPieceTokenizer
from .tokenization_utils import PreTrainedTokenizer, PreTrainedTokenizerFast
@ -550,14 +550,19 @@ class BertTokenizerFast(PreTrainedTokenizerFast):
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
max_length=None,
pad_to_max_length=False,
stride=0,
truncation_strategy="longest_first",
add_special_tokens=True,
**kwargs
):
super().__init__(
BertWordPieceTokenizer(
vocab_file=vocab_file,
add_special_tokens=add_special_tokens,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
handle_chinese_chars=tokenize_chinese_chars,
lowercase=do_lower_case,
),
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
@ -566,32 +571,4 @@ class BertTokenizerFast(PreTrainedTokenizerFast):
**kwargs,
)
self._tokenizer = tk.Tokenizer(tk.models.WordPiece.from_files(vocab_file, unk_token=unk_token))
self._update_special_tokens()
self._tokenizer.with_pre_tokenizer(
tk.pre_tokenizers.BertPreTokenizer.new(
do_basic_tokenize=do_basic_tokenize,
do_lower_case=do_lower_case,
tokenize_chinese_chars=tokenize_chinese_chars,
never_split=never_split if never_split is not None else [],
)
)
self._tokenizer.with_decoder(tk.decoders.WordPiece.new())
if add_special_tokens:
self._tokenizer.with_post_processor(
tk.processors.BertProcessing.new(
(sep_token, self._tokenizer.token_to_id(sep_token)),
(cls_token, self._tokenizer.token_to_id(cls_token)),
)
)
if max_length is not None:
self._tokenizer.with_truncation(max_length, stride=stride, strategy=truncation_strategy)
self._tokenizer.with_padding(
max_length=max_length if pad_to_max_length else None,
direction=self.padding_side,
pad_id=self.pad_token_id,
pad_type_id=self.pad_token_type_id,
pad_token=self.pad_token,
)
self._decoder = tk.decoders.WordPiece.new()
self.do_lower_case = do_lower_case

Просмотреть файл

@ -17,7 +17,7 @@
import logging
from .tokenization_bert import BertTokenizer
from .tokenization_bert import BertTokenizer, BertTokenizerFast
logger = logging.getLogger(__name__)
@ -74,3 +74,10 @@ class DistilBertTokenizer(BertTokenizer):
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
class DistilBertTokenizerFast(BertTokenizerFast):
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION

Просмотреть файл

@ -21,7 +21,7 @@ import os
from functools import lru_cache
import regex as re
import tokenizers as tk
from tokenizers import ByteLevelBPETokenizer
from .tokenization_utils import PreTrainedTokenizer, PreTrainedTokenizerFast
@ -259,26 +259,19 @@ class GPT2TokenizerFast(PreTrainedTokenizerFast):
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
pad_to_max_length=False,
add_prefix_space=False,
max_length=None,
stride=0,
truncation_strategy="longest_first",
**kwargs
):
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs)
self._tokenizer = tk.Tokenizer(tk.models.BPE.from_files(vocab_file, merges_file))
self._update_special_tokens()
self._tokenizer.with_pre_tokenizer(tk.pre_tokenizers.ByteLevel.new(add_prefix_space=add_prefix_space))
self._tokenizer.with_decoder(tk.decoders.ByteLevel.new())
if max_length:
self._tokenizer.with_truncation(max_length, stride=stride, strategy=truncation_strategy)
self._tokenizer.with_padding(
max_length=max_length if pad_to_max_length else None,
direction=self.padding_side,
pad_id=self.pad_token_id if self.pad_token_id is not None else 0,
pad_type_id=self.pad_token_type_id,
pad_token=self.pad_token if self.pad_token is not None else "",
super().__init__(
ByteLevelBPETokenizer(vocab_file=vocab_file, merges_file=merges_file, add_prefix_space=add_prefix_space),
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
**kwargs,
)
logger.warning(
"RobertaTokenizerFast has an issue when working on mask language modeling "
"where it introduces an extra encoded space before the mask token."
"See https://github.com/huggingface/transformers/pull/2778 for more information."
)
self._decoder = tk.decoders.ByteLevel.new()

Просмотреть файл

@ -19,9 +19,18 @@ import json
import logging
import os
import re
from typing import List, Optional, Union
from tokenizers import Tokenizer
from tokenizers.decoders import BPEDecoder
from tokenizers.implementations import BaseTokenizer
from tokenizers.models import BPE
from tokenizers.normalizers import BertNormalizer, Sequence, unicode_normalizer_from_str
from tokenizers.pre_tokenizers import BertPreTokenizer
from tokenizers.trainers import BpeTrainer
from .tokenization_bert import BasicTokenizer
from .tokenization_utils import PreTrainedTokenizer
from .tokenization_utils import PreTrainedTokenizer, PreTrainedTokenizerFast
logger = logging.getLogger(__name__)
@ -213,3 +222,93 @@ class OpenAIGPTTokenizer(PreTrainedTokenizer):
index += 1
return vocab_file, merge_file
class _OpenAIGPTCharBPETokenizer(BaseTokenizer):
"""
OpenAI character-level BPE Tokenizer
"""
def __init__(
self,
vocab_file: Optional[str] = None,
merges_file: Optional[str] = None,
unk_token: Optional[str] = "<unk>",
suffix: Optional[str] = "</w>",
dropout: Optional[float] = None,
unicode_normalizer: Optional[str] = None,
):
if vocab_file is not None and merges_file is not None:
tokenizer = Tokenizer(
BPE.from_files(
vocab_file, merges_file, dropout=dropout, unk_token=unk_token, end_of_word_suffix=suffix
)
)
else:
tokenizer = Tokenizer(BPE.empty())
# Check for Unicode normalization first (before everything else)
normalizers = []
if unicode_normalizer:
normalizers += [unicode_normalizer_from_str(unicode_normalizer)]
# OpenAI normalization is the same as Bert
normalizers += [BertNormalizer()]
# Create the normalizer structure
if len(normalizers) > 0:
if len(normalizers) > 1:
tokenizer.normalizer = Sequence(normalizers)
else:
tokenizer.normalizer = normalizers[0]
tokenizer.pre_tokenizer = BertPreTokenizer()
tokenizer.decoder = BPEDecoder(suffix=suffix)
parameters = {
"model": "BPE",
"unk_token": unk_token,
"suffix": suffix,
"dropout": dropout,
}
super().__init__(tokenizer, parameters)
def train(
self,
files: Union[str, List[str]],
vocab_size: int = 30000,
min_frequency: int = 2,
special_tokens: List[str] = ["<unk>"],
limit_alphabet: int = 1000,
initial_alphabet: List[str] = [],
suffix: Optional[str] = "</w>",
show_progress: bool = True,
):
""" Train the model using the given files """
trainer = BpeTrainer(
vocab_size=vocab_size,
min_frequency=min_frequency,
special_tokens=special_tokens,
limit_alphabet=limit_alphabet,
initial_alphabet=initial_alphabet,
end_of_word_suffix=suffix,
show_progress=show_progress,
)
if isinstance(files, str):
files = [files]
self._tokenizer.train(trainer, files)
class OpenAIGPTTokenizerFast(PreTrainedTokenizerFast):
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(self, vocab_file, merges_file, unk_token="<unk>", **kwargs):
kwargs.setdefault("unk_token", unk_token)
super().__init__(
_OpenAIGPTCharBPETokenizer(vocab_file=vocab_file, merges_file=merges_file, unk_token=unk_token), **kwargs
)

