diff --git a/model_cards/gurkan08/bert-turkish-text-classification/README.md b/model_cards/gurkan08/bert-turkish-text-classification/README.md new file mode 100644 index 000000000..e70af8b86 --- /dev/null +++ b/model_cards/gurkan08/bert-turkish-text-classification/README.md @@ -0,0 +1,61 @@ +--- +language: tr +--- +# Turkish News Text Classification + + Turkish text classification model obtained by fine-tuning the Turkish bert model (dbmdz/bert-base-turkish-cased) + +# Dataset + +Dataset consists of 11 classes were obtained from https://www.trthaber.com/. The model was created using the most distinctive 6 classes. + +Dataset can be accessed at https://github.com/gurkan08/datasets/tree/master/trt_11_category. + + label_dict = { + 'LABEL_0': 'ekonomi', + 'LABEL_1': 'spor', + 'LABEL_2': 'saglik', + 'LABEL_3': 'kultur_sanat', + 'LABEL_4': 'bilim_teknoloji', + 'LABEL_5': 'egitim' + } + +70% of the data were used for training and 30% for testing. + +train f1-weighted score = %97 + +test f1-weighted score = %94 + +# Usage + + from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification + + tokenizer = AutoTokenizer.from_pretrained("gurkan08/bert-turkish-text-classification") + model = AutoModelForSequenceClassification.from_pretrained("gurkan08/bert-turkish-text-classification") + + nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) + + text = ["Süper Lig'in 6. haftasında Sivasspor ile Çaykur Rizespor karşı karşıya geldi...", + "Son 24 saatte 69 kişi Kovid-19 nedeniyle yaşamını yitirdi, 1573 kişi iyileşti"] + + out = nlp(text) + + label_dict = { + 'LABEL_0': 'ekonomi', + 'LABEL_1': 'spor', + 'LABEL_2': 'saglik', + 'LABEL_3': 'kultur_sanat', + 'LABEL_4': 'bilim_teknoloji', + 'LABEL_5': 'egitim' + } + + results = [] + for result in out: + result['label'] = label_dict[result['label']] + results.append(result) + print(results) + + # > [{'label': 'spor', 'score': 0.9992026090621948}, {'label': 'saglik', 'score': 0.9972177147865295}] + + +