Просмотреть файл

@ -17,7 +17,9 @@
import logging
from .tokenization_gpt2 import GPT2Tokenizer
from tokenizers.processors import RobertaProcessing
from .tokenization_gpt2 import GPT2Tokenizer, GPT2TokenizerFast
logger = logging.getLogger(__name__)
@ -163,3 +165,48 @@ class RobertaTokenizer(GPT2Tokenizer):
if add_prefix_space and not text[0].isspace():
text = " " + text
return text
class RobertaTokenizerFast(GPT2TokenizerFast):
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(
self,
vocab_file,
merges_file,
errors="replace",
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
add_prefix_space=False,
**kwargs
):
kwargs.setdefault("pad_token", pad_token)
kwargs.setdefault("sep_token", sep_token)
kwargs.setdefault("cls_token", cls_token)
kwargs.setdefault("mask_token", mask_token)
super().__init__(
vocab_file=vocab_file,
merges_file=merges_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
self.tokenizer._tokenizer.post_processor = RobertaProcessing(
(sep_token, self.sep_token_id), (cls_token, self.cls_token_id)
)
# As we override the post_processor post super.__init__ the computed num_added_tokens is wrong in super().
# We need to recompute max_len according to the newly register post_processor to get real values.
self.max_len_single_sentence = self.max_len - self.num_added_tokens(False) # take into account special tokens
self.max_len_sentences_pair = self.max_len - self.num_added_tokens(True) # take into account special tokens

Просмотреть файл

@ -23,11 +23,18 @@ import logging
import os
import pickle
from collections import Counter, OrderedDict
from typing import List, Optional, Tuple, Union
import numpy as np
from tokenizers import Encoding, Tokenizer
from tokenizers.implementations import BaseTokenizer
from tokenizers.models import WordLevel
from tokenizers.normalizers import Lowercase, Sequence, unicode_normalizer_from_str
from tokenizers.pre_tokenizers import CharDelimiterSplit, WhitespaceSplit
from tokenizers.processors import BertProcessing
from .file_utils import cached_path, is_torch_available
from .tokenization_utils import PreTrainedTokenizer
from .tokenization_utils import PreTrainedTokenizer, PreTrainedTokenizerFast
if is_torch_available():
@ -44,6 +51,12 @@ PRETRAINED_VOCAB_FILES_MAP = {
}
}
PRETRAINED_VOCAB_FILES_MAP_FAST = {
"pretrained_vocab_file": {
"transfo-xl-wt103": "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-vocab.json",
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"transfo-xl-wt103": None,
}
@ -280,6 +293,108 @@ class TransfoXLTokenizer(PreTrainedTokenizer):
return symbols
class _TransfoXLDelimiterLookupTokenizer(BaseTokenizer):
def __init__(
self,
vocab_file,
delimiter,
lowercase,
unk_token,
eos_token,
add_eos=False,
add_double_eos=False,
normalization: Optional[str] = None,
):
tokenizer = WordLevel.from_files(vocab_file, unk_token=unk_token)
tokenizer = Tokenizer(tokenizer)
# Create the correct normalization path
normalizer = []
# Include unicode normalization
if normalization:
normalizer += [unicode_normalizer_from_str(normalization)]
# Include case normalization
if lowercase:
normalizer += [Lowercase()]
if len(normalizer) > 0:
tokenizer.normalizer = Sequence(normalizer) if len(normalizer) > 1 else normalizer[0]
# Setup the splitter
tokenizer.pre_tokenizer = CharDelimiterSplit(delimiter) if delimiter else WhitespaceSplit()
if add_double_eos:
tokenizer.post_processor = BertProcessing(
(eos_token, tokenizer.token_to_id(eos_token)), (eos_token, tokenizer.token_to_id(eos_token))
)
parameters = {
"model": "TransfoXLModel",
"add_eos": add_eos,
"add_double_eos": add_double_eos,
"unk_token": unk_token,
"eos_token": eos_token,
"delimiter": delimiter,
"lowercase": lowercase,
}
super().__init__(tokenizer, parameters)
def encode_batch(self, sequences: List[Union[str, Tuple[str, str]]]) -> List[Encoding]:
return super().encode_batch(
[seq.strip() if isinstance(seq, str) else (seq[0].strip(), seq[1].strip()) for seq in sequences]
)
def encode(self, sequence: str, pair: Optional[str] = None) -> Encoding:
return super().encode(sequence.strip(), pair.strip() if pair else pair)
class TransfoXLTokenizerFast(PreTrainedTokenizerFast):
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP_FAST
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(
self,
special=None,
min_freq=0,
max_size=None,
lower_case=False,
delimiter=None,
vocab_file=None,
pretrained_vocab_file=None,
never_split=None,
unk_token="<unk>",
eos_token="<eos>",
additional_special_tokens=["<formula>"],
add_eos=False,
add_double_eos=False,
normalization=None,
**kwargs
):
super().__init__(
_TransfoXLDelimiterLookupTokenizer(
vocab_file=vocab_file or pretrained_vocab_file,
delimiter=delimiter,
lowercase=lower_case,
unk_token=unk_token,
eos_token=eos_token,
add_eos=add_eos,
add_double_eos=add_double_eos,
normalization=normalization,
),
unk_token=unk_token,
eos_token=eos_token,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
class LMOrderedIterator(object):
def __init__(self, data, bsz, bptt, device="cpu", ext_len=None):
"""

Просмотреть файл

@ -21,6 +21,10 @@ import json
import logging
import os
import re
from collections import defaultdict
from contextlib import contextmanager
from tokenizers.implementations import BaseTokenizer
from .file_utils import cached_path, hf_bucket_url, is_remote_url, is_tf_available, is_torch_available
@ -37,6 +41,68 @@ ADDED_TOKENS_FILE = "added_tokens.json"
TOKENIZER_CONFIG_FILE = "tokenizer_config.json"
@contextmanager
def truncate_and_pad(
tokenizer: BaseTokenizer,
max_length: int,
stride: int,
strategy: str,
pad_to_max_length: bool,
padding_side: str,
pad_token_id: int,
pad_token_type_id: int,
pad_token: str,
):
"""
This contextmanager is in charge of defining the truncation and the padding strategies and then
restore the tokenizer settings afterwards.
This contextmanager assumes the provider tokenizer has no padding / truncation strategy
before the managed section. If your tokenizer set a padding / truncation strategy before,
then it will be reset to no padding/truncation when exiting the managed section.
:param tokenizer:
:param max_length:
:param stride:
:param strategy:
:param pad_to_max_length:
:param padding_side:
:param pad_token_id:
:param pad_token_type_id:
:param pad_token:
:return:
"""
# Handle all the truncation and padding stuff
if max_length is not None:
tokenizer.enable_truncation(max_length, stride=stride, strategy=strategy)
if pad_to_max_length and (pad_token and pad_token_id >= 0):
tokenizer.enable_padding(
max_length=None,
direction=padding_side,
pad_id=pad_token_id,
pad_type_id=pad_token_type_id,
pad_token=pad_token,
)
else:
logger.warning(
"Disabled padding because no padding token set (pad_token: {}, pad_token_id: {}).\n"
"To remove this error, you can add a new pad token and then resize model embedding:\n"
"\ttokenizer.pad_token = '<PAD>'\n\tmodel.resize_token_embeddings(len(tokenizer))".format(
pad_token, pad_token_id
)
)
yield
if max_length is not None:
tokenizer.no_truncation()
if pad_to_max_length and (pad_token and pad_token_id >= 0):
tokenizer.no_padding()
class PreTrainedTokenizer(object):
""" Base class for all tokenizers.
Handle all the shared methods for tokenization and special tokens as well as methods downloading/caching/loading pretrained tokenizers as well as adding tokens to the vocabulary.
@ -542,7 +608,7 @@ class PreTrainedTokenizer(object):
vocabulary, they are added to it with indices starting from length of the current vocabulary.
Args:
new_tokens: list of string. Each string is a token to add. Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).
new_tokens: string or list of string. Each string is a token to add. Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).
Returns:
Number of tokens added to the vocabulary.
@ -560,6 +626,9 @@ class PreTrainedTokenizer(object):
if not new_tokens:
return 0
if not isinstance(new_tokens, list):
new_tokens = [new_tokens]
to_add_tokens = []
for token in new_tokens:
assert isinstance(token, str)
@ -837,6 +906,7 @@ class PreTrainedTokenizer(object):
return_attention_mask=True,
return_overflowing_tokens=False,
return_special_tokens_mask=False,
return_offsets_mapping=False,
**kwargs
):
"""
@ -876,6 +946,9 @@ class PreTrainedTokenizer(object):
return_attention_mask: (optional) Set to False to avoid returning attention mask (default True)
return_overflowing_tokens: (optional) Set to True to return overflowing token information (default False).
return_special_tokens_mask: (optional) Set to True to return special tokens mask information (default False).
return_offsets_mapping: (optional) Set to True to return (char_start, char_end) for each token (default False).
If using Python's tokenizer, this method will raise NotImplementedError. This one is only available on
Rust-based tokenizers inheriting from PreTrainedTokenizerFast.
**kwargs: passed to the `self.tokenize()` method
Return:
@ -913,6 +986,15 @@ class PreTrainedTokenizer(object):
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
)
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers."
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
first_ids = get_input_ids(text)
second_ids = get_input_ids(text_pair) if text_pair is not None else None
@ -941,6 +1023,7 @@ class PreTrainedTokenizer(object):
return_tensors=None,
return_input_lengths=False,
return_attention_masks=False,
return_offsets_mapping=False,
**kwargs
):
"""
@ -965,8 +1048,21 @@ class PreTrainedTokenizer(object):
- 'do_not_truncate': Does not truncate (raise an error if the input sequence is longer than max_length)
return_tensors: (optional) can be set to 'tf' or 'pt' to return respectively TensorFlow tf.constant
or PyTorch torch.Tensor instead of a list of python integers.
return_input_lengths: (optional) If set the resulting dictionary will include the length of each sample
return_attention_masks: (optional) Set to True to return the attention mask (default False)
return_offsets_mapping: (optional) Not available, should be set to False or it will throw NotImplementError
**kwargs: passed to the `self.tokenize()` method
"""
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers."
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
batch_outputs = {}
for ids_or_pair_ids in batch_text_or_text_pairs:
if isinstance(ids_or_pair_ids, (list, tuple)):
@ -1430,30 +1526,29 @@ class PreTrainedTokenizer(object):
class PreTrainedTokenizerFast(PreTrainedTokenizer):
_tokenizer = None
_decoder = None
def __init__(self, tokenizer: BaseTokenizer, **kwargs):
if tokenizer is None:
raise ValueError("Provided tokenizer cannot be None")
self._tokenizer = tokenizer
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.max_len_single_sentence = self.max_len - self.num_added_tokens(False) # take into account special tokens
self.max_len_sentences_pair = self.max_len - self.num_added_tokens(True) # take into account special tokens
@property
def tokenizer(self):
if self._tokenizer is None:
raise NotImplementedError
return self._tokenizer
@property
def decoder(self):
if self._decoder is None:
raise NotImplementedError
return self._decoder
return self._tokenizer._tokenizer.decoder
@property
def vocab_size(self):
return self.tokenizer.get_vocab_size(with_added_tokens=False)
return self._tokenizer.get_vocab_size(with_added_tokens=False)
def __len__(self):
return self.tokenizer.get_vocab_size(with_added_tokens=True)
return self._tokenizer.get_vocab_size(with_added_tokens=True)
@PreTrainedTokenizer.bos_token.setter
def bos_token(self, value):
@ -1507,36 +1602,42 @@ class PreTrainedTokenizerFast(PreTrainedTokenizer):
return_attention_mask=True,
return_overflowing_tokens=False,
return_special_tokens_mask=False,
return_offsets_mapping=False,
):
encoding_dict = {
"input_ids": encoding.ids,
}
if return_token_type_ids:
encoding_dict["token_type_ids"] = encoding.type_ids
if return_attention_mask:
encoding_dict["attention_mask"] = encoding.attention_mask
if return_overflowing_tokens:
overflowing = encoding.overflowing
encoding_dict["overflowing_tokens"] = overflowing.ids if overflowing is not None else []
if return_special_tokens_mask:
encoding_dict["special_tokens_mask"] = encoding.special_tokens_mask
if return_overflowing_tokens and encoding.overflowing is not None:
encodings = [encoding] + encoding.overflowing
else:
encodings = [encoding]
encoding_dict = defaultdict(list)
for e in encodings:
encoding_dict["input_ids"].append(e.ids)
if return_token_type_ids:
encoding_dict["token_type_ids"].append(e.type_ids)
if return_attention_mask:
encoding_dict["attention_mask"].append(e.attention_mask)
if return_special_tokens_mask:
encoding_dict["special_tokens_mask"].append(e.special_tokens_mask)
if return_offsets_mapping:
encoding_dict["offset_mapping"].append([e.original_str.offsets(o) for o in e.offsets])
# Prepare inputs as tensors if asked
if return_tensors == "tf" and is_tf_available():
encoding_dict["input_ids"] = tf.constant([encoding_dict["input_ids"]])
encoding_dict["input_ids"] = tf.constant(encoding_dict["input_ids"])
if "token_type_ids" in encoding_dict:
encoding_dict["token_type_ids"] = tf.constant([encoding_dict["token_type_ids"]])
encoding_dict["token_type_ids"] = tf.constant(encoding_dict["token_type_ids"])
if "attention_mask" in encoding_dict:
encoding_dict["attention_mask"] = tf.constant([encoding_dict["attention_mask"]])
encoding_dict["attention_mask"] = tf.constant(encoding_dict["attention_mask"])
elif return_tensors == "pt" and is_torch_available():
encoding_dict["input_ids"] = torch.tensor([encoding_dict["input_ids"]])
encoding_dict["input_ids"] = torch.tensor(encoding_dict["input_ids"])
if "token_type_ids" in encoding_dict:
encoding_dict["token_type_ids"] = torch.tensor([encoding_dict["token_type_ids"]])
encoding_dict["token_type_ids"] = torch.tensor(encoding_dict["token_type_ids"])
if "attention_mask" in encoding_dict:
encoding_dict["attention_mask"] = torch.tensor([encoding_dict["attention_mask"]])
encoding_dict["attention_mask"] = torch.tensor(encoding_dict["attention_mask"])
elif return_tensors is not None:
logger.warning(
"Unable to convert output to tensors format {}, PyTorch or TensorFlow is not available.".format(
@ -1546,71 +1647,161 @@ class PreTrainedTokenizerFast(PreTrainedTokenizer):
return encoding_dict
def encode_plus(
self,
text,
text_pair=None,
return_tensors=None,
return_token_type_ids=True,
return_attention_mask=True,
return_overflowing_tokens=False,
return_special_tokens_mask=False,
**kwargs
):
encoding = self.tokenizer.encode(text, text_pair)
return self._convert_encoding(
encoding,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
)
def tokenize(self, text):
return self.tokenizer.encode(text).tokens
def _convert_token_to_id_with_added_voc(self, token):
id = self.tokenizer.token_to_id(token)
id = self._tokenizer.token_to_id(token)
if id is None:
return self.unk_token_id
return id
def _convert_id_to_token(self, index):
return self.tokenizer.id_to_token(int(index))
return self._tokenizer.id_to_token(int(index))
def convert_tokens_to_string(self, tokens):
return self.decoder.decode(tokens)
return self._tokenizer.decode(tokens)
def add_tokens(self, new_tokens):
self.tokenizer.add_tokens(new_tokens)
if isinstance(new_tokens, str):
new_tokens = [new_tokens]
return self._tokenizer.add_tokens(new_tokens)
def add_special_tokens(self, special_tokens_dict):
added = super().add_special_tokens(special_tokens_dict)
self._update_special_tokens()
return added
def encode_batch(
def num_added_tokens(self, pair=False):
return self.tokenizer.num_special_tokens_to_add(pair)
def tokenize(self, text, **kwargs):
return self.tokenizer.encode(text).tokens
def batch_encode_plus(
self,
texts,
batch_text_or_text_pairs=None,
add_special_tokens=True,
max_length=None,
stride=0,
truncation_strategy="longest_first",
pad_to_max_length=False,
return_tensors=None,
return_token_type_ids=True,
return_attention_mask=True,
return_overflowing_tokens=False,
return_special_tokens_mask=False,
return_offsets_mapping=False,
**kwargs
):
return [
# Needed if we have to return a tensor
pad_to_max_length = pad_to_max_length or (return_tensors is not None)
# Throw an error if we can pad because there is no padding token
if pad_to_max_length and self.pad_token_id is None:
raise ValueError("Unable to set proper padding strategy as the tokenizer does have padding token")
# Set the truncation and padding strategy and restore the initial configuration
with truncate_and_pad(
tokenizer=self._tokenizer,
max_length=max_length,
stride=stride,
strategy=truncation_strategy,
pad_to_max_length=pad_to_max_length,
padding_side=self.padding_side,
pad_token_id=self.pad_token_id,
pad_token_type_id=self.pad_token_type_id,
pad_token=self._pad_token,
):
if not isinstance(batch_text_or_text_pairs, list):
raise TypeError(
"batch_text_or_text_pairs has to be a list (got {})".format(type(batch_text_or_text_pairs))
)
# Avoid thread overhead if only one example.
if len(batch_text_or_text_pairs) == 1:
if isinstance(batch_text_or_text_pairs[0], (tuple, list)):
tokens = self._tokenizer.encode(*batch_text_or_text_pairs[0])
else:
tokens = self._tokenizer.encode(batch_text_or_text_pairs[0])
tokens = [tokens]
else:
tokens = self._tokenizer.encode_batch(batch_text_or_text_pairs)
# Convert encoding to dict
tokens = [
self._convert_encoding(
encoding,
encoding=encoding,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
)
for encoding in self.tokenizer.encode_batch(texts)
for encoding in tokens
]
# Sanitize the output to have dict[list] from list[dict]
sanitized = {}
for key in tokens[0].keys():
stack = [e for item in tokens for e in item[key]]
if return_tensors == "tf":
stack = tf.stack(stack, axis=0)
elif return_tensors == "pt":
stack = torch.stack(stack, dim=0)
elif not return_tensors and len(stack) == 1:
stack = stack[0]
sanitized[key] = stack
# If returning overflowing tokens, we need to return a mapping
# from the batch idx to the original sample
if return_overflowing_tokens:
overflow_to_sample_mapping = [
i if len(item["input_ids"]) == 1 else [i] * len(item["input_ids"]) for i, item in enumerate(tokens)
]
sanitized["overflow_to_sample_mapping"] = overflow_to_sample_mapping
return sanitized
def encode_plus(
self,
text,
text_pair=None,
add_special_tokens=False,
max_length=None,
pad_to_max_length=False,
stride=0,
truncation_strategy="longest_first",
return_tensors=None,
return_token_type_ids=True,
return_attention_mask=True,
return_overflowing_tokens=False,
return_special_tokens_mask=False,
return_offsets_mapping=False,
**kwargs
):
batched_input = [(text, text_pair)] if text_pair else [text]
batched_output = self.batch_encode_plus(
batched_input,
add_special_tokens=add_special_tokens,
max_length=max_length,
stride=stride,
truncation_strategy=truncation_strategy,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
pad_to_max_length=pad_to_max_length,
**kwargs,
)
# Return tensor is None, then we can remove the leading batch axis
if not return_tensors:
return {key: value[0] if isinstance(value[0], list) else value for key, value in batched_output.items()}
else:
return batched_output
def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
text = self.tokenizer.decode(token_ids, skip_special_tokens)
@ -1620,8 +1811,9 @@ class PreTrainedTokenizerFast(PreTrainedTokenizer):
else:
return text
def decode_batch(self, ids_batch, skip_special_tokens=False, clear_up_tokenization_spaces=True):
return [
self.clean_up_tokenization(text) if clear_up_tokenization_spaces else text
for text in self.tokenizer.decode_batch(ids_batch, skip_special_tokens)
]
def save_vocabulary(self, save_directory):
if os.path.isdir(save_directory):
folder, file = save_directory, self.vocab_files_names["vocab_file"]
else:
folder, file = os.path.split(os.path.abspath(save_directory))
self._tokenizer.save(folder, file)

Просмотреть файл

@ -7,17 +7,17 @@ from transformers.pipelines import Pipeline
from .utils import require_tf, require_torch
QA_FINETUNED_MODELS = {
("bert-base-uncased", "bert-large-uncased-whole-word-masking-finetuned-squad", None),
("bert-base-cased", "bert-large-cased-whole-word-masking-finetuned-squad", None),
("bert-base-cased", "distilbert-base-cased-distilled-squad", None),
}
QA_FINETUNED_MODELS = [
(("bert-base-uncased", {"use_fast": False}), "bert-large-uncased-whole-word-masking-finetuned-squad", None),
(("bert-base-cased", {"use_fast": False}), "bert-large-cased-whole-word-masking-finetuned-squad", None),
(("bert-base-cased", {"use_fast": False}), "distilbert-base-cased-distilled-squad", None),
]
TF_QA_FINETUNED_MODELS = {
("bert-base-uncased", "bert-large-uncased-whole-word-masking-finetuned-squad", None),
("bert-base-cased", "bert-large-cased-whole-word-masking-finetuned-squad", None),
("bert-base-cased", "distilbert-base-cased-distilled-squad", None),
}
TF_QA_FINETUNED_MODELS = [
(("bert-base-uncased", {"use_fast": False}), "bert-large-uncased-whole-word-masking-finetuned-squad", None),
(("bert-base-cased", {"use_fast": False}), "bert-large-cased-whole-word-masking-finetuned-squad", None),
(("bert-base-cased", {"use_fast": False}), "distilbert-base-cased-distilled-squad", None),
]
TF_NER_FINETUNED_MODELS = {
(
@ -63,13 +63,13 @@ TEXT_CLASSIF_FINETUNED_MODELS = {
)
}
FILL_MASK_FINETUNED_MODELS = {
("distilroberta-base", "distilroberta-base", None),
}
FILL_MASK_FINETUNED_MODELS = [
(("distilroberta-base", {"use_fast": False}), "distilroberta-base", None),
]
TF_FILL_MASK_FINETUNED_MODELS = {
("distilroberta-base", "distilroberta-base", None),
}
TF_FILL_MASK_FINETUNED_MODELS = [
(("distilroberta-base", {"use_fast": False}), "distilroberta-base", None),
]
class MonoColumnInputTestCase(unittest.TestCase):

Просмотреть файл

@ -22,8 +22,11 @@ from transformers import (
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPT2Tokenizer,
GPT2TokenizerFast,
RobertaTokenizer,
RobertaTokenizerFast,
)
from transformers.tokenization_auto import TOKENIZER_MAPPING
@ -37,38 +40,43 @@ class AutoTokenizerTest(unittest.TestCase):
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
tokenizer = AutoTokenizer.from_pretrained(model_name)
self.assertIsNotNone(tokenizer)
self.assertIsInstance(tokenizer, BertTokenizer)
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
self.assertGreater(len(tokenizer), 0)
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
tokenizer = AutoTokenizer.from_pretrained(model_name)
self.assertIsNotNone(tokenizer)
self.assertIsInstance(tokenizer, GPT2Tokenizer)
self.assertIsInstance(tokenizer, (GPT2Tokenizer, GPT2TokenizerFast))
self.assertGreater(len(tokenizer), 0)
def test_tokenizer_from_pretrained_identifier(self):
logging.basicConfig(level=logging.INFO)
tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
self.assertIsInstance(tokenizer, BertTokenizer)
self.assertEqual(len(tokenizer), 12)
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
self.assertEqual(tokenizer.vocab_size, 12)
def test_tokenizer_from_model_type(self):
logging.basicConfig(level=logging.INFO)
tokenizer = AutoTokenizer.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER)
self.assertIsInstance(tokenizer, RobertaTokenizer)
self.assertEqual(len(tokenizer), 20)
self.assertIsInstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
self.assertEqual(tokenizer.vocab_size, 20)
def test_tokenizer_identifier_with_correct_config(self):
logging.basicConfig(level=logging.INFO)
for tokenizer_class in [BertTokenizer, AutoTokenizer]:
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
tokenizer = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased")
self.assertIsInstance(tokenizer, BertTokenizer)
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case, False)
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
if isinstance(tokenizer, BertTokenizer):
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case, False)
else:
self.assertEqual(tokenizer.do_lower_case, False)
self.assertEqual(tokenizer.max_len, 512)
def test_tokenizer_identifier_non_existent(self):
logging.basicConfig(level=logging.INFO)
for tokenizer_class in [BertTokenizer, AutoTokenizer]:
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
with self.assertRaises(EnvironmentError):
_ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists")
@ -80,10 +88,18 @@ class AutoTokenizerTest(unittest.TestCase):
for mapping in mappings:
mapping = tuple(mapping.items())
for index, (child_config, child_model) in enumerate(mapping[1:]):
for parent_config, parent_model in mapping[: index + 1]:
for index, (child_config, (child_model_py, child_model_fast)) in enumerate(mapping[1:]):
for parent_config, (parent_model_py, parent_model_fast) in mapping[: index + 1]:
with self.subTest(
msg="Testing if {} is child of {}".format(child_config.__name__, parent_config.__name__)
):
self.assertFalse(issubclass(child_config, parent_config))
self.assertFalse(issubclass(child_model, parent_model))
self.assertFalse(issubclass(child_model_py, parent_model_py))
# Check for Fast tokenizer implementation if provided
if child_model_fast and parent_model_fast:
self.assertFalse(issubclass(child_model_fast, parent_model_fast))
def test_from_pretrained_use_fast_toggle(self):
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased"), BertTokenizerFast)
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased", use_fast=False), BertTokenizer)

Просмотреть файл

@ -0,0 +1,371 @@
import unittest
import numpy as np
from tests.utils import require_torch
from transformers import (
BertTokenizer,
BertTokenizerFast,
DistilBertTokenizer,
GPT2Tokenizer,
GPT2TokenizerFast,
OpenAIGPTTokenizer,
PreTrainedTokenizer,
RobertaTokenizer,
TransfoXLTokenizer,
is_torch_available,
)
from transformers.tokenization_distilbert import DistilBertTokenizerFast
from transformers.tokenization_openai import OpenAIGPTTokenizerFast
from transformers.tokenization_roberta import RobertaTokenizerFast
from transformers.tokenization_transfo_xl import TransfoXLTokenizerFast
class FastTokenizerMatchingTest(unittest.TestCase):
def setUp(self) -> None:
with open("tests/fixtures/sample_text.txt") as f_data:
self._data = f_data.read().replace("\n\n", "\n").strip()
def assert_sequence_almost_equals(self, a, b, threshold):
# Handle padding
if len(a) != len(b):
max_len = max(len(a), len(b))
# Pad with a negative number as vocab doesnt allow idx < 0
# if will be tracked as differences
if len(a) < max_len:
a += [-1] * (max_len - len(a))
if len(b) < max_len:
b += [-1] * (max_len - len(b))
# Convert to numpy for convenience
a_, b_ = np.array(a), np.array(b)
# Compute elementwise difference
inputs_diffs = a_ - b_
inputs_diff = np.count_nonzero(inputs_diffs)
self.assertLessEqual(inputs_diff / a_.shape[0], threshold)
def assert_tokenization_python_rust_almost_equals(self, tokenizer_p, tokenizer_r, threshold: float):
# Ensure basic input match
input_p = tokenizer_p.encode_plus(self._data)
input_r = tokenizer_r.encode_plus(self._data)
for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
self.assert_sequence_almost_equals(input_p[key], input_r[key], threshold)
input_pairs_p = tokenizer_p.encode_plus(self._data, self._data)
input_pairs_r = tokenizer_r.encode_plus(self._data, self._data)
for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
self.assert_sequence_almost_equals(input_pairs_p[key], input_pairs_r[key], threshold)
# Ensure truncation match
input_p = tokenizer_p.encode_plus(self._data, max_length=512)
input_r = tokenizer_r.encode_plus(self._data, max_length=512)
for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
self.assert_sequence_almost_equals(input_p[key], input_r[key], threshold)
# Ensure truncation with stride match
input_p = tokenizer_p.encode_plus(self._data, max_length=512, stride=3, return_overflowing_tokens=True)
input_r = tokenizer_r.encode_plus(self._data, max_length=512, stride=3, return_overflowing_tokens=True)
for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
self.assert_sequence_almost_equals(input_p[key], input_r[key], threshold)
def assert_add_tokens(self, tokenizer_r):
vocab_size = tokenizer_r.vocab_size
self.assertEqual(tokenizer_r.add_tokens(""), 0)
self.assertEqual(tokenizer_r.add_tokens("testoken"), 1)
self.assertEqual(tokenizer_r.add_tokens(["testoken1", "testtoken2"]), 2)
self.assertEqual(len(tokenizer_r), vocab_size + 3)
self.assertEqual(tokenizer_r.add_special_tokens({}), 0)
self.assertRaises(
AssertionError, tokenizer_r.add_special_tokens, {"additional_special_tokens": "<testtoken1>"}
)
self.assertEqual(tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1)
self.assertEqual(
tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2
)
self.assertEqual(len(tokenizer_r), vocab_size + 6)
def assert_offsets_mapping(self, tokenizer):
text = "Wonderful no inspiration example with subtoken"
pair = "Along with an awesome pair"
# No pair
tokens_with_offsets = tokenizer.encode_plus(text, return_special_tokens_mask=True, return_offsets_mapping=True)
added_tokens = tokenizer.num_added_tokens(False)
offsets = tokens_with_offsets["offset_mapping"]
# Assert there is the same number of tokens and offsets
self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))
# Assert there is online added_tokens special_tokens
self.assertEqual(sum([0 if x else 1 for x in offsets]), added_tokens)
self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)
# Pairs
tokens_with_offsets = tokenizer.encode_plus(
text, pair, return_special_tokens_mask=True, return_offsets_mapping=True
)
added_tokens = tokenizer.num_added_tokens(True)
offsets = tokens_with_offsets["offset_mapping"]
# Assert there is the same number of tokens and offsets
self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))
# Assert there is online added_tokens special_tokens
self.assertEqual(sum([0 if x else 1 for x in offsets]), added_tokens)
self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)
def assert_batch_encode_dynamic_overflowing(self, tokenizer: PreTrainedTokenizer):
"""
When calling batch_encode with multiple sequence it can returns different number of
overflowing encoding for each sequence:
[
Sequence 1: [Encoding 1, Encoding 2],
Sequence 2: [Encoding 1],
Sequence 3: [Encoding 1, Encoding 2, ... Encoding N]
]
This needs to be padded so that it can represented as a tensor
"""
returned_tensor = "pt" if is_torch_available() else "tf"
tokens = tokenizer.encode_plus(
"HuggingFace is solving NLP one commit at a time",
max_length=6,
return_tensors=returned_tensor,
return_overflowing_tokens=True,
)
for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
self.assertEqual(len(tokens[key].shape), 2)
# Mono sample
tokens = tokenizer.batch_encode_plus(
["HuggingFace is solving NLP one commit at a time"],
max_length=6,
pad_to_max_len=True,
return_tensors=returned_tensor,
return_overflowing_tokens=True,
)
for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
self.assertEqual(len(tokens[key].shape), 2)
self.assertEqual(tokens[key].shape[-1], 6)
# Multi sample
tokens = tokenizer.batch_encode_plus(
["HuggingFace is solving NLP one commit at a time", "Very tiny input"],
max_length=6,
pad_to_max_len=True,
return_tensors=returned_tensor,
return_overflowing_tokens=True,
)
for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
self.assertEqual(len(tokens[key].shape), 2)
self.assertEqual(tokens[key].shape[-1], 6)
def test_bert(self):
for tokenizer_name in BertTokenizer.pretrained_vocab_files_map["vocab_file"].keys():
tokenizer_p = BertTokenizer.from_pretrained(tokenizer_name)
tokenizer_r = BertTokenizerFast.from_pretrained(tokenizer_name)
# Check we have the same number of added_tokens for both pair and non-pair inputs.
self.assertEqual(tokenizer_r.num_added_tokens(False), tokenizer_p.num_added_tokens(False))
self.assertEqual(tokenizer_r.num_added_tokens(True), tokenizer_p.num_added_tokens(True))
# Check we have the correct max_length for both pair and non-pair inputs.
self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)
# Assert the set of special tokens match.
self.assertSequenceEqual(
tokenizer_p.special_tokens_map.items(),
tokenizer_r.special_tokens_map.items(),
"Bert tokenizers doesn't have the same set of special_tokens",
)
# Assure tokenization overlap between python and rust impl.
self.assert_tokenization_python_rust_almost_equals(tokenizer_p, tokenizer_r, 0.0)
# Ensure add_tokens and add_special_tokens return the correct vocab size
self.assert_add_tokens(tokenizer_r)
# Check for offsets mapping
self.assert_offsets_mapping(tokenizer_r)
# Check for dynamic encoding sequence handling in batch_encode_plus
self.assert_batch_encode_dynamic_overflowing(tokenizer_r)
@require_torch
def test_transfoxl(self):
for tokenizer_name in TransfoXLTokenizer.pretrained_vocab_files_map["pretrained_vocab_file"].keys():
tokenizer_p = TransfoXLTokenizer.from_pretrained(tokenizer_name)
tokenizer_r = TransfoXLTokenizerFast.from_pretrained(tokenizer_name)
# Check we have the same number of added_tokens for both pair and non-pair inputs.
self.assertEqual(tokenizer_r.num_added_tokens(False), tokenizer_p.num_added_tokens(False))
self.assertEqual(tokenizer_r.num_added_tokens(True), tokenizer_p.num_added_tokens(True))
# Check we have the correct max_length for both pair and non-pair inputs.
self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)
# Assert the set of special tokens match.
self.assertSequenceEqual(
tokenizer_p.special_tokens_map.items(),
tokenizer_r.special_tokens_map.items(),
"TransfoXL tokenizers doesn't have the same set of special_tokens",
)
# Assure tokenization overlap between python and rust impl.
self.assert_tokenization_python_rust_almost_equals(tokenizer_p, tokenizer_r, 0.0)
# Ensure add_tokens and add_special_tokens return the correct vocab size
self.assert_add_tokens(tokenizer_r)
# Check for offsets mapping
self.assert_offsets_mapping(tokenizer_r)
# Check for dynamic encoding sequence handling in batch_encode_plus
self.assertRaises(ValueError, self.assert_batch_encode_dynamic_overflowing, tokenizer_r)
def test_distilbert(self):
for tokenizer_name in DistilBertTokenizer.pretrained_vocab_files_map["vocab_file"].keys():
tokenizer_p = DistilBertTokenizer.from_pretrained(tokenizer_name)
tokenizer_r = DistilBertTokenizerFast.from_pretrained(tokenizer_name)
# Check we have the same number of added_tokens for both pair and non-pair inputs.
self.assertEqual(tokenizer_r.num_added_tokens(False), tokenizer_p.num_added_tokens(False))
self.assertEqual(tokenizer_r.num_added_tokens(True), tokenizer_p.num_added_tokens(True))
# Check we have the correct max_length for both pair and non-pair inputs.
self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)
# DistilBert should match 100%
# Assert the set of special tokens match.
self.assertSequenceEqual(
tokenizer_p.special_tokens_map.items(),
tokenizer_r.special_tokens_map.items(),
"DistilBert tokenizers doesn't have the same set of special_tokens",
)
# Assure tokenization overlap between python and rust impl.
self.assert_tokenization_python_rust_almost_equals(tokenizer_p, tokenizer_r, 0.0)
# Ensure add_tokens and add_special_tokens return the correct vocab size
self.assert_add_tokens(tokenizer_r)
# Check for offsets mapping
self.assert_offsets_mapping(tokenizer_r)
# Check for dynamic encoding sequence handling in batch_encode_plus
self.assert_batch_encode_dynamic_overflowing(tokenizer_r)
def test_gpt2(self):
for tokenizer_name in GPT2Tokenizer.pretrained_vocab_files_map["vocab_file"].keys():
tokenizer_p = GPT2Tokenizer.from_pretrained(tokenizer_name)
tokenizer_r = GPT2TokenizerFast.from_pretrained(tokenizer_name)
# Check we have the same number of added_tokens for both pair and non-pair inputs.
self.assertEqual(tokenizer_r.num_added_tokens(False), tokenizer_p.num_added_tokens(False))
self.assertEqual(tokenizer_r.num_added_tokens(True), tokenizer_p.num_added_tokens(True))
# Check we have the correct max_length for both pair and non-pair inputs.
self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)
# Assert the set of special tokens match.
self.assertSequenceEqual(
tokenizer_p.special_tokens_map.items(),
tokenizer_r.special_tokens_map.items(),
"GPT2 tokenizers doesn't have the same set of special_tokens",
)
# Assure tokenization overlap between python and rust impl.
self.assert_tokenization_python_rust_almost_equals(tokenizer_p, tokenizer_r, 0.0)
# Ensure add_tokens and add_special_tokens return the correct vocab size
self.assert_add_tokens(tokenizer_r)
# Check for offsets mapping
self.assert_offsets_mapping(tokenizer_r)
# Check for dynamic encoding sequence handling in batch_encode_plus
self.assertRaises(ValueError, self.assert_batch_encode_dynamic_overflowing, tokenizer_r)
def test_roberta(self):
for tokenizer_name in RobertaTokenizer.pretrained_vocab_files_map["vocab_file"].keys():
tokenizer_p = RobertaTokenizer.from_pretrained(tokenizer_name)
tokenizer_r = RobertaTokenizerFast.from_pretrained(tokenizer_name)
# Check we have the same number of added_tokens for both pair and non-pair inputs.
self.assertEqual(tokenizer_r.num_added_tokens(False), tokenizer_p.num_added_tokens(False))
self.assertEqual(tokenizer_r.num_added_tokens(True), tokenizer_p.num_added_tokens(True))
# Check we have the correct max_length for both pair and non-pair inputs.
self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)
# Assert the set of special tokens match.
self.assertSequenceEqual(
tokenizer_p.special_tokens_map.items(),
tokenizer_r.special_tokens_map.items(),
"Roberta tokenizers doesn't have the same set of special_tokens",
)
# Assure tokenization overlap between python and rust impl.
self.assert_tokenization_python_rust_almost_equals(tokenizer_p, tokenizer_r, 0.01)
# Ensure add_tokens and add_special_tokens return the correct vocab size
self.assert_add_tokens(tokenizer_r)
# Check for offsets mapping
self.assert_offsets_mapping(tokenizer_r)
# Check for dynamic encoding sequence handling in batch_encode_plus
self.assert_batch_encode_dynamic_overflowing(tokenizer_r)
def test_openai(self):
for tokenizer_name in OpenAIGPTTokenizer.pretrained_vocab_files_map["vocab_file"].keys():
tokenizer_p = OpenAIGPTTokenizer.from_pretrained(tokenizer_name)
tokenizer_r = OpenAIGPTTokenizerFast.from_pretrained(tokenizer_name)
# Check we have the same number of added_tokens for both pair and non-pair inputs.
self.assertEqual(tokenizer_r.num_added_tokens(False), tokenizer_p.num_added_tokens(False))
self.assertEqual(tokenizer_r.num_added_tokens(True), tokenizer_p.num_added_tokens(True))
# Check we have the correct max_length for both pair and non-pair inputs.
self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)
# Assert the set of special tokens match.
self.assertSequenceEqual(
tokenizer_p.special_tokens_map.items(),
tokenizer_r.special_tokens_map.items(),
"GPT tokenizers doesn't have the same set of special_tokens",
)
# Assure tokenization overlap between python and rust impl.
self.assert_tokenization_python_rust_almost_equals(tokenizer_p, tokenizer_r, 0.0)
# Ensure add_tokens and add_special_tokens return the correct vocab size
self.assert_add_tokens(tokenizer_r)
# Check for offsets mapping
self.assert_offsets_mapping(tokenizer_r)
# Check for dynamic encoding sequence handling in batch_encode_plus
self.assertRaises(ValueError, self.assert_batch_encode_dynamic_overflowing, tokenizer_r)
if __name__ == "__main__":
unittest.main()